JPH0410858B2 - - Google Patents

Info

Publication number
JPH0410858B2
JPH0410858B2 JP701985A JP701985A JPH0410858B2 JP H0410858 B2 JPH0410858 B2 JP H0410858B2 JP 701985 A JP701985 A JP 701985A JP 701985 A JP701985 A JP 701985A JP H0410858 B2 JPH0410858 B2 JP H0410858B2
Authority
JP
Japan
Prior art keywords
thermoplastic resin
water
film
resin film
polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP701985A
Other languages
Japanese (ja)
Other versions
JPS61164831A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP701985A priority Critical patent/JPS61164831A/en
Publication of JPS61164831A publication Critical patent/JPS61164831A/en
Publication of JPH0410858B2 publication Critical patent/JPH0410858B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は透明で帯電防止性、易接着性の優れた
熱可塑性樹脂フイルム積層物及びその製法に関す
るものである。 (従来の技術) 周知の如く熱可塑性樹脂フイルム、例えばポリ
エステル、ポリアミド、ポリプロピレン等、特に
ポリエステルフイルムとりわけポリエチレンテレ
フタレートフイルムは高度の結晶性、すぐれた透
明光沢性、力学的性質、耐薬品性、耐熱性等を有
することから、広範囲な用途に年々急速に使用さ
れている。 しかし、一般のポリエステルフイルムは高度の
電気絶縁性を有しているため、静電気の発生、蓄
積を生じやすく、静電気障害による種々のトラブ
ルを惹起するという欠点を有している。例えば、
製膜工程や印刷、接着、製袋、包装、その他2次
加工工程等において、ロールへの巻きつき、人体
への電気シヨツク、取扱い困難のような作業能率
の低下や、印刷ヒゲの発生、フイルム表面の汚れ
など商品価値の低下をもたらす原因となる。この
ような静電気障害防止法として一般に帯電防止剤
を樹脂中に練込み製膜する方法とフイルム表面に
帯電防止剤を塗布する方法とがある。ポリエステ
ルフイルムに関しては、このいわゆる練込型帯電
防止処理法がフイルム内部より帯電防止剤が表面
ににじみ出ることによつて帯電防止効果を発揮す
るのに対して、ポリエステル樹脂の高い2次転移
温度の為にフイルム製膜後、常温付近の温度では
帯電防止剤のフイルムへのしみ出しが行われず、
一方、製膜温度条件が高いことやポリエステル自
体のもつ極性基の高い反応性のために帯電防止剤
の配合によつて製膜時に重合体の劣化を生じた
り、着色及び物理的性質の低下をもたらすなどの
問題があり、困難であつた。特に2軸延伸したポ
リエステルフイルムの場合、延伸工程でフイルム
表面上にある帯電防止剤が逃散消失するため全く
帯電防止効果を示さなくなる場合が多く、さらに
帯電防止剤のうちの多くはポリエステルフイルム
の配合によつてフイルムの透明性を極度に低下さ
せるものであり、実用に供し難い。又フイルム表
面に帯電防止剤を塗布する通常の方法はそれだけ
余分な加工工程が必要であり、経済的に不利であ
る。又種々の用途に対してポリエステル2軸延伸
フイルム単体で用いることは極めて稀であり、た
とえば写真用フイルムベースとして用いる場合は
ゼラチン層間との接着性を、また磁気テープベー
スでは磁性層との接着性を、製図用ベースではマ
ツト化剤層との接着性を、金属蒸着する場合は蒸
着金属との接着性、包装用として用いられる場合
はニトロセルロースバインダーを主体とするイン
キやヒートシール剤との接着性を向上させるため
通常各用途に応じて各々適当な表面処理をフイル
ムに付与しているのが現状である。しかしながら
一般にポリエステル2軸延伸フイルム面と親和性
を有する下塗り剤の場合、表層剤との接着性が劣
り、また表層剤と親和性を有するものは概してポ
リエステル2軸延伸フイルム面との接着性に劣る
という欠点がある。更に従来からよく知られてい
る様にポリエステルフイルムの摩擦係数が大きい
とフイルム同士がすべらず極端に悪いとブロツキ
ングを起こし、フイルムの取り扱いのみならず製
膜上特に巻取りが困難になる。このため従来まで
はフイルムの摩擦係数を下げるために該フイルム
に無機もしくは有機物質を単独あるいは混合して
添加することによりその目的を達してきた。しか
し、この様なフイルムに添加量が少ないとその効
果は小さく多量の添加がなされるため該フイルム
の透明性などが急激に低下する。すなわち、透明
性を無添加のものとほぼ同一にして該フイルムの
摩擦係数を大巾に低下させたフイルムは存在しな
かつたのである。さらに同一の添加物を同一量だ
けポリエステルに添加しても摩擦係数の低下の割
合は熱処理条件に大きく依存し、熱覆歴が大きい
ほどこの低下割合は大きくなる。また一方、ポリ
エステルフイルムにポリ有機シロキサンなどを添
加することにより、易滑透明性に優れたフイルム
を得る方法が提案されているが、ポリ有機シロキ
サンの添加量を増すと共に易滑性になるが逆にフ
イルムの透明性低下はいなめず、寸法安定性及び
ヤング率などの機械的性質も低下する傾向があ
り、更にナール加工を巻きとる前に施す方法があ
るが、二次加工でのスリツトでナール加工部分が
トリミングされたり、片側のみに存在するように
なるなど、従来の製造法は種々の問題を有してい
た。 (発明が解決しようとする問題点) 本発明者らは前記従来の技術における問題点す
なわち透明性、帯電防止性、易接着性を同時に付
与する事の困難性を解決するための鋭意研究、努
力した結果、本発明を完成させるに到つたもので
ある。 (問題点を解決するための手段) すなわち本発明は (A) 全ジカルボン酸成分に0.5〜15モル%のスル
ホン酸金属塩基含有ジカルボン酸を含有する混
合ジカルボン酸成分とグリコール成分とから形
成された水不溶性ポリエステル樹脂 (B) 不活性粒子 (C) ポリエチレングリコールもしくはその誘導体 または/および (D) アニオン系帯電防止剤 (E) チオシアン酸塩または/および周期律表〜
のアルカリ金属、アルカリ土類金属から選ば
れた少なくとも1種の金属のハロゲン化物を
(A)/(B)=100000/0.5〜3000重量割合に配合さ
れたポリエステル樹脂組成物が少なくとも片面
に積層されてなることを特徴とする熱可塑性フ
イルム積層物および溶融押出された未延伸熱可
塑性樹脂フイルム又は、一軸延伸熱可塑性樹脂
フイルムの少なくとも片面に (A) 全ジカルボン酸成分に0.5〜15モル%のスル
ホン酸金属塩基含有ジカルボン酸を含有する混
合ジカルボン酸成分とグリコール成分とから形
成された水不溶性ポリエステル共重合体 (B) 不活性粒子 ならびに (C) ポリエチレングリコールもしくはその誘導体 または/および (D) アニオン系帯電防止剤 (E) チオシアン酸塩または/および周期律表〜
のアルカリ金属、アルカリ土類金属から選ば
れた少なくとも1種の金属のハロゲン化物およ
び (F) 沸点60〜200℃の水不溶性有機化合物 (G) 水 を (A)/(B)=100000/0.5〜3000、(A)/(C)=100/1
〜20、(A)/(D)=100/0.1〜10、(A)/(E)=100/1
〜15、(A)〜(F)=100/20〜5000、(F)〜(G)=100/50
〜10000重量割合に配合されたポリエステル樹脂
組成物を塗布後更に二軸延伸又は一軸延伸する事
を特徴とする熱可塑性樹脂フイルムの製法であ
る。 本発明のポリエステル共重合体(A)は、スルホン
酸金属塩基含有ジカルボン酸0.5〜15モル%と、
スルホン酸金属塩基を含有しないジカルボン酸85
〜99.5モル%との混合ジカルボン酸をグリコール
成分と反応させて得られた実質的に水不溶性のポ
リエステル共重合体である。実質的に水不溶性と
は、ポリエステル共重合体を80℃の熱水中で攪拌
しても熱水中にポリエステル共重合体が消散しな
いことを意味し、具体的にはポリエステル共重合
体を過剰の80℃熱水中で24時間攪拌処理した後の
ポリエステル共重合体の重量減少が5重量%以下
のものである。 上記のスルホン酸金属塩基含有ジカルボン酸と
しては、スルホテレフタル酸、5−スルホイソフ
タル酸、4−スルホフタル酸、4−スルホナフタ
レン、2,7−ジカルボン酸、5〔4−スルホフ
エノキシ〕イソフタル酸等の金属塩があげられ、
特に好ましいのは5−ナトリウムスルホイソフタ
ル酸、ナトリウムスルホテレフタル酸である。こ
れらのスルホン酸金属塩基含有ジカルボン酸成分
は、全ジカルボン酸成分に対して0.5〜15モル%
であり、15モル%を越えるとポリエステル共重合
体の耐水性が著しく低下し、また0.5モル%未満
では不活性粒子に対する分散性が著しく低下す
る。 スルホン酸金属塩基を含まないジカルボン酸と
しては、芳香族、脂肪族、脂環族のジカルボン酸
が使用できる。芳香族ジカルボン酸としては、テ
レフタル酸、イソフタル酸、オルソフタル酸、
2,6−ナフタレンジカルボン酸等をあげること
ができる。これらの芳香族ジカルボン酸は全ジカ
ルボン酸成分の40モル%以上であることが好まし
い。40モル%未満ではポリエステル共重合体の機
械的強度や耐水性が低下する。脂肪族および脂環
族のジカルボン酸としては、コハク酸、アジピン
酸、セバシン酸、1,3−シクロベンタンジカル
ボン酸、1,2−シクロヘキサンジカルボン酸、
1,3−シクロヘキサンジカルボン酸、1,4−
シクロヘキサンジカルボン酸などがあげられる。
これらの非芳香族ジカルボン酸成分を加えると、
場合によつては接着性能が高められるが、一般的
にはポリエステル共重合体の機械的強度や耐水性
を低下させる。 上記混合ジカルボン酸と反応させるグリコール
成分としては、炭素数2〜8個の脂肪族グリコー
ルまたは炭素数6〜12個の脂環族グリコールであ
り、具体的には、エチレングリコール、1,2−
プロピレングリコール、1,3−プロパンジオー
ル、1,4−ブタンジオール、ネオペンチルグリ
コール、1,6−ヘキサンジオール、1,2−シ
クロヘキサンジメタノール、1,3−シクロヘキ
サンジメタノール、1,4−シクロヘキサンジメ
タノール、p−キシリレングリコール、ジエチレ
ングリコール、トリエチレングリコールなどであ
る。またポリエーテルとして、ポリエチレングリ
コール、ポリプロピレングリコール、ポリテトラ
メチレングリコールなどがあげられる。 ポリエステル共重合体は、通常の溶融重縮合に
よつて得られる。すなわち上記のジカルボン酸成
分およびグリコール成分を直接反応させて水を留
去しエステル化したのち、重縮合を行なう直接エ
ステル化法、あるいは上記ジカルボン酸成分のジ
メチルエステルとグリコール成分を反応させてメ
チルアルコールを留出しエステル交換を行なわせ
たのち重縮合を行なうエステル交換などによつて
得られる。その他、溶液重縮合、界面重縮合など
も使用され、この発明のポリエステル共重合体は
重縮合の方法によつて限定されるものではない。 前記ポリエステル共重合体をフイルムに積層す
る場合、該ポリエステル共重合体とフイルム用原
料樹脂とを押出機の別々の押出口から同時に共押
出しする方法や該ポリエステル共重合体の溶融シ
ートをフイルムの上に押出し積層する方法、該ポ
リエステル共重合体の水系分散液をフイルムにコ
ーテイングする方法等があり、いずれを採用して
もよいが、該ポリエステル共重合体の水系分散液
をコーテイングする方法々が薄膜をフイルム上に
形成させる事が出来、易滑、透明性の点でより好
ましい。 上記のポリエステル共重合体の水系分散液を得
るには、水溶性有機物化合物とともに水に分散す
ることが必要である。例えば、上記ポリエステル
共重合体と水溶性有機化合物とを50〜200℃であ
らかじめ混合し、この混合物に水を加え攪拌して
分散する方法、あるいは逆に、混合物を水に加え
攪拌して分散する方法、あるいはポリエステル共
重合体と水溶性有機化合物と水とを共存させて40
〜120℃で攪拌する方法がある。 上記水溶性有機化合物は、20℃で1の水に対
する溶解度が20g以上の有機化合物であり、具体
的に脂肪族および脂環族のアルコール、エーテ
ル、エステル、ケトン化合物であり、例えばメタ
ノール、エタノール、イソプロパノール、n−ブ
タノール等の1価アルコール類、エチレングリコ
ール、プロピレングリコール等のグリコール類、
メチルセロソルブ、エチルセロソルブ、n−ブチ
ルセロソルブ等のグリコール誘導体、ジオキサ
ン、テトラヒドロフラン等のエーテル類、酢酸エ
チル等のエステル類、メチルエチルケトン等のケ
トン類である。これら水溶性有機化合物は、単独
または2種以上を併用することができる。上記化
合物のうち、水への分散性、フイルムへの塗布性
からみて、ブチルセロソルブ、エチルセロソルブ
が好適である。 上記の(A)ポリエステル共重合体、(F)水溶性有機
化合物および(G)水の配合重量割合は (A)〜(F)=100/20〜5000 (F)〜(G)=100/50〜10000 を満足することが重要である。ポリエステル共重
合体に対して水溶性有機化合物が少なく(A)〜(F)が
100/20を越える場合は、水系分散液の分散性が
低下する。この場合、界面活性剤を添加すること
によつて、分散性を補助することができるが、界
面活性剤の量が多過ぎると接着性、耐水性が低下
する。逆に(A)/(F)が100/5000未満の場合、また
は(F)/(G)が100/50を越える場合は、水系分散液
中の水溶性有機化合物量が多くなりインラインコ
ート時の溶剤による爆発の危険性が生じ、このた
めに防爆対策を講ずる必要がありさらに環境汚
染、コスト高となるので化合物回収を考慮する必
要がある。(F)/(G)が100/10000未満の場合は、水
系分散液の表面張力が大きくなり、フイルムへの
濡れ性が低下し、塗布斑を生じ易くなる。この場
合、界面活性剤の添加によつて濡れ性を改良する
ことができるが、界面活性剤の量が多過ぎると上
記したと同様に接着性や耐水性が低下する。 更に、この分散液に添加する(B)無機粒子として
は、胡粉、チヨーク、重質炭カル、軽微性炭カ
ル、極微細炭カル、塩基性炭酸マグネシウム、ド
ロマイト、特殊炭酸カルシウム、カオリン、焼成
クレー、バイロフイライト、ベントナイト、セリ
サライト、ゼオライト、ネフエリン、シナイト、
タルク、アタバルジヤナイト、合成珪酸アルミ、
合成珪酸カルシウム、珪藻土、珪石粉、含有微粉
珪酸、無水微粉珪酸、水酸化アルミニウム、バラ
イト、沈降硫酸バリウム、天然石膏、石膏、亜硫
酸カルシウムなどの無機系やベンゾグアナミン樹
脂架橋体などの有機系のものなどがあり、透明性
と滑り性との関連でどれを用いてもよいが、特に
好ましいのは珪酸の天然及び合成品である。粒径
は0.01μ〜10μのものを用いるのが好ましい。
0.01μ以下の粒径のものでは、多量に用いなけれ
ばならず、10μ以上では粗大突起が生じ逆にすべ
り性は悪くなる。 (A)に対して(B)の用いる量は(A)/(B)=100000/
0.5〜3000の割合が良く、好ましくは(A)/(B)=
100000/5〜3000である。 ポリエチレングリコールまたはその誘導体とし
ては分子量1000〜50000が通常であり下記一般式
で示されるものが代表的であるがこれに限定され
るものではない。 R−O(C2H4O)−nR′ R,R′:水素、C1〜20の炭化水素基、エポキシ
基または−COR基(RはC1〜20の炭化水
素基) R″:C1〜20の炭化水素基 m,n :3〜100の数 なお、上記のC1〜20の炭化水素基のいずれも好
ましくはC1〜20のアルキル基、アルキルアリル基
である。 一般によく用いられるポリエチレングリコール
の誘導体としては次のものを例示できる。 R・O(−C2H4O(−nH (R:ラウリル,n
オクチル,ステアリル,セチル) (R:オクチルフエニル,ノニルフエニル,ドデ
シルフエニル) (R:ラウリル,ステアリル) (R:ラウリル,ステアリル) (R:ラウリル,ステアリル) (R:ラウリル,ステアリル) ポリエチレングリコールないしその誘導体は水
不溶性ポリエステル共重合体に対して1〜20%用
いる。 又、アニオン系帯電防止剤としては高級アルコ
ール、アルキルフエノール酸化エチレン付加物の
リン酸エステル塩、その他各種のホスホン酸、ホ
スフイン酸、ホスフアイトエステルなどのリン酸
誘導体、高級アルコール硫酸エステルのNa塩、
有機アミン塩、アルキルフエノール酸化エチレン
付加物の硫酸エステル塩、アルキルスルホン酸
塩、アルキルアリルスルホン酸などの硫酸誘導
体、ステアリン酸ザルコシネートのナトリウム
塩、セバシン酸のトリエタノールアミン塩などの
カルボン酸誘導体などがあげられるが好ましくは
ドデシルベンゼンスルホネートのNa塩、オクチ
ルスルホネートのカリウム塩、オリゴスチレンス
ルホネートのナトリウム塩、ジブチルナフタレン
スルホネートのナトリウム塩、ラウリルスルホコ
ハク酸エステルのナトリウム塩などスルホン基含
有のものが挙げられる。 帯電防止剤が0.1%以下の場合制電性が悪く、
帯電防止剤が10%以上になるとヘイズ、ブロツキ
ング性、接着性が悪い。 更に、チオシアン酸塩、周期律表〜のアル
カリ金属、アルカリ土類金属のハロゲン化物を併
用すれば制電性が向上するので好ましい。 チオシアン酸塩の例としてはチオシアン酸のア
ンモニウム塩、ナトリウム塩、カリウム塩、リチ
ウム塩、カルシウム塩、鉄塩、バリウム塩、マグ
ネシム塩が、周期律表〜のアルカリ金属、ア
ルカリ土類金属のハロゲン化物としてはフツ化ナ
トリウム、フツ化カリウム、塩化ナトリウム、塩
化カリウム、塩化カルシウム、臭化ナトリウム、
臭化カリウム、臭化カルシウム、ヨウ化ナトリウ
ム、ヨウ化カリウムなどのハロゲン化塩が挙げら
れるがこれらに限定されるものでない。しかし1
%以下では制電性が悪く15%以上ではヘイズ、耐
ブロツキング性が悪い。 ポリエチレングリコール及び誘導体とアニオン
系帯電防止剤は少なすぎると制電性が発揮でき
ず、多すぎると易接着性及び透明性が低下する。 このようにして得られるポリエステル共重合体
の水系分散液をポリエステルフイルムにコート法
で塗布するのは、ポリエステルフイルムが溶融押
出された未延伸フイルム、あるいは一軸延伸フイ
ルム又は二軸延伸フイルムのいずれでもよいが、
二軸延伸フイルムに塗布するのはフイルムが広巾
になつており、かつフイルムの走行速度が速くな
つているため均一に塗布しにくく、更に前二者が
コート剤の密着性、耐久性などの点でより好まし
い。 ポリエステルフイルムにコート法で塗布される
水系分散液の塗布量は、二軸延伸後のフイルム上
に存在する量としてポリエステル共重合体として
0.01〜5g/m2である。塗布量が0.01g/m2未満
の場合は不活性粒子などを固着する力が弱くなり
耐久性能が悪くなる。5.0g/m2以上塗布すると
逆にすべり性が悪くなる。 以上述べた方法で得られるポリエステルフイル
ムは透明性、易滑性、制電性、易接着性にすぐれ
ている。 また、上記ポリエステル共重合体の水系分散液
を塗布する前に、ポリエステルフイルムにコロナ
放電処理を施すことによつて、水系分散液の塗布
性がよくなり、かつポリエステルフイルムとポリ
エステル共重合体塗膜との間の接着強度が改善さ
れる。 またコート後あるいは二軸延伸後のポリエステ
ル共重合体層に、コロナ放電処理、窒素雰囲気下
でのコロナ放電処理、紫外線照射処理などを施す
ことによつてフイルム表面の濡れ性や接着性を向
上させることができる。 また本発明においては、熱可塑性樹脂フイルム
としてポリエステルフイルム、とりわけポリエチ
レンテレフタレートフイルムを使用する場合には
積層及び製膜工程等で発生したフイルム屑を回
収、再利用出来るので好ましい。 またポリエステルとしては、透明性の点で出来
るだけ滑剤量が少ない方が好ましく、好ましくは
300ppm以下である。 上記の方法によつて製造されたコーテイングポ
リエステルフイルムは、磁気テープ用ベースフイ
ルムは、ラベルステツカー用ベースフイルム、ケ
ミカルマツト用ベースフイルム、オーバヘツドブ
ロジエクタ用フイルム、食品包装用フイルム、そ
の他の用途に使用することが出来る。 以下にこの発明の実施例を説明する。実施例
中、部、%は重量基準を示す。 実施例 1 (1) ポリエチレンテレフタレートの製造 エチレングリコール200ml中に水酸化鉛pbO・
pb(OH)22.2g(pb0.95×10-2モル)を溶解し、
この溶液にGeO22.0g(1.9×10-2モル)を添加し
て197℃のエチレングリコールの沸点で還流加熱
すると約30分で透明な溶液が得られた。次にこの
溶液を重縮合触媒とするポリエチレンテレフタレ
ートの製造を行なつた。ジメチルテレフタレート
620部、エチレングリコール480部、エステル交換
触媒として酢酸亜鉛Zn(OAc)2・2H2O0.036部を
エステル交換反応器にとり、エステル交換反応は
150℃より230℃に徐々に昇温しつつ行ない、120
分を要してメタノールの溜出を終つた。次いで内
容物を重縮合装置に移し、重縮合触媒として上記
触媒溶液2.7部を加え徐々に昇温すると共に減圧
し、1時間を要して280℃とし0.5mmHgの高減圧
下の重縮合反応を25分間行なつて得られたポリマ
ーは極限粘度0.63、融点262℃であつた。 (2) ポリエステル共重合体の水系分散液の製造 ジメチルテレフタレート117部(49モル%)、ジ
メチルイソフタレート117部(49モル%)、エチレ
ングリコール103部(50モル%)、ジエチレングリ
コール58部(50モル%)、酢酸亜鉛0.08部、三酸
化アンチモン0.08部を反応容器中で40〜220℃に
昇温させて3時間エステル交換反応させ、次いで
5−ナトリウムスルホイソフタル酸9部(2モル
%)を添加して220〜260℃、1時間エステル化反
応させ、更に減圧下(10〜0.2mmHg)で2時間
重縮合反応を行ない、平均分子量18000、軟化点
140℃のポリエステル共重合体を得た。このポリ
エステル共重合体300部とn−ブチルセロソルブ
140部とを容器中で150〜170℃、約3時間攪拌し
て、均一にして粘稠な溶融液を得、この溶融液に
水560部を徐々に添加し約1時間後に均一な淡白
色の固形分濃度30%の水分散液を得、これに更に
サイロイド150をポリエステル共重合体に対して
500ppm、分子量20000のポリエチレングリコール
を5%、ドデシルベンゼンスルホン酸ソーダ1
%、水4500部、エチルアルコール4500部を加えて
希釈し、固形分濃度3%の塗布液を得た。 (3) コートフイルムの製造 (1)で製造したポリエチレンテレフタレートを
280〜300℃で溶融押出し、15℃の冷却ロールで冷
却して厚さ1000ミクロンの未延伸フイルムを得、
この未延伸フイルムを周速の異なる85℃の一対の
ロール間で縦方向に3.5倍延伸し、前記の塗布液
をエアナイフ方式で塗布し、70℃の熱風で乾燥
し、次いでテンターで98℃で横方向に3.5倍延伸
し、さらに200〜210℃で熱固定し厚さ100ミクロ
ンの二軸延伸コーテイングポリエステルフイルム
を得た。又実施例中のポリエチレングリコール及
びその誘導体の化合物No.は下記の如くである。 ポリエチレングリコール(MW20000) 又アニオン系帯電防止剤の化合物No.は下記の如
くである。 ドデシルベンゼンスルホン酸ソーダ 更に無機塩No.は下記の如くである。 〔I〕 臭化ナトリウム 〔〕 ヨウ化ナトリウム 〔〕 チオシアン酸カリウム 第1表中、TPAはテレフタル酸換算、IPAは
イソフタル換算、SSIは5−ナトリウムスルホイ
ソフタル酸、EGはエチレングリコール、DEGは
ジエチレングリコール、NPGはネオペンチルグ
リコール、PEGはポリエチレングリコールであ
る。 実施例 2〜3 実施例1において臭化ナトリウムを各々ヨウ化
ナトリウム、チオシアン酸カリウムに変えた以外
は実施例1と同様にして二軸延伸フイルムを得
た。 実施例 4 実施例1においてSSI量及びDEGの代りに
NPGに変えた以外は実施例1と同様にして二軸
延伸フイルムを得た。
(Industrial Application Field) The present invention relates to a thermoplastic resin film laminate that is transparent, has excellent antistatic properties and easy adhesion, and a method for producing the same. (Prior Art) As is well known, thermoplastic resin films, such as polyester, polyamide, polypropylene, etc., especially polyester films, and especially polyethylene terephthalate films, have a high degree of crystallinity, excellent transparent gloss, mechanical properties, chemical resistance, and heat resistance. Because of these properties, it is rapidly being used in a wide range of applications year by year. However, since general polyester films have a high degree of electrical insulation, they have the disadvantage that they tend to generate and accumulate static electricity, causing various problems due to static electricity. for example,
In the film forming process, printing, adhesion, bag making, packaging, and other secondary processing processes, there may be a reduction in work efficiency such as wrapping around rolls, electric shock to the human body, difficulty in handling, the occurrence of printing whiskers, and film This can cause dirt on the surface and reduce the product value. As methods for preventing such electrostatic damage, there are generally two methods: kneading an antistatic agent into a resin to form a film, and coating the surface of a film with an antistatic agent. Regarding polyester film, this so-called kneading-type antistatic treatment method exhibits an antistatic effect by oozing the antistatic agent from inside the film to the surface, but due to the high secondary transition temperature of polyester resin, After forming the film, the antistatic agent does not seep into the film at temperatures around room temperature.
On the other hand, due to the high film-forming temperature conditions and the high reactivity of the polar groups of polyester itself, the addition of antistatic agents may cause deterioration of the polymer during film-forming, and may cause discoloration and deterioration of physical properties. It was difficult because there were problems such as bringing In particular, in the case of biaxially stretched polyester films, the antistatic agent on the surface of the film escapes and disappears during the stretching process, often resulting in no antistatic effect at all.Furthermore, many of the antistatic agents are compounded in polyester films. This extremely reduces the transparency of the film, making it difficult to put it to practical use. Further, the conventional method of applying an antistatic agent to the film surface requires an extra processing step, which is economically disadvantageous. Furthermore, it is extremely rare to use a polyester biaxially stretched film alone for various purposes; for example, when used as a photographic film base, the adhesion between the gelatin layers and the magnetic layer when used as a magnetic tape base are important. In the case of a drafting base, the adhesion with the matting agent layer, in the case of metal vapor deposition, the adhesion with the vapor-deposited metal, and in the case of packaging, the adhesion with ink mainly based on nitrocellulose binder and heat sealing agent. Currently, in order to improve the properties of the film, appropriate surface treatments are usually applied to the film depending on the application. However, in general, undercoating agents that have an affinity for the surface of a polyester biaxially stretched film have poor adhesion to the surface layer agent, and those that have an affinity for the surface layer agent generally have poor adhesion to the surface of the polyester biaxially stretched film. There is a drawback. Furthermore, as is well known in the art, if the coefficient of friction of polyester film is large, the films will not slide against each other, and if it is extremely bad, blocking will occur, making it difficult not only to handle the film but also to make it difficult to wind it up. Conventionally, this objective has been achieved by adding inorganic or organic substances to the film, either singly or in combination, in order to lower the coefficient of friction of the film. However, if a small amount is added to such a film, the effect will be small, and if a large amount is added, the transparency of the film will drop sharply. In other words, there has never been a film in which the transparency is almost the same as that without additives and the coefficient of friction is significantly lowered. Furthermore, even if the same amount of the same additive is added to polyester, the rate of decrease in the coefficient of friction largely depends on the heat treatment conditions, and the greater the heat coverage history, the greater the rate of decrease. On the other hand, a method has been proposed to obtain a film with excellent lubricity and transparency by adding polyorganosiloxane or the like to a polyester film, but as the amount of polyorganosiloxane added increases, the lubricity increases, but vice versa. However, there is a tendency for the transparency of the film to deteriorate, and the mechanical properties such as dimensional stability and Young's modulus also tend to deteriorate.Furthermore, there is a method of knurling the film before winding it up, Conventional manufacturing methods have had various problems, such as the processed portion being trimmed or existing only on one side. (Problems to be Solved by the Invention) The present inventors have made extensive research and efforts to solve the problems in the conventional technology, that is, the difficulty in simultaneously imparting transparency, antistatic properties, and easy adhesion properties. As a result, we have completed the present invention. (Means for Solving the Problems) That is, the present invention provides (A) a mixed dicarboxylic acid component containing a dicarboxylic acid containing sulfonic acid metal base in an amount of 0.5 to 15 mol % in the total dicarboxylic acid component, and a glycol component; Water-insoluble polyester resin (B) Inert particles (C) Polyethylene glycol or its derivatives or/and (D) Anionic antistatic agent (E) Thiocyanate or/and Periodic Table ~
At least one metal halide selected from alkali metals and alkaline earth metals.
A thermoplastic film laminate and a melt-extruded unstretched thermoplastic characterized by laminating on at least one side a polyester resin composition blended at a weight ratio of (A)/(B)=100000/0.5 to 3000 On at least one side of the resin film or uniaxially stretched thermoplastic resin film, (A) a mixed dicarboxylic acid component containing a dicarboxylic acid containing sulfonic acid metal base in an amount of 0.5 to 15 mol % based on the total dicarboxylic acid component and a glycol component. Water-insoluble polyester copolymer (B) Inert particles and (C) Polyethylene glycol or its derivative or/and (D) Anionic antistatic agent (E) Thiocyanate or/and Periodic table ~
(F) a water-insoluble organic compound with a boiling point of 60 to 200°C (G) water (A) / (B) = 100000 / 0.5 ~3000, (A)/(C)=100/1
~20, (A)/(D)=100/0.1~10, (A)/(E)=100/1
~15, (A) ~ (F) = 100/20 ~ 5000, (F) ~ (G) = 100/50
This is a method for producing a thermoplastic resin film, which is characterized in that a polyester resin composition blended at a weight ratio of ~10,000 is further subjected to biaxial stretching or uniaxial stretching after coating. The polyester copolymer (A) of the present invention contains 0.5 to 15 mol% of a sulfonic acid metal group-containing dicarboxylic acid,
Dicarboxylic acids without sulfonic acid metal bases 85
It is a substantially water-insoluble polyester copolymer obtained by reacting ~99.5 mol% of a mixed dicarboxylic acid with a glycol component. Substantially water-insoluble means that even if the polyester copolymer is stirred in hot water at 80°C, the polyester copolymer will not dissipate in the hot water. The weight loss of the polyester copolymer after being stirred in 80°C hot water for 24 hours is 5% by weight or less. Examples of the above dicarboxylic acids containing metal sulfonic acid groups include metals such as sulfoterephthalic acid, 5-sulfoisophthalic acid, 4-sulfophthalic acid, 4-sulfonaphthalene, 2,7-dicarboxylic acid, and 5[4-sulfophenoxy]isophthalic acid. salt was given,
Particularly preferred are 5-sodium sulfoisophthalic acid and sodium sulfoterephthalic acid. These sulfonic acid metal base-containing dicarboxylic acid components are 0.5 to 15 mol% of the total dicarboxylic acid components.
If it exceeds 15 mol%, the water resistance of the polyester copolymer will be significantly reduced, and if it is less than 0.5 mol%, the dispersibility with respect to inert particles will be significantly reduced. As the dicarboxylic acid containing no sulfonic acid metal base, aromatic, aliphatic, and alicyclic dicarboxylic acids can be used. Aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, orthophthalic acid,
Examples include 2,6-naphthalene dicarboxylic acid. These aromatic dicarboxylic acids preferably account for 40 mol% or more of the total dicarboxylic acid components. If it is less than 40 mol%, the mechanical strength and water resistance of the polyester copolymer will decrease. Aliphatic and alicyclic dicarboxylic acids include succinic acid, adipic acid, sebacic acid, 1,3-cyclobentanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid,
1,3-cyclohexanedicarboxylic acid, 1,4-
Examples include cyclohexanedicarboxylic acid.
When these non-aromatic dicarboxylic acid components are added,
Although adhesive performance may be improved in some cases, it generally reduces the mechanical strength and water resistance of the polyester copolymer. The glycol component to be reacted with the mixed dicarboxylic acid is an aliphatic glycol having 2 to 8 carbon atoms or an alicyclic glycol having 6 to 12 carbon atoms, and specifically, ethylene glycol, 1,2-
Propylene glycol, 1,3-propanediol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol These include methanol, p-xylylene glycol, diethylene glycol, triethylene glycol, and the like. Examples of polyethers include polyethylene glycol, polypropylene glycol, and polytetramethylene glycol. Polyester copolymers are obtained by conventional melt polycondensation. In other words, there is a direct esterification method in which the above dicarboxylic acid component and glycol component are directly reacted, water is distilled off and esterified, and then polycondensation is performed, or the dimethyl ester of the above dicarboxylic acid component and the glycol component are reacted to form methyl alcohol. It can be obtained by distillation, transesterification, and then polycondensation. In addition, solution polycondensation, interfacial polycondensation, etc. may also be used, and the polyester copolymer of the present invention is not limited by the polycondensation method. When laminating the polyester copolymer onto a film, the polyester copolymer and the raw material resin for the film may be simultaneously coextruded from separate extrusion ports of an extruder, or a molten sheet of the polyester copolymer may be laminated onto the film. There are a method of extrusion lamination, a method of coating a film with an aqueous dispersion of the polyester copolymer, and any of these methods may be adopted. can be formed on the film, which is more preferable in terms of ease of slipping and transparency. In order to obtain the aqueous dispersion of the polyester copolymer described above, it is necessary to disperse it in water together with a water-soluble organic compound. For example, the above polyester copolymer and a water-soluble organic compound are mixed in advance at 50 to 200°C, and water is added to this mixture and dispersed by stirring, or conversely, the mixture is added to water and dispersed by stirring. method, or by coexisting a polyester copolymer, a water-soluble organic compound, and water.
There is a method of stirring at ~120℃. The above-mentioned water-soluble organic compound is an organic compound having a solubility in water of 20 g or more at 20°C, and specifically includes aliphatic and alicyclic alcohols, ethers, esters, and ketone compounds, such as methanol, ethanol, Monohydric alcohols such as isopropanol and n-butanol, glycols such as ethylene glycol and propylene glycol,
These include glycol derivatives such as methyl cellosolve, ethyl cellosolve, and n-butyl cellosolve, ethers such as dioxane and tetrahydrofuran, esters such as ethyl acetate, and ketones such as methyl ethyl ketone. These water-soluble organic compounds can be used alone or in combination of two or more. Among the above compounds, butyl cellosolve and ethyl cellosolve are preferred in terms of dispersibility in water and coatability on films. The weight ratio of the above (A) polyester copolymer, (F) water-soluble organic compound, and (G) water is (A) ~ (F) = 100/20 ~ 5000 (F) ~ (G) = 100 / It is important to satisfy the range of 50 to 10,000. Compared to polyester copolymers, (A) to (F) contain less water-soluble organic compounds.
When the ratio exceeds 100/20, the dispersibility of the aqueous dispersion decreases. In this case, dispersibility can be assisted by adding a surfactant, but if the amount of surfactant is too large, adhesiveness and water resistance will decrease. Conversely, if (A)/(F) is less than 100/5000, or (F)/(G) exceeds 100/50, the amount of water-soluble organic compounds in the aqueous dispersion will increase, making it difficult to use during in-line coating. There is a risk of explosion due to the solvent, and therefore it is necessary to take explosion-proof measures, which further causes environmental pollution and increases costs, so it is necessary to consider recovery of the compound. When (F)/(G) is less than 100/10,000, the surface tension of the aqueous dispersion increases, the wettability to the film decreases, and coating spots are likely to occur. In this case, the wettability can be improved by adding a surfactant, but if the amount of the surfactant is too large, the adhesiveness and water resistance decrease as described above. Furthermore, the inorganic particles (B) to be added to this dispersion include chalk, chiyolk, heavy carbon, light carbon, ultrafine carbon, basic magnesium carbonate, dolomite, special calcium carbonate, kaolin, and calcined clay. , birofluorite, bentonite, serisarite, zeolite, nepheline, sinite,
Talc, attabuldyanite, synthetic aluminum silicate,
Inorganic materials such as synthetic calcium silicate, diatomaceous earth, silica powder, finely divided silicic acid, finely divided silicic anhydride, aluminum hydroxide, barite, precipitated barium sulfate, natural gypsum, gypsum, calcium sulfite, and organic materials such as cross-linked benzoguanamine resin. Any of them may be used in terms of transparency and slipperiness, but natural and synthetic silicic acid products are particularly preferred. It is preferable to use particles with a particle size of 0.01μ to 10μ.
If the particle size is 0.01 μm or less, a large amount must be used, and if the particle size is 10 μm or more, coarse protuberances will occur and the slipperiness will deteriorate. The amount of (B) used for (A) is (A)/(B)=100000/
A ratio of 0.5 to 3000 is good, preferably (A)/(B)=
100000/5 to 3000. Polyethylene glycol or its derivatives usually have a molecular weight of 1,000 to 50,000, and those represented by the following general formula are typical, but are not limited thereto. R-O ( C2H4O ) -nR ' R, R': Hydrogen, C 1-20 hydrocarbon group, epoxy group or -COR group (R is C 1-20 hydrocarbon group) R'': C 1-20 hydrocarbon group m, n: 3 A number of ~100 All of the above C1-20 hydrocarbon groups are preferably C1-20 alkyl groups and alkylaryl groups. Examples of commonly used polyethylene glycol derivatives include the following: It is possible. R・O(-C 2 H 4 O(- n H (R: lauryl, n
octyl, stearyl, cetyl) (R: octylphenyl, nonylphenyl, dodecylphenyl) (R: lauryl, stearyl) (R: lauryl, stearyl) (R: lauryl, stearyl) (R: lauryl, stearyl) Polyethylene glycol or its derivatives are used in an amount of 1 to 20% based on the water-insoluble polyester copolymer. In addition, anionic antistatic agents include higher alcohols, phosphoric acid ester salts of alkylphenol oxide adducts, various other phosphoric acid derivatives such as phosphonic acids, phosphinic acids, and phosphite esters, Na salts of higher alcohol sulfuric esters,
Organic amine salts, sulfuric ester salts of alkylphenol ethylene oxide adducts, alkyl sulfonates, sulfuric acid derivatives such as alkylaryl sulfonic acids, sodium salts of stearate sarcosinate, and carboxylic acid derivatives such as triethanolamine salts of sebacic acid. Preferred examples include those containing a sulfonic group, such as Na salt of dodecylbenzenesulfonate, potassium salt of octyl sulfonate, sodium salt of oligostyrene sulfonate, sodium salt of dibutylnaphthalene sulfonate, and sodium salt of lauryl sulfosuccinate. If the antistatic agent is less than 0.1%, the antistatic properties will be poor.
If the amount of antistatic agent exceeds 10%, haze, blocking properties, and adhesion properties will be poor. Further, it is preferable to use a thiocyanate and a halide of an alkali metal or an alkaline earth metal from the periodic table because the antistatic property is improved. Examples of thiocyanates include ammonium, sodium, potassium, lithium, calcium, iron, barium, and magnesium salts of thiocyanate, as well as halides of alkali metals and alkaline earth metals from the periodic table. Examples include sodium fluoride, potassium fluoride, sodium chloride, potassium chloride, calcium chloride, sodium bromide,
Examples include, but are not limited to, halogenated salts such as potassium bromide, calcium bromide, sodium iodide, and potassium iodide. But 1
If it is less than 15%, the antistatic property will be poor, and if it is more than 15%, the haze and blocking resistance will be poor. If the amount of polyethylene glycol and derivatives and anionic antistatic agent is too small, antistatic properties cannot be exhibited, and if too large, easy adhesion and transparency will be reduced. The aqueous dispersion of the polyester copolymer obtained in this manner may be applied to a polyester film by a coating method, either on an unstretched film obtained by melt-extruding the polyester film, or on a uniaxially stretched film or a biaxially stretched film. but,
When coating biaxially stretched film, it is difficult to coat it uniformly because the film is wide and the film travels at a high speed. is more preferable. The amount of the aqueous dispersion applied to the polyester film by the coating method is the amount present on the film after biaxial stretching as the polyester copolymer.
It is 0.01-5 g/ m2 . If the coating amount is less than 0.01 g/m 2 , the ability to fix inert particles etc. will be weak and the durability will be poor. If you apply more than 5.0g/m2, the slipperiness will worsen. The polyester film obtained by the method described above has excellent transparency, easy sliding properties, antistatic properties, and easy adhesion properties. In addition, by subjecting the polyester film to corona discharge treatment before applying the aqueous dispersion of the polyester copolymer described above, the coating properties of the aqueous dispersion can be improved, and the coating of the polyester film and polyester copolymer can be improved. The adhesive strength between the two is improved. In addition, the wettability and adhesion of the film surface can be improved by subjecting the polyester copolymer layer after coating or biaxial stretching to corona discharge treatment, corona discharge treatment under a nitrogen atmosphere, ultraviolet irradiation treatment, etc. be able to. Further, in the present invention, it is preferable to use a polyester film, particularly a polyethylene terephthalate film, as the thermoplastic resin film, since film waste generated during lamination and film forming processes can be recovered and reused. In addition, for polyester, it is preferable that the amount of lubricant is as small as possible from the viewpoint of transparency, and preferably
It is 300ppm or less. The coated polyester film produced by the above method can be used as a base film for magnetic tapes, as a base film for label stickers, as a base film for chemical mats, as a film for overhead film, as a film for food packaging, and for other uses. It can be used for. Examples of the present invention will be described below. In the examples, parts and % are based on weight. Example 1 (1) Production of polyethylene terephthalate Lead hydroxide pbO in 200ml of ethylene glycol
Dissolve 2.2g of pb(OH) 2 (pb0.95×10 -2 mol),
2.0 g (1.9×10 −2 mol) of GeO 2 was added to this solution and heated under reflux at 197° C., the boiling point of ethylene glycol, to obtain a transparent solution in about 30 minutes. Next, polyethylene terephthalate was produced using this solution as a polycondensation catalyst. dimethyl terephthalate
620 parts of ethylene glycol, 480 parts of ethylene glycol, and 0.036 parts of zinc acetate Zn (OAc) 2.2H 2 O as a transesterification catalyst were placed in a transesterification reactor, and the transesterification reaction was carried out.
The temperature was gradually increased from 150℃ to 230℃, and the temperature was increased to 120℃.
It took several minutes to complete the distillation of methanol. Next, the contents were transferred to a polycondensation apparatus, 2.7 parts of the above catalyst solution was added as a polycondensation catalyst, the temperature was gradually raised and the pressure was reduced, and the temperature was raised to 280°C over 1 hour to carry out the polycondensation reaction under a high vacuum of 0.5 mmHg. The polymer obtained after 25 minutes had an intrinsic viscosity of 0.63 and a melting point of 262°C. (2) Production of aqueous dispersion of polyester copolymer Dimethyl terephthalate 117 parts (49 mol%), dimethyl isophthalate 117 parts (49 mol%), ethylene glycol 103 parts (50 mol%), diethylene glycol 58 parts (50 mol%) %), 0.08 parts of zinc acetate, and 0.08 parts of antimony trioxide were heated to 40 to 220°C in a reaction vessel, transesterified for 3 hours, and then 9 parts of 5-sodium sulfoisophthalic acid (2 mol%) was added. The esterification reaction was carried out at 220 to 260°C for 1 hour, and the polycondensation reaction was further carried out for 2 hours under reduced pressure (10 to 0.2 mmHg) to obtain an average molecular weight of 18,000 and a softening point.
A polyester copolymer at 140°C was obtained. 300 parts of this polyester copolymer and n-butyl cellosolve
140 parts of water were stirred in a container at 150-170℃ for about 3 hours to obtain a homogeneous and viscous melt. 560 parts of water was gradually added to this melt, and after about 1 hour a uniform pale white color was obtained. An aqueous dispersion with a solid concentration of 30% was obtained, and Thyroid 150 was further added to the polyester copolymer.
500ppm, 5% polyethylene glycol with a molecular weight of 20000, 1% sodium dodecylbenzenesulfonate
%, 4500 parts of water and 4500 parts of ethyl alcohol were added to obtain a coating liquid with a solid content concentration of 3%. (3) Production of coated film The polyethylene terephthalate produced in (1) is
Melt extrusion at 280-300°C and cooling with a cooling roll at 15°C to obtain an unstretched film with a thickness of 1000 microns.
This unstretched film was stretched 3.5 times in the longitudinal direction between a pair of rolls at different circumferential speeds at 85°C, and the above coating solution was applied using an air knife method, dried with hot air at 70°C, and then heated at 98°C using a tenter. The film was stretched 3.5 times in the transverse direction and further heat-set at 200 to 210°C to obtain a biaxially stretched coated polyester film with a thickness of 100 microns. Further, the compound numbers of polyethylene glycol and its derivatives in the examples are as follows. Polyethylene glycol (MW20000) The compound number of the anionic antistatic agent is as follows. Sodium dodecylbenzenesulfonate Further, the inorganic salt No. is as follows. [I] Sodium bromide [] Sodium iodide [] Potassium thiocyanate In Table 1, TPA is equivalent to terephthalic acid, IPA is equivalent to isophthalic acid, SSI is 5-sodium sulfoisophthalate, EG is ethylene glycol, DEG is diethylene glycol, NPG is neopentyl glycol and PEG is polyethylene glycol. Examples 2 to 3 Biaxially stretched films were obtained in the same manner as in Example 1, except that sodium bromide in Example 1 was replaced with sodium iodide and potassium thiocyanate, respectively. Example 4 Instead of SSI amount and DEG in Example 1
A biaxially stretched film was obtained in the same manner as in Example 1 except that NPG was used.

【表】 実施例 5 実施例1において、EGの1部をPEGに変えた
以外は実施例1と同様にして二軸延伸フイルムを
得た。 実施例 6〜7 実施例1において、サイロイド150の添加量を
変えた以外は実施例1と同様にして二軸延伸フイ
ルムを得た。 実施例 8 実施例5において、臭化ナトリウムの添加量を
変えた以外は実施例1と同様にして二軸延伸フイ
ルムを得た。 比較例 1〜2 実施例1において、臭化ナトリウム、サイロイ
ド150を添加しなかつた以外は実施例1と同様に
して二軸延伸フイルムを得た。 比較例 3〜4 実施例1において、PEG量を請求範囲以外に
変えた以外は実施例1と同様にして二軸延伸フイ
ルムを得た。 比較例 5〜6 実施例1において帯電防止剤量を請求範囲以外
に変えた以外は実施例1と同様にして二軸延伸フ
イルムを得た。 比較例 7〜8 実施例1において臭化ナトリウム量を請求範囲
以外に変えた以外は実施例1と同様にして二軸延
伸フイルムを得た。 比較例 9 実施例1においてサイロイド150の代わりに大
粒子径のサイロイド600に変えた以外は実施例1
と同様にして二軸延伸フイルムを得た。 比較例 10 実施例1においてSSI量及びサイロイド150の
量を請求範囲を越えた量添加した以外は実施例1
と同様にして二軸延伸フイルムを得た。
[Table] Example 5 A biaxially stretched film was obtained in the same manner as in Example 1 except that part of the EG was replaced with PEG. Examples 6 to 7 Biaxially stretched films were obtained in the same manner as in Example 1 except that the amount of Thyroid 150 added was changed. Example 8 A biaxially stretched film was obtained in the same manner as in Example 1 except that the amount of sodium bromide added in Example 5 was changed. Comparative Examples 1-2 A biaxially stretched film was obtained in the same manner as in Example 1 except that sodium bromide and Thyroid 150 were not added. Comparative Examples 3 to 4 A biaxially stretched film was obtained in the same manner as in Example 1 except that the amount of PEG was changed to a value other than the claimed range. Comparative Examples 5 to 6 Biaxially stretched films were obtained in the same manner as in Example 1, except that the amount of antistatic agent in Example 1 was changed to a value other than the claimed range. Comparative Examples 7-8 A biaxially stretched film was obtained in the same manner as in Example 1 except that the amount of sodium bromide was changed to a value other than the claimed range. Comparative Example 9 Example 1 except that Thyroid 600 with a large particle size was used instead of Thyroid 150 in Example 1.
A biaxially stretched film was obtained in the same manner as above. Comparative Example 10 Example 1 except that in Example 1, the amount of SSI and Thyroid 150 were added in an amount exceeding the claimed range.
A biaxially stretched film was obtained in the same manner as above.

【表】 第2表中ヘーズはJIS K6714に準じ、日本精密
光学社製ヘーズメーターを用いて測定した。 摩擦係数は、ASTM−1894に準じ、東洋精機
社製テンシロンを使用し、塗布面と未塗布面とを
合わせて測定した値である。 ブロツキング性は、塗布面と未塗布面とを密着
させて8×12cmに切断し、これを2枚のシリコー
ンゴムシートで挾着し、更にガラス板で挾み、ガ
ラス板上から2Kgの荷重を掛け、これを40℃、80
%RHの雰囲気中で24時間放置し、しかる後にフ
イルムを取外してフイルム間のブロツキング状態
を目視で判定し、ブロツキング面積の5%以下を
○、5〜20%を△、20%以上を×で示した。 接着性はポリビニルアルコール 塩化ビニ
ル酢ビ共重合体 ポリメチルメタクリレートに
相溶性の良い赤色染料を添加したものを厚み3μ
になるように塗布し、ニチバン製セロテープを貼
付しハクリ角度が180°になるようにして剥離し
た。全くハクリのないものを10、半分ハクリした
ものを5、全物ハクリしたものを1としてランク
付した。 表面抵抗は、タケダ理研社製固有抵抗測定器で
印加電圧500V20℃65%RHの条件下で測定した。
第2表中で本発明法はヘーズ摩擦係数、ブロツキ
ング性、接着性、表面抵抗(制電性)においてい
ずれも良好な特性を示す。しかしながら、臭化ナ
トリウム無添加の場合(比較例1)は制電性が悪
く、サイロイド150無添加の場合(比較例2)、滑
り性が悪くPEG量が少なすぎる場合(比較例3)
は制電性が悪く、PEG量が多すぎる場合(比較
例4)ヘイズ、ブロツキング性、滑り性が悪く、
制電剤が少なすぎる場合(比較例5)は制電性が
悪く、制電剤が多すぎる場合(比較例6)、ヘイ
ズ、ブロツキング性、接着性が悪く、臭化ナトリ
ウムが少なすぎる場合(比較例7)制電性が悪
く、臭化ナトリウムが多すぎる場合(比較例8)、
ヘイズ、ブロツキング性が悪く、サイロイドの粒
径が大きい場合(比較例9)ヘイズ、すべり性が
悪く、SSI量が多すぎる場合(比較例10)ブロツ
キング性が悪く、サイロイド150量が多すぎる場
合(比較例11)ヘイズが悪いことがわかる。 (発明の効果) このように本発明の方法によつて得られた熱可
塑性樹脂フイルム積層物は透明で帯電防止性、易
接着性が良好であるという効果がある。
[Table] The haze in Table 2 was measured according to JIS K6714 using a haze meter manufactured by Nippon Seimitsu Kogaku. The friction coefficient is a value measured on both coated and uncoated surfaces using Tensilon manufactured by Toyo Seiki Co., Ltd. in accordance with ASTM-1894. Blocking property was tested by cutting the coated and uncoated surfaces into 8 x 12 cm pieces, sandwiching them between two silicone rubber sheets, sandwiching them between glass plates, and applying a 2 kg load from the top of the glass plate. Multiply this at 40℃ and 80
%RH for 24 hours, then remove the film and visually judge the blocking condition between the films. 5% or less of the blocking area is ○, 5 to 20% is △, and 20% or more is ×. Indicated. Adhesive properties include polyvinyl alcohol, vinyl chloride/vinyl acetate copolymer, and polymethyl methacrylate with a highly compatible red dye added to a thickness of 3 μm.
The adhesive was applied so that it would look like this, and Nichiban sellotape was applied and peeled off at a peeling angle of 180°. It was ranked as 10 if there was no peeling at all, 5 if half of it was peeled off, and 1 if all of it was peeled off. The surface resistance was measured using a specific resistance measuring device manufactured by Takeda Riken under conditions of an applied voltage of 500 V, 20° C., and 65% RH.
In Table 2, the method of the present invention exhibits good characteristics in all of the haze friction coefficient, blocking properties, adhesion properties, and surface resistance (antistatic properties). However, when sodium bromide is not added (Comparative Example 1), antistatic properties are poor, when Thyroid 150 is not added (Comparative Example 2), slipperiness is poor and when the amount of PEG is too small (Comparative Example 3).
has poor antistatic properties, and when the amount of PEG is too large (Comparative Example 4), haze, blocking properties, and slip properties are poor.
When there is too little antistatic agent (Comparative Example 5), antistatic properties are poor; when there is too much antistatic agent (Comparative Example 6), haze, blocking properties, and adhesion are poor, and when there is too little sodium bromide ( Comparative Example 7) When antistatic properties are poor and sodium bromide is too large (Comparative Example 8),
When the haze and blocking properties are poor and the thyroid particle size is large (Comparative Example 9) When the haze and slip properties are poor and the amount of SSI is too large (Comparative Example 10) When the blocking properties are poor and the amount of thyroid 150 is too large ( Comparative Example 11) It can be seen that the haze is poor. (Effects of the Invention) As described above, the thermoplastic resin film laminate obtained by the method of the present invention has the advantage of being transparent and having good antistatic properties and easy adhesion.

Claims (1)

【特許請求の範囲】 1(A) 全ジカルボン酸成分に0.5〜15モル%のス
ルホン酸金属塩基含有ジカルボン酸を有する混
合ジカルボン酸成分とグリコール成分とから形
成された水不溶性ポリエステル樹脂 (B) 不活性粒子 (C) ポリエチレングリコールもしくはその誘導体
または/および (D) アニオン系帯電防止剤 (E) チオシアン酸塩または/および周期律表〜
のアルカリ金属、アルカリ土類金属から選ば
れた少なくとも1種の金属のハロゲン化物を
(A)/(B)=100000/0.5〜3000重量割合に配合さ
れたポリエステル樹脂組成物が少なくとも片面
に積層されてなることを特徴とする熱可塑性フ
イルム積層物。 2 不活性粒子の平均第1次粒径が0.01〜10μで
ある特許請求の範囲第1項記載の熱可塑性樹脂フ
イルム積層物。 3 ポリエチレングリコールもしくはその誘導体
(C)が水不溶性ポリエステル共重合体(A)に対して (A)/(C)=100/1〜20重量割合に配合された特
許請求の範囲第1〜第2項記載の熱可塑性樹脂フ
イルムの積層物。 4 アニオン系帯電防止剤(D)が水不溶性ポリエス
テル共重合体(A)に対して (A)/(D)=100/0.1〜10重量割合に配合された特
許請求の範囲第1〜第3項記載の熱可塑性樹脂フ
イルム積層物。 5 チオシアン酸塩または/および周期律表 〜のアルカリ金属、アルカリ土類金属のハ
ロゲン化物(E)が水不溶性ポリエステル共重合体(A)
に対して (A)/(E)=100/1〜15重量割合に配合された特
許請求の範囲第1項〜第4項記載の熱可塑性樹脂
フイルム積層物。 6 熱可塑性樹脂フイルムがポリエステルフイル
ムである特許請求の範囲第1項〜第5項記載の熱
可塑性樹脂フイルム積層物。 7 溶融押出された未延伸熱可塑性樹脂フイルム
又は、一軸延伸熱可塑性樹脂フイルムの少なくと
も片面に (A) 全ジカルボン酸成分に0.5〜15モル%のスル
ホン酸金属塩基含有ジカルボン酸を含有する混
合ジカルボン酸成分とグリコール成分とから形
成された水不溶性ポリエステル共重合体 (B) 不活性粒子 ならびに (C) ポリエチレングリコールもしくはその誘導体 または/および (D) アニオン系帯電防止剤 (E) チオシアン酸塩または/および周期律表〜
のアルカリ金属、アルカリ土類金属から選ば
れた少なくとも1種の金属のハロゲン化物およ
び (F) 沸点60〜200℃の水不溶性有機化合物 (G) 水 を (A)/(B)=100000/0.5〜3000、(A)/(C)=100/1
〜20、(A)/(D)=100/0.1〜10、(A)/(E)=100/1
〜15、(A)〜(F)=100/20〜5000、(F)〜(G)=100/50
〜10000重量割合に配合されたポリエステル樹脂
組成物を塗布後更に二軸延伸又は一軸延伸する事
を特徴とする熱可塑性樹脂フイルム積層物の製
法。
[Scope of Claims] 1(A) A water-insoluble polyester resin formed from a mixed dicarboxylic acid component having 0.5 to 15 mol% of a dicarboxylic acid containing a sulfonic acid metal base in the total dicarboxylic acid component and a glycol component. Active particles (C) polyethylene glycol or its derivatives or/and (D) anionic antistatic agent (E) thiocyanate or/and periodic table ~
At least one metal halide selected from alkali metals and alkaline earth metals.
A thermoplastic film laminate, characterized in that a polyester resin composition blended in a weight ratio of (A)/(B)=100000/0.5 to 3000 is laminated on at least one side. 2. The thermoplastic resin film laminate according to claim 1, wherein the inert particles have an average primary particle size of 0.01 to 10 μm. 3 Polyethylene glycol or its derivatives
The thermoplastic resin according to claims 1 to 2, wherein (C) is blended in a weight ratio of (A)/(C) = 100/1 to 20 with respect to the water-insoluble polyester copolymer (A). Film laminate. 4 Claims 1 to 3 in which the anionic antistatic agent (D) is blended in a weight ratio of (A)/(D)=100/0.1 to 10 with respect to the water-insoluble polyester copolymer (A). Thermoplastic resin film laminate as described in . 5 Thiocyanate or/and alkali metal or alkaline earth metal halide (E) from the periodic table is a water-insoluble polyester copolymer (A)
The thermoplastic resin film laminate according to claims 1 to 4, wherein the thermoplastic resin film laminate is blended in a weight ratio of (A)/(E)=100/1 to 15. 6. The thermoplastic resin film laminate according to claims 1 to 5, wherein the thermoplastic resin film is a polyester film. 7. On at least one side of the melt-extruded unstretched thermoplastic resin film or uniaxially stretched thermoplastic resin film, (A) mixed dicarboxylic acid containing 0.5 to 15 mol % of sulfonic acid metal base-containing dicarboxylic acid based on the total dicarboxylic acid components. a water-insoluble polyester copolymer formed from a glycol component and a glycol component (B) inert particles and (C) polyethylene glycol or a derivative thereof or/and (D) an anionic antistatic agent (E) thiocyanate or/and Periodic table~
(F) a water-insoluble organic compound with a boiling point of 60 to 200°C (G) water (A) / (B) = 100000 / 0.5 ~3000, (A)/(C)=100/1
~20, (A)/(D)=100/0.1~10, (A)/(E)=100/1
~15, (A) ~ (F) = 100/20 ~ 5000, (F) ~ (G) = 100/50
1. A method for producing a thermoplastic resin film laminate, which comprises applying a polyester resin composition blended at a weight ratio of ~10,000 and then further biaxially or uniaxially stretching.
JP701985A 1985-01-17 1985-01-17 Thermoplastic resin film laminate and manufacture thereof Granted JPS61164831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP701985A JPS61164831A (en) 1985-01-17 1985-01-17 Thermoplastic resin film laminate and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP701985A JPS61164831A (en) 1985-01-17 1985-01-17 Thermoplastic resin film laminate and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS61164831A JPS61164831A (en) 1986-07-25
JPH0410858B2 true JPH0410858B2 (en) 1992-02-26

Family

ID=11654323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP701985A Granted JPS61164831A (en) 1985-01-17 1985-01-17 Thermoplastic resin film laminate and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61164831A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2705816B2 (en) * 1988-12-12 1998-01-28 ダイセル化学工業 株式会社 Antistatic film
JPH0382538A (en) * 1989-08-28 1991-04-08 Toray Ind Inc Composite polyester film
JPH0382535A (en) * 1989-08-28 1991-04-08 Toray Ind Inc Composite polyester film
JPH0382536A (en) * 1989-08-28 1991-04-08 Toray Ind Inc Composite polyester film
JPH0382533A (en) * 1989-08-28 1991-04-08 Toray Ind Inc Composite polyester film
JPH0464442A (en) * 1990-07-04 1992-02-28 Toray Ind Inc Polyester resin film
JP2004017610A (en) * 2002-06-20 2004-01-22 Toray Ind Inc Release film

Also Published As

Publication number Publication date
JPS61164831A (en) 1986-07-25

Similar Documents

Publication Publication Date Title
KR890002367B1 (en) Thermoplastic resin film laminated and production thereof
JPH0410858B2 (en)
JPH0422692B2 (en)
JPH0347178B2 (en)
JPH0455215B2 (en)
JPH0149114B2 (en)
JP2002079617A (en) Antistatic laminated polyester film
JP3296015B2 (en) Easy adhesion polyester film
JPH0376207B2 (en)
JP2681683B2 (en) Polyester film
JPH0747304B2 (en) Thermoplastic resin film laminate and method for producing the same
JPH07108563B2 (en) Thermoplastic resin film laminate and method for producing the same
JP2001096696A (en) Coated polyester film
JP3185367B2 (en) Easy adhesion polyester film
JPH0798384B2 (en) Thermoplastic resin film laminate
KR950012796B1 (en) Laminated article of thermoplastic resin film
JPH0681714B2 (en) Coated plastic film
JPS62152850A (en) Thermoplastic-resin film laminate and manufacture thereof
JPH0376655B2 (en)
JP3212828B2 (en) Laminated film
JPS61295037A (en) Thermoplastic resin film laminate
JPH0554494B2 (en)
JP3227984B2 (en) Easy adhesion polyester film
JPS63267550A (en) Thermoplastic resin film laminate
JP3289330B2 (en) Water-soluble copolymerized polyester for film and coating agent for magnetic recording material

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term