JPH0149114B2 - - Google Patents

Info

Publication number
JPH0149114B2
JPH0149114B2 JP27857684A JP27857684A JPH0149114B2 JP H0149114 B2 JPH0149114 B2 JP H0149114B2 JP 27857684 A JP27857684 A JP 27857684A JP 27857684 A JP27857684 A JP 27857684A JP H0149114 B2 JPH0149114 B2 JP H0149114B2
Authority
JP
Japan
Prior art keywords
film
polyester
thermoplastic resin
dicarboxylic acid
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP27857684A
Other languages
Japanese (ja)
Other versions
JPS61149353A (en
Inventor
Katsuhiko Nose
Osamu Makimura
Hajime Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP27857684A priority Critical patent/JPS61149353A/en
Publication of JPS61149353A publication Critical patent/JPS61149353A/en
Publication of JPH0149114B2 publication Critical patent/JPH0149114B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は透明で帯電防止性、易接着性の優れた
熱可塑性樹脂フイルム積層物及びその製法に関す
るものである。 (従来の技術) 周知の如く熱可塑性樹脂フイルム、例えばポリ
エステル、ポリアミド、ポリプロピレン等、特に
ポリエステルフイルムとりわけポリエチレンテレ
フタレートフイルムは高度の結晶性、すぐれた透
明光沢性力学的性質、耐薬品性、耐熱性等を有す
ることから、広範囲な用途に年々急速に使用され
ている。 しかし、熱可塑性樹脂フイルム特にポリエステ
ルフイルムとりわけポリエチレンテレフタレート
フイルムは高度の電気絶縁性を有しているため、
静電気の発生、蓄積を生じやすく、静電気障害に
よる種々のトラブルを惹起するという欠点を有し
ている。例えば、製膜工程や印刷、接着、製袋、
包装、その他2次加工工程等において、ロールへ
の巻きつき、人体への電気シヨツク、取扱い困難
のような作業能率の低下や、印刷ヒゲの発生、フ
イルム表面の汚れなど商品価値の低下をもたらす
原因となる。このような静電気障害防止法として
一般に帯電防止剤を樹脂中に練込み製膜する方法
とフイルム表面に帯電防止剤を塗布する方法とが
ある。ポリエステルフイルムに関しては、このい
わゆる練込型帯電防止処理法がフイルム内部より
帯電防止剤が表面ににじみ出ることによつて帯電
防止効果を発揮するのに対して、ポリエステル樹
脂の高い2次転移温度ためにフイルム製膜後、常
温付近の温度では帯電防止剤のフイルムへのしみ
出しが行われず、一方、製膜温度条件が高いこと
やポリエステル自体のもつ極性基の高い反応性の
ために帯電防止剤の配合によつて製膜時に重合体
の劣化を生じたり、着色及び物理的性質の低下を
もたらすなどの問題があり、困難であつた。特に
2軸延伸したポリエステルフイルムの場合、延伸
工程でフイルム表面上にある帯電防止剤が逃散消
失するため全く帯電防止効果を示さなくなる場合
が多く、さらに帯電防止剤のうちの多くはポリエ
ステルフイルムの配合によつてフイルムの透明性
を極度に低下させるものであり、実用に供し難
い。又フイルム表面に帯電防止剤を塗布する通常
の方法はそれだけ余分な加工工程が必要であり、
経済的に不利である。又種々の用途に対してポリ
エステル2軸延伸フイルム単体で用いることは極
めて稀であり、たとえば写真用フイルムベースと
して用いる場合はゼラチン層間との接着性を、ま
た磁気テープベースでは磁性層との接着性を、製
図用ベースではマツト化剤層との接着性を、金属
蒸着する場合は蒸着金属との接着性、包装用とし
て用いられる場合はニトロセルロースバインダー
を主体とするインキやヒートシーム剤との接着性
を向上させるため通常各用途に応じて各々適当な
表面処理をフイルムに付与しているのが現状であ
る。しかしながら一般にポリエステル2軸延伸フ
イルム面と親和性を有する下塗り剤の場合、表層
剤との接着性が劣り、また表層剤と親和性を有す
るものは概してポリエステル2軸延伸フイルム面
との接着性に劣るという欠点がある。更に従来か
らよく知られている様にポリエステルフイルムの
摩擦係数が大きいとフイルム同士がすべらず極端
に悪いとブロツキングを起こし、フイルムの取り
扱いのみならず製膜上特に巻取りが困難になる。
このため従来まではフイルムの摩擦係数を下げる
ために該フイルムに無機もしくは有機物質を単独
あるいは混合して添加することによりその目的を
達してきた。しかし、この様なフイルムに添加量
が少ないとその効果は小さく多量の添加がなされ
るため該フイルムの透明性などが急激に低下す
る。すなわち、透明性を無添加のものとほぼ同一
にして該フイルムの摩擦係数を大巾に低下させた
フイルムは存在しなかつたのである。さらに同一
の添加物を同一量だけポリエステルに添加しても
摩擦係数の低下の割合は熱処理条件に大きく依存
し、熱覆歴が大きいほどこの低下割合は大きくな
る。また一方、ポリエステルフイルムにポリ有機
シロキサンなどを添加することにより、易滑透明
性に優れたフイルムを得る方法が提案されている
が、ポリ有機シロキサンの添加量を増すと共に易
滑性になるが逆にフイルムの透明性低下はいなめ
ず、寸法安定性及びヤング率などの機械的性質も
低下する傾向があり、更にナール加工を巻きとる
前に施す方法があるが、二次加工でのスリツトで
ナール加工部分がトリミングされたり、片側のみ
に存在するようになるなど、従来の製造法は種々
の問題を有していた。 (発明が解決しようとする問題点) 本発明者らは前記従来の技術における問題点す
なわち透明性、帯電防止性、易接着性を同時に付
与することの困難性を解決するため鋭意研究、努
力した結果、本発明を完成させるに到つたもので
ある。 (問題点を解決するための手段) すなわち本発明は (A) 全ジカルボン酸成分に0.5〜15モル%のスル
ホン酸金属塩基含有ジカルボン酸を含有する混
合ジカルボン酸成分とグリコール成分とから形
成された水不溶性ポリエステル共重合体 (B) 不活性粒子 (C) ポリエチレングリコールもしくはその誘導体 または/および (D) アニオン系帯電防止剤 および (E) 燐酸塩 において(A)/(B)=100000/0.5〜3000、(A)/(C)=
100/1〜20、(A)/(D)=100/0.1〜10、(A/E)
=100/1〜15重量割合に配合されたポリエステ
ル樹脂組成物が少なくとも片面に積層されてなる
ことを特徴とする熱可塑性樹脂フイルム積層物お
よび溶融押出された未延伸熱可塑性樹脂フイルム
又は、一軸延伸熱可塑性樹脂フイルムの少なくと
も片面に (A) 全ジカルボン酸成分に0.5〜15モル%のスル
ホン酸金属塩基含有ジカルボン酸を含有する混
合ジカルボン酸成分とグリコール成分とから形
成された水不溶性ポリエステル共重合体 (B) 不活性粒子 ならびに (C) ポリエチレングリコールもしくはその誘導体 または/および (D) アニオン系帯電防止剤 および (E) 燐酸塩 (F) 沸点60〜200℃の水溶性有機化合物 (G) 水 を(A)/(B)=100000/0.5〜3000、(A)/(C)=100/1
〜20、(A)/(D)=100/0.1〜10、(A)/(E)=100/1
〜15、(A)/(F)=100/20〜5000、(F)/(G)=100/50
〜10000重量割合に配合されたポリエステル樹脂
組成物を塗布後更に二軸延伸または一軸延伸する
ことを特徴とする熱可塑性樹脂フイルム積層物の
製法である。 本発明のポリエステル共重合体(A)は、スルホン
酸金属塩基含有ジカルボン酸0.5〜15モル%と、
スルホン酸金属塩基を含有しないジカルボン酸85
〜99.5モル%との混合ジカルボン酸をグリコール
成分と反応させて得られた実質的に水不溶性のポ
リエステル共重合体である。実質的に水不溶性と
は、ポリエステル共重合体を80℃の熱水中で撹拌
しても熱水中にポリエステル共重合体が消散しな
いことを意味し、具体的にはポリエステル共重合
体を過剰の80℃熱水中で24時間撹拌処理した後の
ポリエステル共重合体の重量減少が5重量%以下
のものである。 上記のスルホン酸金属塩基含有ジカルボン酸と
しては、スルホテレフタル酸、5−スルホイソフ
タル酸、4−スルホフタル酸、4−スルホナフタ
レン−2,7−ジカルボン酸、5〔4−スルホフ
エノキシ〕イソフタル酸等の金属塩があげられ、
特に好ましいのは5−ナトリウムスルホイソフタ
ル酸、ナトリウムスルホテレフタル酸である。こ
れらのスルホン酸金属塩基含有ジカルボン酸成分
は、全ジカルボン酸成分に対して0.5〜15モル%
であり、15モル%を越えるとポリエステル共重合
体の耐水性が著しく低下し、また0.5モル%未満
では不活性粒子に対する分散性が著しく低下す
る。 スルホン酸金属塩基を含まないジカルボン酸と
しては、芳香族、脂肪族、脂環族のジカルボン酸
が使用できる。芳香族ジカルボン酸としては、テ
レフタル酸、イソフタル酸、オルソフタル酸、
2,6−ナフタレンジカルボン酸等をあげること
ができる。これらの芳香族ジカルボン酸は全ジカ
ルボン酸成分の40モル%以上であることが好まし
い。40モル%未満ではポリエステル共重合体の機
械的強度や耐水性が低下する。脂肪族および脂環
族のジカルボン酸としては、コハク酸、アジピン
酸、セバシン酸、1,3−シクロベンタンジカル
ボン酸、1,2−シクロヘキサンジカルボン酸、
1,3−シクロヘキサンジカルボン酸、1,4−
シクロヘキサンジカルボン酸などがあげられる。
これらの非芳香族ジカルボン酸成分を加えると、
場合によつては接着性能が高められるが、一般的
にはポリエステル共重合体の機械的強度や耐水性
を低下させる。 上記混合ジカルボン酸と反応させるグリコール
成分としては、炭素数2〜8個の脂肪族グリコー
ルまたは炭素数6〜12個の脂環族グリコールであ
り、具体的には、エチレングリコール、1,2−
プロピレングリコール、1,3−プロパンジオー
ル、1,4−ブタンジオール、ネオペンチルグリ
コール、1,6−ヘキサンジオール、1,2−シ
クロヘキサンジメタノール、1,3−シクロヘキ
サンジメタノール、1,4−シクロヘキサンジメ
タノール、p−キシリレングリコール、ジエチレ
ングリコール、トリエチレングリコールなどであ
る。またポリエーテルとしては、ポリエチレング
リコール、ポリプロピレングリコール、ポリテト
ラメチレングリコールなどがあげられる。 ポリエステル共重合体は、通常の溶融重縮合に
よつて得られる。すなわち上記のジカルボン酸成
分およびグリコール成分を直接反応させて水を留
去しエステル化したのち、重縮合を行なう直接エ
ステル化法、あるいは上記ジカルボン酸成分のジ
メチルエステルとグリコール成分を反応させてメ
チルアルコールを留出しエステル交換を行なわせ
たのち重縮合を行なうエステル交換法などによつ
て得られる。その他、溶液重縮合、界面重縮合な
ども使用され、この発明のポリエステル共重合体
は重縮合の方法によつて限定されるものではな
い。 前記ポリエステル共重合体をフイルムに積層す
る場合該ポリエステル共重合体とフイルム用原料
樹脂とを押出機の別々の押出口から同時に共押出
しする方法や該ポリエステル共重合体の溶融シー
トをフイルムの上に押出し積層する方法、該ポリ
エステル共重合体の水系分散液をフイルムにコー
テイングする方法等があり、いずれを採用しても
よいが該ポリエステル共重合体の水系分散液をコ
ーテイングする方法が薄膜をフイルム上に形成さ
せることが出来、易滑、透明性の点でより好まし
い。 該ポリエステル共重合体の水系分散液を得るに
は、水溶性有機化合物とともに水に分散すること
が必要である。例えば、上記ポリエステル共重合
体と水溶性有機化合物とを50〜200℃であらかじ
め混合し、この混合物に水を加え撹拌して分散す
る方法、あるいは逆に、混合物を水に加え撹拌し
て分散する方法、あるいはポリエステル共重合体
と水溶性有機化合物と水とを共存させて40〜120
℃で撹拌する方法がある。 上記水溶性有機化合物は、20℃で1の水に対
する溶解度が20g以上の有機化合物であり、具体
的に脂肪族および脂環族のアルコール、エーテ
ル、エステル、ケトン化合物であり、例えばメタ
ノール、エタノール、イソプロパノール、n−ブ
タノール等の1価アルコール類、エチレングリコ
ール、プロピレングリコール等のグリコール類、
メチルセロソルブ、エチルセロソルブ、n−ブチ
ルセロソルブ等のグリコール誘導体、ジオキサ
ン、テトラヒドロフラン等のエーテル類、酢酸エ
チル等のエステル類、メチルエチルケトン等のケ
トン類である。これら水溶性有機化合物は、単独
または2種以上を併用することができる。上記化
合物のうち、水への分散性、フイルムへの塗布性
からみて、ブチルセロソルブ、エチルセロソルブ
が好適である。 上記の(A)ポリエステル共重合体、(F)水溶性有機
化合物および(G)水の配合重量割合は (A)/(F)=100/20〜5000 (F)/(G)=100/50〜10000 を満足することが重要である。ポリエステル共重
合体に対して水溶性有機化合物が少なく(A)/(F)が
100/20を越える場合には、水系分散液の分散性
が低下する。この場合、界面活性剤を添加するこ
とによつて、分散性を補助することができるが、
界面活性剤の量が多過ぎると接着性、耐水性が低
下する。逆に(A)/(F)が100/5000未満の場合、ま
たは(F)/”が100/50を越える場合は、水系分散
液中の水溶性有機化合物量が多くなりコート後の
溶剤残留の危険性が生じやすい。さらにコスト高
となるので化合物回収を考慮する必要がある。
(F)/(G)が100/10000未満の場合は、水系分散液の
表面張力が大きくなり、フイルムへの濡れ性が低
下し、塗布斑を生じ易くなる。この場合、界面活
性剤の添加によつて濡れ性を改良することができ
るが、界面活性剤の量が多過ぎると上記したと同
様に接着性や耐水性が低下する。 更に、このポリエステル共重合体あるいはポリ
エステル共重合体の水系分散液に添加する不活性
粒子としては、胡粉、チヨーク、重質炭カル、軽
微性炭カル、極微細炭カル、塩基性炭酸マグネシ
ウム、ドロマイト、特殊炭酸カルシウム、カオリ
ン、焼成クレー、バイロフイライト、ベントナイ
ト、セリサライト、ゼオライト、ネフエリン、シ
ナイト、タルク、アタバルジヤナイト、合成珪酸
アルミ、合成珪酸カルシウム、珪藻土、珪石粉、
含有微粉珪酸、無水微粉珪酸、水酸化アルミニウ
ム、バライト、沈降硫酸バリウム、天然石膏、石
膏、亜硫酸カルシウムなどの無機系粒子やベンゾ
グアナミン樹脂架橋体などの有機系粒子などがあ
り、透明性と滑り性との関連でどれを用いてもよ
いが、特に好ましいのは珪酸の天然及び合成品で
ある。粒径は0.01μ〜10μのものを用いるのが好ま
しい。0.01μ以下の粒径のものでは、多量に用い
なければならず、10μ以上では粗大突起が生じ逆
にすべり性は悪くなる。 (A)に対して(B)の用いる量は(A)/(B)=100000/
0.5〜3000の割合が良く、好ましくは(A)/(B)=
100000/20〜1000である。 更に本発明の特徴はポリエチレングリコールも
しくはその誘導体および/またはアニオン系帯電
防止剤を併用することにより透明性、易滑性を損
なうことなく接着性、制電性を付与することであ
る。ポリエチレングリコールまたはその誘導体と
しては分子量1000〜50000が通常であり下記一般
式で示されるものが代表的であるがこれに限定さ
れるものではない。 R、R′:水素、C1〜20の炭化水素基、エポキシ基
または−COR基(RはC1〜20の炭化水素
基) R″:C1〜20の炭化水素基 m、n:3〜100の数 なお、上記のC1〜20の炭化水素基のいずれも好
ましくはC1〜20のアルキル基、アルキルアリル基
である。 一般によく用いられるポリエチレングリコール
の誘導体としては次のものを例示できる。
(Industrial Application Field) The present invention relates to a thermoplastic resin film laminate that is transparent, has excellent antistatic properties and easy adhesion, and a method for producing the same. (Prior Art) As is well known, thermoplastic resin films, such as polyester, polyamide, polypropylene, etc., especially polyester films, and especially polyethylene terephthalate films, have high crystallinity, excellent transparent gloss, mechanical properties, chemical resistance, heat resistance, etc. Because of this, it is rapidly being used in a wide range of applications year by year. However, thermoplastic resin films, especially polyester films, and especially polyethylene terephthalate films have a high degree of electrical insulation.
It has the disadvantage that static electricity is likely to be generated and accumulated, causing various troubles due to static electricity interference. For example, film forming process, printing, adhesion, bag making,
In packaging and other secondary processing processes, causes of reduced work efficiency such as wrapping around rolls, electric shock to the human body, and difficulty in handling, as well as reduced product value such as the occurrence of printing scratches and dirt on the film surface. becomes. As methods for preventing such electrostatic damage, there are generally two methods: kneading an antistatic agent into a resin to form a film, and coating the surface of a film with an antistatic agent. Regarding polyester films, this so-called kneading-type antistatic treatment method exhibits an antistatic effect by oozing the antistatic agent from inside the film to the surface, but due to the high secondary transition temperature of polyester resin, After film formation, the antistatic agent does not seep into the film at temperatures around room temperature.On the other hand, due to the high film forming temperature conditions and the high reactivity of the polar groups of the polyester itself, the antistatic agent is This has been difficult due to problems such as deterioration of the polymer during film formation, coloring, and deterioration of physical properties depending on the formulation. In particular, in the case of biaxially stretched polyester films, the antistatic agent on the surface of the film escapes and disappears during the stretching process, often resulting in no antistatic effect at all.Furthermore, many of the antistatic agents are compounded in polyester films. This extremely reduces the transparency of the film, making it difficult to put it to practical use. In addition, the usual method of applying antistatic agents to the film surface requires extra processing steps.
Economically disadvantageous. Furthermore, it is extremely rare to use a polyester biaxially stretched film alone for various purposes; for example, when used as a photographic film base, the adhesion between the gelatin layers and the magnetic layer when used as a magnetic tape base are important. In the case of a drafting base, the adhesion with the matting agent layer, in the case of metal vapor deposition, the adhesion with the vapor-deposited metal, and in the case of packaging, the adhesion with ink mainly based on nitrocellulose binder and heat seaming agent. At present, films are usually subjected to appropriate surface treatments to improve their properties depending on their use. However, in general, undercoating agents that have an affinity for the surface of a polyester biaxially stretched film have poor adhesion to the surface layer agent, and those that have an affinity for the surface layer agent generally have poor adhesion to the surface of the polyester biaxially stretched film. There is a drawback. Furthermore, as is well known in the art, if the coefficient of friction of polyester film is large, the films will not slide against each other, and if it is extremely bad, blocking will occur, making it difficult not only to handle the film but also to make it difficult to wind it up.
Conventionally, this objective has been achieved by adding inorganic or organic substances to the film, either singly or in combination, in order to lower the coefficient of friction of the film. However, if a small amount is added to such a film, the effect will be small, and if a large amount is added, the transparency of the film will drop sharply. In other words, there has never been a film in which the transparency is almost the same as that without additives and the coefficient of friction is significantly lowered. Furthermore, even if the same amount of the same additive is added to polyester, the rate of decrease in the coefficient of friction largely depends on the heat treatment conditions, and the greater the heat coverage history, the greater the rate of decrease. On the other hand, a method has been proposed to obtain a film with excellent lubricity and transparency by adding polyorganosiloxane or the like to a polyester film, but as the amount of polyorganosiloxane added increases, the lubricity increases, but vice versa. However, there is a tendency for the transparency of the film to deteriorate, and the mechanical properties such as dimensional stability and Young's modulus also tend to deteriorate.Furthermore, there is a method of knurling the film before winding it up, Conventional manufacturing methods have had various problems, such as the processed portion being trimmed or existing only on one side. (Problems to be Solved by the Invention) The present inventors have made extensive research and efforts to solve the problems in the conventional technology, namely the difficulty of imparting transparency, antistatic properties, and easy adhesion at the same time. As a result, the present invention has been completed. (Means for Solving the Problems) That is, the present invention provides (A) a mixed dicarboxylic acid component containing a dicarboxylic acid containing sulfonic acid metal base in an amount of 0.5 to 15 mol % in the total dicarboxylic acid component, and a glycol component; Water-insoluble polyester copolymer (B) Inert particles (C) Polyethylene glycol or its derivative or/and (D) Anionic antistatic agent and (E) Phosphate (A)/(B) = 100000/0.5~ 3000, (A)/(C)=
100/1~20, (A)/(D)=100/0.1~10, (A/E)
A thermoplastic resin film laminate, a melt-extruded unstretched thermoplastic resin film, or a uniaxially stretched thermoplastic resin film, characterized in that a polyester resin composition blended at a weight ratio of =100/1 to 15 is laminated on at least one side. On at least one side of the thermoplastic resin film, (A) a water-insoluble polyester copolymer formed from a mixed dicarboxylic acid component containing 0.5 to 15 mol % of a dicarboxylic acid containing a sulfonic acid metal base to the total dicarboxylic acid component and a glycol component; (B) Inert particles and (C) polyethylene glycol or its derivatives or/and (D) anionic antistatic agent and (E) phosphate (F) a water-soluble organic compound with a boiling point of 60 to 200°C (G) water (A)/(B)=100000/0.5~3000, (A)/(C)=100/1
~20, (A)/(D)=100/0.1~10, (A)/(E)=100/1
~15, (A)/(F)=100/20~5000, (F)/(G)=100/50
This is a method for producing a thermoplastic resin film laminate, which is characterized in that a polyester resin composition blended at a weight ratio of ~10,000 is further subjected to biaxial stretching or uniaxial stretching after coating. The polyester copolymer (A) of the present invention contains 0.5 to 15 mol% of a sulfonic acid metal group-containing dicarboxylic acid,
Dicarboxylic acids without sulfonic acid metal bases 85
It is a substantially water-insoluble polyester copolymer obtained by reacting ~99.5 mol% of a mixed dicarboxylic acid with a glycol component. Substantially water-insoluble means that the polyester copolymer does not dissipate in hot water even if the polyester copolymer is stirred in hot water at 80°C, and specifically, the polyester copolymer does not dissipate in hot water. The weight loss of the polyester copolymer after being stirred in 80°C hot water for 24 hours is 5% by weight or less. Examples of the above-mentioned dicarboxylic acids containing sulfonic acid metal groups include metals such as sulfoterephthalic acid, 5-sulfoisophthalic acid, 4-sulfophthalic acid, 4-sulfonaphthalene-2,7-dicarboxylic acid, and 5[4-sulfophenoxy]isophthalic acid. salt was given,
Particularly preferred are 5-sodium sulfoisophthalic acid and sodium sulfoterephthalic acid. These sulfonic acid metal base-containing dicarboxylic acid components are 0.5 to 15 mol% of the total dicarboxylic acid components.
If it exceeds 15 mol%, the water resistance of the polyester copolymer will be significantly reduced, and if it is less than 0.5 mol%, the dispersibility with respect to inert particles will be significantly reduced. As the dicarboxylic acid containing no sulfonic acid metal base, aromatic, aliphatic, and alicyclic dicarboxylic acids can be used. Aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, orthophthalic acid,
Examples include 2,6-naphthalene dicarboxylic acid. These aromatic dicarboxylic acids preferably account for 40 mol% or more of the total dicarboxylic acid components. If it is less than 40 mol%, the mechanical strength and water resistance of the polyester copolymer will decrease. Aliphatic and alicyclic dicarboxylic acids include succinic acid, adipic acid, sebacic acid, 1,3-cyclobentanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid,
1,3-cyclohexanedicarboxylic acid, 1,4-
Examples include cyclohexanedicarboxylic acid.
When these non-aromatic dicarboxylic acid components are added,
Although adhesive performance may be improved in some cases, it generally reduces the mechanical strength and water resistance of the polyester copolymer. The glycol component to be reacted with the mixed dicarboxylic acid is an aliphatic glycol having 2 to 8 carbon atoms or an alicyclic glycol having 6 to 12 carbon atoms, and specifically, ethylene glycol, 1,2-
Propylene glycol, 1,3-propanediol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol These include methanol, p-xylylene glycol, diethylene glycol, triethylene glycol, and the like. Further, examples of the polyether include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and the like. Polyester copolymers are obtained by conventional melt polycondensation. In other words, there is a direct esterification method in which the above dicarboxylic acid component and glycol component are directly reacted, water is distilled off and esterified, and then polycondensation is performed, or the dimethyl ester of the above dicarboxylic acid component and the glycol component are reacted to form methyl alcohol. It can be obtained by a transesterification method, etc., which involves distilling off, transesterifying, and then polycondensing it. In addition, solution polycondensation, interfacial polycondensation, etc. may also be used, and the polyester copolymer of the present invention is not limited by the polycondensation method. When the polyester copolymer is laminated onto a film, the polyester copolymer and the raw material resin for the film are simultaneously coextruded from separate extrusion ports of an extruder, or a molten sheet of the polyester copolymer is placed on the film. There are a method of extrusion lamination, a method of coating a film with an aqueous dispersion of the polyester copolymer, and any of these methods may be used. It is more preferable in terms of ease of slippage and transparency. In order to obtain an aqueous dispersion of the polyester copolymer, it is necessary to disperse it in water together with a water-soluble organic compound. For example, the above polyester copolymer and a water-soluble organic compound are mixed in advance at 50 to 200°C, and water is added to this mixture and dispersed by stirring, or conversely, the mixture is added to water and dispersed by stirring. method, or by coexisting a polyester copolymer, a water-soluble organic compound, and water.
There is a method of stirring at °C. The above-mentioned water-soluble organic compound is an organic compound having a solubility in water of 20 g or more at 20°C, and specifically includes aliphatic and alicyclic alcohols, ethers, esters, and ketone compounds, such as methanol, ethanol, Monohydric alcohols such as isopropanol and n-butanol, glycols such as ethylene glycol and propylene glycol,
These include glycol derivatives such as methyl cellosolve, ethyl cellosolve, and n-butyl cellosolve, ethers such as dioxane and tetrahydrofuran, esters such as ethyl acetate, and ketones such as methyl ethyl ketone. These water-soluble organic compounds can be used alone or in combination of two or more. Among the above compounds, butyl cellosolve and ethyl cellosolve are preferred in terms of dispersibility in water and coatability on films. The weight ratio of the above (A) polyester copolymer, (F) water-soluble organic compound, and (G) water is (A)/(F) = 100/20 to 5000 (F)/(G) = 100/ It is important to satisfy the range of 50 to 10,000. Compared to polyester copolymers, (A)/(F) contains fewer water-soluble organic compounds.
When the ratio exceeds 100/20, the dispersibility of the aqueous dispersion decreases. In this case, dispersibility can be assisted by adding a surfactant, but
If the amount of surfactant is too large, adhesiveness and water resistance will decrease. On the other hand, if (A)/(F) is less than 100/5000 or (F)/'' exceeds 100/50, the amount of water-soluble organic compounds in the aqueous dispersion will increase and the solvent will remain after coating. In addition, it is necessary to consider recovery of the compound as it increases the cost.
When (F)/(G) is less than 100/10,000, the surface tension of the aqueous dispersion increases, the wettability to the film decreases, and coating spots are likely to occur. In this case, the wettability can be improved by adding a surfactant, but if the amount of the surfactant is too large, the adhesiveness and water resistance decrease as described above. Furthermore, as inert particles added to the polyester copolymer or the aqueous dispersion of the polyester copolymer, examples of the inert particles include chalk, chiyolk, heavy carbon, light carbon, ultrafine carbon, basic magnesium carbonate, and dolomite. , special calcium carbonate, kaolin, calcined clay, birofluorite, bentonite, serisalite, zeolite, nephelin, sinite, talc, attabuldianite, synthetic aluminum silicate, synthetic calcium silicate, diatomaceous earth, silica powder,
Contains inorganic particles such as fine silicic acid, anhydrous fine silicic acid, aluminum hydroxide, barite, precipitated barium sulfate, natural gypsum, gypsum, and calcium sulfite, and organic particles such as crosslinked benzoguanamine resin. Although any may be used in this connection, natural and synthetic silicic acids are particularly preferred. It is preferable to use particles with a particle size of 0.01μ to 10μ. If the particle size is 0.01 μm or less, a large amount must be used, and if the particle size is 10 μm or more, coarse protuberances will occur and the slipperiness will deteriorate. The amount of (B) used for (A) is (A)/(B)=100000/
A ratio of 0.5 to 3000 is good, preferably (A)/(B)=
100000/20~1000. A further feature of the present invention is that by using polyethylene glycol or a derivative thereof and/or an anionic antistatic agent in combination, adhesiveness and antistatic properties can be imparted without impairing transparency and slipperiness. Polyethylene glycol or its derivatives usually have a molecular weight of 1,000 to 50,000, and those represented by the following general formula are typical, but are not limited thereto. R, R′: Hydrogen, C 1-20 hydrocarbon group, epoxy group or -COR group (R is C 1-20 hydrocarbon group) R″: C 1-20 hydrocarbon group m, n: 3 -100 In addition, all of the above C1-20 hydrocarbon groups are preferably C1-20 alkyl groups and alkylaryl groups. Examples of commonly used polyethylene glycol derivatives include the following: can.

【表】 ポリエチレングリコールないしその誘導体は水
不溶性ポリエステル共重合体に対して1〜20%用
いる。1%以下では制電性がなく、20%以上では
ヘイズ、ブロツキング性、滑り性が悪い。 又、アニオン系帯電防止剤としては高級アルコ
ール、アルキルフエノール酸化エチレン付加物の
リン酸エステル塩、その他各種のホスホン酸、ホ
フフイン酸、ホスフアイトエステルなどのリン酸
誘導体、高級アルコール硫酸エステルのNa塩、
有機アミン塩、アルキルフエノール酸化エチレン
付加体の硫酸エステル塩、アルキルスルホン酸
塩、アルキルアリルスルホン酸などの硫酸誘導
体、ステアリン酸ザルコシネートのナトリウム
塩、セバシン酸のトリエタノールアミン塩などの
カルボン酸誘導体などがあげられるが好ましくは
ドデシルベンゼンスルホネートのNa塩、オクチ
ルスルホネートのカリウム塩、オリゴスチレンス
ルホネートのナトリウム塩、ジブチルナフタレン
スルホネートのナトリウム塩、ラウリルスルホコ
ハク酸エステルのナトリウム塩などスルホン基含
有のものが挙げられる。 帯電防止剤が0.1%以下の場合制電性が悪く、
帯電防止剤が10%以上になるとヘイズ、ブロツキ
ング性、接着性が悪い。 更に、本発明の特徴は燐酸塩を併用することに
より制電性を向上させることである。 添加燐酸塩の例としてはリン酸一ナトリウム、
リン酸三アンモニウム、リン酸二カリウム、亜リ
ン酸ナトリウム、次亜リン酸ナトリウム、次亜リ
ン酸アンモニウム、リン酸アルミニウム、リン酸
マグネシウム、ピロリン酸カリウム、ピロリン酸
ナトリウム、ヘキサメタリン酸カリウム、トリポ
リリン酸ナトリウム、トリポリリン酸カリウムな
どが挙げられるが、これらに限定されるものでな
い。しかし、1%以下では制電性が悪く15%以上
ではヘイズ、耐ブロツキング性が悪い。 このようにして得られるポリエステル共重合体
の水系分散液をポリエステルフイルムにコート法
で塗布するのは、ポリエステルフイルムが溶融押
出された未延伸フイルム、あるいは一軸延伸フイ
ルム又は二軸延伸フイルムのいずれでもよいが、
二軸延伸フイルムに塗布するのはフイルムが広巾
になつており、かつフイルムの走行速度が速くな
つているため均一に塗布しにくく、更に前二者が
コート剤の密着性、耐久性などの点でより好まし
い。 ポリエステルフイルムにコート法で塗布される
水系分散液の塗布量は、二軸延伸後のフイルム上
に存在する量としてポリエステル共重合体として
0.01〜5g/m2である。塗布量が0.01g/m2未満
の場合は不活性粒子などを固着する力が弱くなり
耐久性能がわるくなる。5.0g/m2以上塗布する
と逆にすべり性が悪くなる。 また、上記ポリエステル共重合体の水系分散液
を塗布する前に、ポリエステルフイルムにコロナ
放電処理を施すことによつて、水系分散液の塗布
性がよくなり、かつポリエステルフイルムとポリ
エステル共重合体塗膜との間の接着強度が改善さ
れる。 またコート後あるいは二軸延伸後のポリエステ
ル共重合体層に、コロナ放電処理、窒素雰囲気下
でのコロナ放電処理、紫外線照射処理などを施す
ことによつてフイルム表面の濡れ性や接着性を向
上させることができる。 また本発明においては、熱可塑性樹脂フイルム
としてポリエステルフイルム、とりわけポリエチ
レンテレフタレートフイルムを使用する場合には
積層及び製膜工程等で発生したフイルム屑を回
収、再利用出来るので好ましい。 またポリエステルとしては、透明性の点で出来
るだけ滑剤量が少ない方が好ましく、好ましくは
300ppm以下である。 上記の方法によつて製造されたコーテイングポ
リエステルフイルムは、磁気テープ用ベースフイ
ルム、ラベルステツカー用ベースフイルム、ケミ
カルマツト用ベースフイルム、オーバヘツドプロ
ジエクタ用フイルム、食品包装用フイルム、その
他の用途に使用することができる。 (実施例) 以下にこの発明の実施例を説明する。実施例中
部、%は重量基準を示す。 実施例 1 (1) ポリエチレンテレフタレートの製造 エチレングリコール200ml中に水酸化鉛
pbO・pb(OH)22・2g(pb0.95×10-2モル)
を溶解し、この溶液にGeO22.0g(1.9×10-2
ル)を添加して197℃のエチレングリコールの
沸点で還流加熱すると約30分で透明な溶液が得
られた。次にこの溶液を重縮合触媒とするポリ
エチレンテレフタレートの製造を行なつた。ジ
メチルテレフタレート620部、エチレングリコ
ール480部、エステル交換触媒として酢酸亜鉛
Zn(OAc)2、2H2O0.036部をエステル交換反応
器にとり、エステル交換反応は150℃より230℃
に徐々に昇温しつつ行ない、120分を要してメ
タノールの溜出を終つた。次いで内容物を重縮
合装置に移し、重縮合触媒として上記触媒溶液
2.7部を加え徐々に昇温すると共に減圧し、1
時間を要して280℃とし0.5mmHgの高減圧下の
重縮合反応を25分間行なつて得られたポリマー
は極限粘度0.63、融点262℃であつた。 (2) ポリエステル共重合体の水系分散液の製造 ジメチルテレフタレート117部(49モル%)、
ジメチルイソフタレート117部(49モル%)、エ
チレングリコール103部(50モル%)、ジエチレ
ングリコール58部(50モル%)、酢酸亜鉛0.08
部、三酸化アンチモン0.08部を反応容器中で40
〜220℃に昇温させて3時間エステル交換反応
させ、次いで5−ナトリウムスルホイソフタル
酸9部(2モル%)を添加して220〜260℃、1
時間エステル化反応させ、更に減圧下(10〜
0.2mmHg)で2時間重縮合反応を行ない、平均
分子量18000、軟化点140℃のポリエステル共重
合体を得た。このポリエステル共重合体300部
とn−ブチルセロソルブ140部とを容器中で150
〜170℃、約3時間撹拌して、均一にして粘稠
な溶融液を得、この溶融液に水560部を徐々に
添加し約1時間後に均一な淡白色の固形分濃度
30%の水分散液を得、これに更にサイロイド
150をポリエステル共重合体に対して500ppm、
分子量20000のポリエチレングリコールを3%、
ドデシルベンゼンスルホン酸ソーダ1%、次亜
リン酸ナトリウム5%、水4500部、エチルアル
コール4500部を加えて希釈し、固形分濃度3%
の塗布液を得た。 (3) コートフイルムの製造 (1)で製造したポリエチレンテレフタレートを
280〜300℃で溶融押出し、15℃の冷却ロールで
冷却して厚さ1000ミクロンの未延伸フイルムを
得、この未延伸フイルムを周速の異なる85℃の
一対のロール間で縦方向に3.5倍延伸し、前記
の塗布液をエアナイフ方式で塗布し、70℃の熱
風で乾燥し、次いでテンターで98℃で横方向に
3.5倍延伸し、さらに200〜210℃で熱固定し厚
さ100ミクロンの二軸延伸コーテイングポリエ
ステルフイルムを得た。又実施例中のポリエチ
レングリコール及びその誘導体の化合物No.は下
記の如くである。 ポリエチレングリコール(MW20000) 又アニオン系帯電防止剤の化合物No.は下記の
如くである。 ドデシルベンゼンスルホン酸ソーダ 更に塩No.は下記の如くである。 〔〕 次亜リン酸ナトリウム 〔〕 ピロリン酸カリウム 〔〕 トリポリリン酸ソーダ 表中、TPAはテレフタル酸換算、IPAはイ
ソフタル換算、SSIは5−ナトリウムスルホイ
ソフタル酸、EGはエチレングリコール、DEG
はジエチレングリコール、NPGはネオペンチ
ルグリコールである。
[Table] Polyethylene glycol or its derivatives are used in an amount of 1 to 20% based on the water-insoluble polyester copolymer. If it is less than 1%, there is no antistatic property, and if it is more than 20%, haze, blocking and slipping properties are poor. In addition, anionic antistatic agents include higher alcohols, phosphoric acid ester salts of alkylphenol ethylene oxide adducts, various other phosphoric acid derivatives such as phosphonic acid, phofuic acid, and phosphite esters, Na salts of higher alcohol sulfuric esters,
Organic amine salts, sulfuric acid ester salts of alkylphenol ethylene oxide adducts, alkyl sulfonates, sulfuric acid derivatives such as alkylaryl sulfonic acids, sodium salts of sarcosinate stearate, and carboxylic acid derivatives such as triethanolamine salts of sebacic acid. Preferred examples include those containing a sulfonic group, such as Na salt of dodecylbenzenesulfonate, potassium salt of octyl sulfonate, sodium salt of oligostyrene sulfonate, sodium salt of dibutylnaphthalene sulfonate, and sodium salt of lauryl sulfosuccinate. If the antistatic agent is less than 0.1%, the antistatic properties will be poor.
If the amount of antistatic agent exceeds 10%, haze, blocking properties, and adhesion properties will be poor. Furthermore, a feature of the present invention is that the antistatic property is improved by using a phosphate in combination. Examples of added phosphates are monosodium phosphate,
Triammonium phosphate, dipotassium phosphate, sodium phosphite, sodium hypophosphite, ammonium hypophosphite, aluminum phosphate, magnesium phosphate, potassium pyrophosphate, sodium pyrophosphate, potassium hexametaphosphate, sodium tripolyphosphate , potassium tripolyphosphate, etc., but are not limited to these. However, if it is less than 1%, antistatic properties are poor and if it is more than 15%, haze and blocking resistance are poor. The aqueous dispersion of the polyester copolymer obtained in this manner may be applied to a polyester film by a coating method, either on an unstretched film obtained by melt-extruding the polyester film, or on a uniaxially stretched film or a biaxially stretched film. but,
When coating biaxially stretched film, it is difficult to coat it uniformly because the film is wide and the film travels at a high speed. is more preferable. The amount of the aqueous dispersion applied to the polyester film by the coating method is the amount present on the film after biaxial stretching as the polyester copolymer.
It is 0.01-5 g/ m2 . If the coating amount is less than 0.01 g/m 2 , the ability to fix inert particles etc. will be weak and the durability will be poor. If you apply more than 5.0g/m2, the slipperiness will worsen. In addition, by subjecting the polyester film to corona discharge treatment before applying the aqueous dispersion of the polyester copolymer described above, the coating properties of the aqueous dispersion can be improved, and the coating of the polyester film and polyester copolymer can be improved. The adhesive strength between the two is improved. In addition, the wettability and adhesion of the film surface can be improved by subjecting the polyester copolymer layer after coating or biaxial stretching to corona discharge treatment, corona discharge treatment under a nitrogen atmosphere, ultraviolet irradiation treatment, etc. be able to. Further, in the present invention, it is preferable to use a polyester film, particularly a polyethylene terephthalate film, as the thermoplastic resin film, since film waste generated during lamination and film forming processes can be recovered and reused. In addition, for polyester, it is preferable that the amount of lubricant is as small as possible from the viewpoint of transparency, and preferably
300ppm or less. The coated polyester film produced by the above method is used as a base film for magnetic tapes, a base film for label stickers, a base film for chemical mats, a film for overhead projectors, a film for food packaging, and other uses. can do. (Example) Examples of the present invention will be described below. In the middle part of the example, percentages are based on weight. Example 1 (1) Production of polyethylene terephthalate Lead hydroxide in 200ml of ethylene glycol
pbO・pb(OH) 2 2・2g (pb0.95×10 -2 mol)
2.0 g (1.9×10 −2 mol) of GeO 2 was added to this solution and heated under reflux at the boiling point of ethylene glycol at 197° C., and a transparent solution was obtained in about 30 minutes. Next, polyethylene terephthalate was produced using this solution as a polycondensation catalyst. 620 parts of dimethyl terephthalate, 480 parts of ethylene glycol, zinc acetate as transesterification catalyst
Zn(OAc) 2 and 0.036 parts of 2H 2 O are placed in a transesterification reactor, and the transesterification reaction is carried out at 230°C from 150°C.
It took 120 minutes to complete the distillation of methanol. Next, the contents were transferred to a polycondensation apparatus, and the above catalyst solution was added as a polycondensation catalyst.
Add 2.7 parts, gradually raise the temperature and reduce the pressure,
The polycondensation reaction was carried out for 25 minutes at 280°C under a high vacuum of 0.5 mmHg, and the resulting polymer had an intrinsic viscosity of 0.63 and a melting point of 262°C. (2) Production of aqueous dispersion of polyester copolymer 117 parts of dimethyl terephthalate (49 mol%),
Dimethyl isophthalate 117 parts (49 mol%), ethylene glycol 103 parts (50 mol%), diethylene glycol 58 parts (50 mol%), zinc acetate 0.08
40 parts and 0.08 parts of antimony trioxide in a reaction vessel.
The temperature was raised to ~220°C to carry out the transesterification reaction for 3 hours, and then 9 parts (2 mol%) of 5-sodium sulfoisophthalic acid was added and the mixture was heated at 220 to 260°C for 1 hour.
The esterification reaction was carried out for a period of time, and further under reduced pressure (10~
A polyester copolymer having an average molecular weight of 18,000 and a softening point of 140°C was obtained by carrying out a polycondensation reaction at 0.2 mmHg) for 2 hours. 300 parts of this polyester copolymer and 140 parts of n-butyl cellosolve were mixed in a container at 150 parts
Stir at ~170℃ for about 3 hours to obtain a homogeneous and viscous melt. 560 parts of water is gradually added to this melt, and after about 1 hour, a uniform pale white solid content is obtained.
Obtain a 30% aqueous dispersion and add thyroid to this.
150 to 500ppm to polyester copolymer,
3% polyethylene glycol with a molecular weight of 20,000,
Dilute by adding 1% sodium dodecylbenzenesulfonate, 5% sodium hypophosphite, 4500 parts of water, and 4500 parts of ethyl alcohol to obtain a solid content concentration of 3%.
A coating liquid was obtained. (3) Production of coated film The polyethylene terephthalate produced in (1) is
Melt extrusion at 280-300℃ and cooling with a cooling roll at 15℃ to obtain an unstretched film with a thickness of 1000 microns.This unstretched film is rolled 3.5 times in the longitudinal direction between a pair of rolls at different circumferential speeds at 85℃. Stretch, apply the above coating solution using an air knife method, dry with hot air at 70°C, and then apply it laterally at 98°C with a tenter.
The film was stretched 3.5 times and further heat-set at 200 to 210°C to obtain a biaxially stretched coated polyester film with a thickness of 100 microns. Further, the compound numbers of polyethylene glycol and its derivatives in the examples are as follows. Polyethylene glycol (MW20000) The compound number of the anionic antistatic agent is as follows. Sodium dodecylbenzenesulfonate The salt numbers are as follows. [] Sodium hypophosphite [] Potassium pyrophosphate [] Sodium tripolyphosphate In the table, TPA is equivalent to terephthalic acid, IPA is equivalent to isophthalic acid, SSI is 5-sodium sulfoisophthalate, EG is ethylene glycol, DEG
is diethylene glycol and NPG is neopentyl glycol.

【表】 実施例 2〜3 実施例1において次亜リン酸ナトリウムを各々
ピロリン酸カリウム、トリポリリン酸ソーダに変
えた以外は実施例1と同様にして二軸延伸フイル
ムを得た。 実施例 4 実施例1においてSSI量及びPEGの代りに
NPGに変えた以外は実施例1と同様にして二軸
延伸フイルムを得た。 実施例 5 実施例1においてEGの1部をPEGに変えた以
外は実施例1と同様にして二軸延伸フイルムを得
た。 実施例 6〜7 実施例1においてサイロイド150の添加量を変
えた以外は実施例1と同様にして二軸延伸フイル
ムを得た。 実施例 8 実施例5において次亜リン酸ナトリウムの添加
量を変えた以外は実施例1と同様にして二軸延伸
フイルムを得た。 比較例 1〜2 実施例1においてそれぞれ次亜リン酸ナトリウ
ム、サイロイド150を添加しなかつた以外は実施
例1と同様にして二軸延伸フイルムを得た。 比較例 3〜4 実施例1においてPEG量を請求範囲以外に変
えた以外は実施例1と同様にして二軸延伸フイル
ムを得た。 比較例 5〜6 実施例1において制電剤量を請求範囲以外に変
えた以外は実施例1と同様にして二軸延伸フイル
ムを得た。 比較例 7〜8 実施例1において次亜リン酸ナトリウム量を請
求範囲以外に変えた以外は実施例1と同様にして
二軸延伸フイルムを得た。 比較例 9 実施例1においてサイロイド150の代りに大粒
子径のサイロイド600に変えた以外は実施例1と
同様にして二軸延伸フイルムを得た。 比較例 10〜11 実施例1においてSSI量及びサイロイド150の
量を請求範囲を越えた量添加した以外は実施例1
と同様にして二軸延伸フイルムを得た。
[Table] Examples 2 to 3 Biaxially stretched films were obtained in the same manner as in Example 1 except that sodium hypophosphite was replaced with potassium pyrophosphate and sodium tripolyphosphate, respectively. Example 4 In place of the amount of SSI and PEG in Example 1
A biaxially stretched film was obtained in the same manner as in Example 1 except that NPG was used. Example 5 A biaxially stretched film was obtained in the same manner as in Example 1 except that part of the EG in Example 1 was replaced with PEG. Examples 6 to 7 Biaxially stretched films were obtained in the same manner as in Example 1 except that the amount of Thyroid 150 added was changed. Example 8 A biaxially stretched film was obtained in the same manner as in Example 1 except that the amount of sodium hypophosphite added in Example 5 was changed. Comparative Examples 1 and 2 Biaxially stretched films were obtained in the same manner as in Example 1 except that sodium hypophosphite and Thyroid 150 were not added. Comparative Examples 3 to 4 Biaxially stretched films were obtained in the same manner as in Example 1 except that the amount of PEG was changed to a value other than the claimed range. Comparative Examples 5 to 6 Biaxially stretched films were obtained in the same manner as in Example 1 except that the amount of antistatic agent was changed to a value other than the claimed range. Comparative Examples 7-8 A biaxially stretched film was obtained in the same manner as in Example 1 except that the amount of sodium hypophosphite was changed to a value other than the claimed range. Comparative Example 9 A biaxially stretched film was obtained in the same manner as in Example 1 except that Thyroid 150 in Example 1 was replaced with Thyroid 600 having a large particle size. Comparative Examples 10-11 Example 1 except that in Example 1, the amount of SSI and Thyroid 150 were added in amounts exceeding the claimed range.
A biaxially stretched film was obtained in the same manner as above.

【表】【table】

【表】 第2表中ヘーズはJIS K6714に準じ、日本精密
光学社製ヘーズメーターを用いて測定した。 摩擦係数は、ASTM−1894に準じ、東洋精機
社製テンシロンを使用し、塗布面と未塗布面とを
合わせて測定した値である。 ブロツキング性は、塗布面と未塗布面とを密着
させて8×12cmに切断し、これを2枚のシリコー
ンゴムシートで挾着し、更にガラス板で挾み、ガ
ラス板上から2Kgの荷重を掛け、これを40℃、80
%RHの雰囲気中で24時間放置し、しかる後にフ
イルムを取外してフイルム間のブロツキング状態
を目視で判定し、ブロツキング面積の5%以下を
〇、5〜20%を△、20%以上を×で示した。 接着性はポリビニルアルコール、塩化ビニ
ル酢ビ共重合体、ポリメチルメタクリレートに
相溶性の良い赤色染料を添加したものを厚み3μ
になるように塗布し、ニチバン製セロテープを貼
付しハクリ角度が180゜になるようにして剥離し
た。全くハクリのないものを10、半分ハクリした
ものを5、全部ハクリしたものを1としてランク
付した。 表面抵抗は、タケダ理研社製固有抵抗測定器で
印加電圧500V、20℃、65%RHの条件下で測定し
た。第2表中で本発明法はヘーズ摩擦係数、ブロ
ツキング性、接着性、表面抵抗(制電性)におい
ていずれも良好な特性を示す。しかしながら、次
亜リン酸ナトリウム無添加の場合(比較例1)は
制電性が悪く、サイロイド150無添加の場合(比
較例2)、滑り性が悪く、PEG量が少なすぎる場
合(比較例3)は制電性が悪く、PEG量が多す
ぎる場合(比較例4)ヘーズ、ブロツキング性、
滑り性が悪く、制電剤が少なすぎる場合(比較例
5)は制電性が悪く、制電剤が多すぎる場合(比
較例6)、ヘイズ、ブロツキング性、接着性が悪
く、次亜リン酸ナトリウムが少なすぎる場合(比
較例7)制電性が悪く、次亜リン酸ナトリウムが
多すぎる場合(比較例8)ヘイズ、ブロツキング
性が悪く、サイロイドの粒径が大きい場合(比較
例9)ヘイズ、すべり性が悪く、SSI量が多すぎ
る場合(比較例10)ブロツキング性が悪く、サイ
ロイド150量が多すぎる場合(比較例11)ヘイズ
が悪いことがわかる。 実施例 9 実施例1において、塗布液を下記組成に変えた
以外は実施例1と同様にしてフイルムを作成し、
諸特性を評価した。得られた結果を第3表に示し
た。 塗布液 ポリエステル共重合体水分散液(30%) 1000部 サイロイド150(対ポリエステル共重合体)
5000ppm ドテシルベンゼンスルホン酸ソーダ(対ポリエス
テル共重合体) 10% 次亜リン酸ナトリウム(対ポリエステル共重合
体) 5% 水 4500部 エチルアルコール 4500部 実施例 10 実施例9において帯電防止剤を、ドテシルベン
ゼンジスルホン酸ソーダに代えた以外は、実施例
9と同様に行なつた。 得られた結果を第3表に示した。 実施例 11 実施例1において塗布液を下記組成に変えた以
外は実施例1と同様にしてフイルムを作成し、諸
特性を評価した。 塗布液 ポリエステル共重合体水分散液(30%) 1000部 二酸化硅素粒子(0.05μ)(対ポリエステル共重合
体) 8000ppm ポリエチレングリコール#6000(対ポリエステル
共重合体) 10% 次亜リン酸ナトリウム(対ポリエステル共重合
体) 5% 水 4500部 エチルアルコール 4500部 得られた結果を第3表に示した。
[Table] The haze in Table 2 was measured according to JIS K6714 using a haze meter manufactured by Nippon Seimitsu Kogaku. The friction coefficient is a value measured on both coated and uncoated surfaces using Tensilon manufactured by Toyo Seiki Co., Ltd. in accordance with ASTM-1894. Blocking property was tested by cutting the coated and uncoated surfaces into 8 x 12 cm pieces, sandwiching them between two silicone rubber sheets, sandwiching them between glass plates, and applying a 2 kg load from the top of the glass plates. Multiply this at 40℃ and 80
%RH for 24 hours, then remove the film and visually judge the blocking state between the films. 5% or less of the blocking area is ○, 5 to 20% is △, and 20% or more is ×. Indicated. Adhesive properties include polyvinyl alcohol, vinyl chloride vinyl acetate copolymer, and polymethyl methacrylate with a highly compatible red dye added to a thickness of 3 μm.
Then, I applied Nichiban sellotape and peeled it off so that the peeling angle was 180°. It was ranked as 10 if there was no peeling at all, 5 if half of it was peeled off, and 1 if all of it was peeled off. The surface resistance was measured using a specific resistance measuring device manufactured by Takeda Riken under conditions of an applied voltage of 500 V, 20° C., and 65% RH. In Table 2, the method of the present invention exhibits good characteristics in all of the haze friction coefficient, blocking properties, adhesion properties, and surface resistance (antistatic properties). However, when sodium hypophosphite is not added (Comparative Example 1), the antistatic property is poor, when Thyroid 150 is not added (Comparative Example 2), the slipperiness is poor, and when the amount of PEG is too small (Comparative Example 3), the antistatic property is poor. ) has poor antistatic properties, and when the amount of PEG is too large (Comparative Example 4), haze, blocking properties,
When the antistatic properties are poor and the amount of antistatic agent is too low (Comparative Example 5), the antistatic properties are poor, and when there is too much antistatic agent (Comparative Example 6), haze, blocking properties, and adhesion are poor, and hypophosphorous When the amount of sodium chloride is too low (Comparative Example 7) When the antistatic property is poor and the amount of sodium hypophosphite is too high (Comparative Example 8) When the haze and blocking properties are poor and the particle size of the thyroid is large (Comparative Example 9) It can be seen that the haze and slip properties are poor and the SSI amount is too large (Comparative Example 10), and the blocking property is poor and the Thyroid 150 amount is too large (Comparative Example 11) that the haze is poor. Example 9 A film was prepared in the same manner as in Example 1 except that the coating liquid was changed to the following composition.
Various characteristics were evaluated. The results obtained are shown in Table 3. Coating liquid Polyester copolymer aqueous dispersion (30%) 1000 parts Cyroid 150 (vs. polyester copolymer)
5000ppm Sodium dotecylbenzenesulfonate (for polyester copolymer) 10% Sodium hypophosphite (for polyester copolymer) 5% Water 4500 parts Ethyl alcohol 4500 parts Example 10 In Example 9, the antistatic agent was The same procedure as in Example 9 was carried out except that sodium tesilbenzenedisulfonate was used instead. The results obtained are shown in Table 3. Example 11 A film was prepared in the same manner as in Example 1 except that the coating liquid was changed to the following composition, and various properties were evaluated. Coating liquid Polyester copolymer aqueous dispersion (30%) 1000 parts Silicon dioxide particles (0.05μ) (vs. polyester copolymer) 8000ppm Polyethylene glycol #6000 (vs. polyester copolymer) 10% Sodium hypophosphite (vs. Polyester copolymer) 5% Water 4500 parts Ethyl alcohol 4500 parts The results obtained are shown in Table 3.

【表】 (発明の効果) このように本発明の方法によつて得られた熱可
塑性樹脂フイルム積層物は透明で帯電防止性、易
接着性が良好であるという効果がある。
[Table] (Effects of the Invention) As described above, the thermoplastic resin film laminate obtained by the method of the present invention has the advantage of being transparent and having good antistatic properties and easy adhesion.

Claims (1)

【特許請求の範囲】 1 (A) 全ジカルボン酸成分に0.5〜15モル%の
スルホン酸金属塩基含有ジカルボン酸を含有す
る混合ジカルボン酸成分とグリコール成分とか
ら形成された水不溶性ポリエステル共重合体。 (B) 不活性粒子 (C) ポリエチレングリコールもしくはその誘導体
または/および (D) アニオン系帯電防止剤 および (E) 燐酸塩 において(A)/(B)=100000/0.5〜3000、(A)/(C)=
100/1〜20、(A)/(D)=100/0.1〜10、(A)/(E)=
100/1〜15重量割合に配合されたポリエステル
樹脂組成物が少なくとも片面に積層されてなるこ
とを特徴とする熱可塑性樹脂フイルム積層物。 2 不活性粒子の平均第1次粒径が0.01〜10μで
ある特許請求の範囲第1項記載の熱可塑性樹脂組
成物。 3 熱可塑性樹脂フイルムがポリエステルフイル
ムである特許請求の範囲第1〜2項記載の熱可塑
性樹脂フイルム積層物。 4 溶融押出された未延伸熱可塑性樹脂フイルム
又は、一軸延伸熱可塑性樹脂フイルムの少なくと
も片面に (A) 全ジカルボン酸成分に0.5〜15モル%のスル
ホン酸金属塩基含有ジカルボン酸を含有する混
合ジカルボン酸成分とグリコール成分とから形
成された水不溶性ポリエステル共重合体。 (B) 不活性粒子 ならびに (C) ポリエチレングリコールもしくはその誘導体
または/および (D) アニオン系帯電防止剤 および (E) 燐酸塩 (F) 沸点60〜200℃の水不溶性有機化合物 (G) 水 を(A)/(B)=100000/0.5〜3000、(A)/(C)=100/1
〜20、(A)/(D)=100/0.1〜10、(A)/(E)=100/1
〜15、(A)/(F)=100/20〜5000、(F)/(G)=100/50
〜10000重量割合に配合されたポリエステル樹脂
組成物を塗布後更に二軸延伸又は一軸延伸するこ
とを特徴とする熱可塑性樹脂フイルム積層物の製
法。
[Scope of Claims] 1 (A) A water-insoluble polyester copolymer formed from a mixed dicarboxylic acid component containing a dicarboxylic acid containing a sulfonic acid metal group in an amount of 0.5 to 15 mol % based on the total dicarboxylic acid component and a glycol component. (B) inert particles (C) polyethylene glycol or its derivatives or/and (D) anionic antistatic agent and (E) phosphate (A)/(B)=100000/0.5-3000, (A)/ (C)=
100/1~20, (A)/(D)=100/0.1~10, (A)/(E)=
1. A thermoplastic resin film laminate, characterized in that a polyester resin composition blended at a weight ratio of 100/1 to 15 is laminated on at least one side. 2. The thermoplastic resin composition according to claim 1, wherein the inert particles have an average primary particle size of 0.01 to 10 μ. 3. The thermoplastic resin film laminate according to claims 1 to 2, wherein the thermoplastic resin film is a polyester film. 4. On at least one side of the melt-extruded unstretched thermoplastic resin film or uniaxially stretched thermoplastic resin film, (A) mixed dicarboxylic acid containing 0.5 to 15 mol % of sulfonic acid metal base-containing dicarboxylic acid based on the total dicarboxylic acid components. A water-insoluble polyester copolymer formed from a glycol component and a glycol component. (B) Inert particles and (C) polyethylene glycol or its derivative or/and (D) anionic antistatic agent and (E) phosphate (F) a water-insoluble organic compound with a boiling point of 60 to 200°C (G) water (A)/(B)=100000/0.5~3000, (A)/(C)=100/1
~20, (A)/(D)=100/0.1~10, (A)/(E)=100/1
~15, (A)/(F)=100/20~5000, (F)/(G)=100/50
1. A method for producing a thermoplastic resin film laminate, which comprises applying a polyester resin composition blended at a weight ratio of ~10,000 and then further biaxially or uniaxially stretching.
JP27857684A 1984-12-24 1984-12-24 Thermoplastic resin film laminate and manufacture thereof Granted JPS61149353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27857684A JPS61149353A (en) 1984-12-24 1984-12-24 Thermoplastic resin film laminate and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27857684A JPS61149353A (en) 1984-12-24 1984-12-24 Thermoplastic resin film laminate and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS61149353A JPS61149353A (en) 1986-07-08
JPH0149114B2 true JPH0149114B2 (en) 1989-10-23

Family

ID=17599189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27857684A Granted JPS61149353A (en) 1984-12-24 1984-12-24 Thermoplastic resin film laminate and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61149353A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2744948B2 (en) * 1987-07-15 1998-04-28 ダイアホイルヘキスト 株式会社 Fine bubble-containing polyester film with coating layer
JPH0780282B2 (en) * 1988-06-08 1995-08-30 東レ株式会社 Biaxially oriented thermoplastic resin film
JP2705816B2 (en) * 1988-12-12 1998-01-28 ダイセル化学工業 株式会社 Antistatic film
JPH0464442A (en) * 1990-07-04 1992-02-28 Toray Ind Inc Polyester resin film

Also Published As

Publication number Publication date
JPS61149353A (en) 1986-07-08

Similar Documents

Publication Publication Date Title
KR890002367B1 (en) Thermoplastic resin film laminated and production thereof
JPH0347178B2 (en)
JPH0410858B2 (en)
JPH0455215B2 (en)
JPH0149114B2 (en)
JPH0376207B2 (en)
JPH0747304B2 (en) Thermoplastic resin film laminate and method for producing the same
JP2001096696A (en) Coated polyester film
JP3640026B2 (en) Laminated polyester film and method for producing the same
JPH0798384B2 (en) Thermoplastic resin film laminate
JPH0428027B2 (en)
JPH07108563B2 (en) Thermoplastic resin film laminate and method for producing the same
JPH0376655B2 (en)
KR950012796B1 (en) Laminated article of thermoplastic resin film
JPH0681714B2 (en) Coated plastic film
JPS61295037A (en) Thermoplastic resin film laminate
JPH06293839A (en) Easily adhesive polyester film
JPS62152850A (en) Thermoplastic-resin film laminate and manufacture thereof
JP2681683B2 (en) Polyester film
JP3259451B2 (en) Laminated polyester film and method for producing the same
JP3298252B2 (en) Easy adhesion polyester film
JPH0554494B2 (en)
JP3227984B2 (en) Easy adhesion polyester film
JP3289330B2 (en) Water-soluble copolymerized polyester for film and coating agent for magnetic recording material
JPS63267550A (en) Thermoplastic resin film laminate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees