JPH0410777B2 - - Google Patents

Info

Publication number
JPH0410777B2
JPH0410777B2 JP57209118A JP20911882A JPH0410777B2 JP H0410777 B2 JPH0410777 B2 JP H0410777B2 JP 57209118 A JP57209118 A JP 57209118A JP 20911882 A JP20911882 A JP 20911882A JP H0410777 B2 JPH0410777 B2 JP H0410777B2
Authority
JP
Japan
Prior art keywords
detection
signal
output
circuit
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57209118A
Other languages
Japanese (ja)
Other versions
JPS5999848A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP57209118A priority Critical patent/JPS5999848A/en
Publication of JPS5999848A publication Critical patent/JPS5999848A/en
Publication of JPH0410777B2 publication Critical patent/JPH0410777B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • H04L27/227Demodulator circuits; Receiver circuits using coherent demodulation
    • H04L27/2271Demodulator circuits; Receiver circuits using coherent demodulation wherein the carrier recovery circuit uses only the demodulated signals
    • H04L27/2273Demodulator circuits; Receiver circuits using coherent demodulation wherein the carrier recovery circuit uses only the demodulated signals associated with quadrature demodulation, e.g. Costas loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

【発明の詳細な説明】 本発明は、搬送波デイジタル伝送方式に用いら
れる同期検波受信装置に関し、特に、同期引込範
囲の拡大機能を有する同期検波受信装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a synchronous detection receiver used in a carrier wave digital transmission system, and more particularly to a synchronous detection receiver having a function of expanding a synchronization pull-in range.

搬送波デイジタル伝送方式に用いられる同期検
波受信装置においては、同期引込範囲特性は重要
なパラメータである。この値は少なくともこのシ
ステムにおける搬送波周波数変動分よりも十分に
大きくなければならない。
In a synchronous detection receiver used in a carrier wave digital transmission system, the synchronous pull-in range characteristic is an important parameter. This value must be at least sufficiently larger than the carrier frequency fluctuation in this system.

従来、この同期引込範囲を拡大する方法とし
て、AFC(Automatic Frequency Control
Loop)を併用する方法が知られており、その一
つに次のようなものがある。即ち、制御信号によ
つて発振周波数が変化する電圧制御発振器と、入
力信号を上記電圧制御発振器の出力を用いて直交
位相検波する直交位相検波器と、上記直交位相検
波器の出力をある遅延差をもたせて乗算し周波数
誤差信号を得る手段と、上記直交位相検波器の出
力を演算し位相誤差信号を得る手段と、上記周波
数誤差信号と上記位相誤差信号を共に上記制御信
号とする手段とから構成される同期検波受信装置
である。
Conventionally, AFC (Automatic Frequency Control) has been used as a method to expand this synchronization pull-in range.
Loop) is known, and one of them is as follows. That is, a voltage controlled oscillator whose oscillation frequency changes according to a control signal, a quadrature phase detector which detects an input signal in quadrature phase using the output of the voltage controlled oscillator, and a quadrature phase detector that detects the output of the quadrature phase detector using a certain delay difference. means for calculating the output of the quadrature phase detector to obtain a phase error signal; and means for using both the frequency error signal and the phase error signal as the control signal. This is a synchronous detection receiving device configured as follows.

この方法によると、直交位相検波器の二つの出
力のうち一方をある遅延差をもたせて乗算するこ
とによつて周波数誤差信号を得ている。
According to this method, a frequency error signal is obtained by multiplying one of two outputs of a quadrature phase detector with a certain delay difference.

その動作を簡単に説明すると、該同期検波受信
装置が位相非同期状態の時、上記周波数誤差信号
によつて、電圧制御発振器の発振周波数が制御さ
れ、入力信号の周波数に近づくように制御され
る。その後、該同期検波受信装置が有する位相同
期回路が動作し、該同期検波受信装置は位相同期
状態に入る。この状態では上記周波数誤差信号の
役割は終了しており、その出力には、いかなる信
号も生じないことが望ましいのであるが、これま
で説明した従来例における周波数誤差信号出力に
は、主信号を位相検波して得られた出力を2逓倍
した信号が生ずる。前記2逓倍信号は雑音とな
り、この雑音はある程度、低域濾波器で除去され
るが、残留し、電圧制御発振器を制御することと
なり、前記電圧制御発振器出力のC/N値を劣化
させることになる。
Briefly explaining its operation, when the synchronous detection receiver is in a phase asynchronous state, the oscillation frequency of the voltage controlled oscillator is controlled by the frequency error signal so as to approach the frequency of the input signal. Thereafter, the phase synchronization circuit included in the coherent detection receiver operates, and the coherent detection receiver enters a phase synchronized state. In this state, the role of the above-mentioned frequency error signal has ended, and it is desirable that no signal is generated at its output. However, in the conventional example described above, the main signal is A signal obtained by multiplying the output obtained by detection by two is generated. The doubled signal becomes noise, and although this noise is removed to some extent by a low-pass filter, it remains and controls the voltage controlled oscillator, degrading the C/N value of the output of the voltage controlled oscillator. Become.

このように従来例においては、電圧制御発振器
の出力C/Nを劣化させる欠点を有している。
As described above, the conventional example has the drawback of deteriorating the output C/N of the voltage controlled oscillator.

本発明は従来の上記事情に鑑みてなされたもの
であり、従つて本発明の目的は、上記欠点を除去
した新規な同期検波受信装置を提供することにあ
る。
The present invention has been made in view of the above-mentioned conventional circumstances, and therefore, an object of the present invention is to provide a novel coherent detection receiving apparatus that eliminates the above-mentioned drawbacks.

上記目的を達成する為に、本発明に係る同期検
波受信装置は、入力信号を直交位相検波して二つ
の直交位相検波出力を出力する検波手段と、この
検波手段の一方の検波出力に所定の位相遅延差を
もたせて他方の検波出力と乗算し周波数誤差信号
を得る第1の乗算手段と、上記検波手段の二つの
検波出力を乗算する第2の乗算手段と、上記第1
の乗算手段と上記第2の乗算手段との間で減算す
る減算手段と、上記検波手段の二つの検波出力を
入力として演算し位相誤差信号を得る手段と、上
記減算手段の出力信号及び上記位相誤差信号を制
御信号としてこの制御信号により発振周波数が変
化する出力信号を上記検波手段に供給する発振手
段とを具備して構成されている。
In order to achieve the above object, the synchronous detection receiving device according to the present invention includes a detection means for performing quadrature phase detection on an input signal and outputting two orthogonal phase detection outputs, and a predetermined detection output for one of the detection means. a first multiplication means that multiplies the detection output of the other with a phase delay difference to obtain a frequency error signal; a second multiplication means that multiplies the two detection outputs of the detection means;
subtracting means for subtracting between the multiplication means and the second multiplication means, means for calculating a phase error signal by inputting the two detection outputs of the detection means, and an output signal of the subtraction means and the phase error signal. The apparatus includes an oscillation means that uses the error signal as a control signal and supplies an output signal whose oscillation frequency is changed by the control signal to the detection means.

以下本発明をその好ましい一実施例について図
面を参照しながら具体的に説明する。
Hereinafter, a preferred embodiment of the present invention will be specifically explained with reference to the drawings.

第1図は本発明の一実施例を示すブロツク構成
図である。図において、参照番号1は直交位相検
波回路、2は逓倍回路、3は遅延回路、4,5は
乗算回路、6は減算回路、7,8は低域濾波器、
9は電圧制御発振器をそれぞれ示す。
FIG. 1 is a block diagram showing one embodiment of the present invention. In the figure, reference number 1 is a quadrature phase detection circuit, 2 is a multiplier circuit, 3 is a delay circuit, 4 and 5 are multiplication circuits, 6 is a subtraction circuit, 7 and 8 are low-pass filters,
9 indicates a voltage controlled oscillator, respectively.

次に本実施例の動作を説明するが、第1図にお
ける回路は入力信号がいかなる変調信号でも共通
に用いることができるが、ここでは入力信号とし
て4PSK波の場合について説明する。
Next, the operation of this embodiment will be described. Although the circuit shown in FIG. 1 can be commonly used with any modulation signal as an input signal, the case where the input signal is a 4PSK wave will be described here.

第1図において、直交位相検波回路1、逓倍回
路2、低域濾波器7、電圧制御発振器9は通常の
4PSK用位相同期回路として動作する。ここで逓
倍回路2は4逓倍回路となる。
In Fig. 1, a quadrature phase detection circuit 1, a multiplier circuit 2, a low-pass filter 7, and a voltage controlled oscillator 9 are
Operates as a phase synchronization circuit for 4PSK. Here, the multiplier circuit 2 becomes a quadruple multiplier circuit.

遅延回路3、乗算回路4、低域濾波器8は従来
例における周波数誤差信号を作成する回路であ
り、乗算回路5、減算器6は本発明によつて付加
された回路である。
The delay circuit 3, multiplication circuit 4, and low-pass filter 8 are circuits for creating a frequency error signal in the conventional example, and the multiplication circuit 5 and subtractor 6 are circuits added according to the present invention.

今、この回路が非同期状態にあるものとし、こ
のときの入力信号と電圧制御発振器9の出力との
差周波数をωとする。ここで入力信号は説明を簡
単にするため無変調とする。
It is now assumed that this circuit is in an asynchronous state, and the difference frequency between the input signal and the output of the voltage controlled oscillator 9 at this time is ω. Here, the input signal is assumed to be unmodulated to simplify the explanation.

直交位相検波器1の出力は、 P=sinωt Q=cosωt で表わされるので、遅延回路3を介したP信号と
Q信号とを乗算する乗算回路4の出力信号は次式
となる。ここでτは遅延回路3の遅延量である。
Since the output of the quadrature phase detector 1 is expressed as P=sinωt and Q=cosωt, the output signal of the multiplication circuit 4 that multiplies the P signal and the Q signal via the delay circuit 3 is expressed by the following equation. Here, τ is the amount of delay of the delay circuit 3.

sin(ωt+ωτ)×cos(ωt)= 1/2sinωτ−1/2sin(2ωτ+ωτ) ……(1) (1)式の右辺第1項は差周波数ωに応答するDC
成分であり差周波数ωを検出する周波数誤差信号
である。このように乗算回路4の出力において周
波数誤差信号が得られているので、乗算回路4の
出力を低域濾波器8を介して電圧制御発振器9に
入力し、電圧制御発振器9の制御信号とすれば、
1/2sinωτが零となるようにループが動作し、
AFCループが形成される。そして差周波数ωが
零付近となると、位相同期回路が動作し、同期状
態に入る。同期状態であれば、差周波数ωは常に
零であるので、AFCループは動作を停止する。
このように第1図において乗算回路5、減算回路
6が無くてもAFCループは動作するが、その場
合には次のような欠点を有する。
sin(ωt+ωτ)×cos(ωt)=1/2sinωτ−1/2sin(2ωτ+ωτ) ……(1) The first term on the right side of equation (1) is the DC that responds to the difference frequency ω.
This is a frequency error signal for detecting the difference frequency ω. Since the frequency error signal is thus obtained at the output of the multiplier circuit 4, the output of the multiplier circuit 4 is input to the voltage controlled oscillator 9 via the low-pass filter 8, and is used as the control signal for the voltage controlled oscillator 9. Ba,
The loop operates so that 1/2 sinωτ becomes zero,
AFC loop is formed. Then, when the difference frequency ω becomes near zero, the phase synchronization circuit operates and enters a synchronized state. In a synchronous state, the difference frequency ω is always zero, so the AFC loop stops operating.
As described above, the AFC loop operates even without the multiplication circuit 5 and the subtraction circuit 6 in FIG. 1, but in that case, there are the following drawbacks.

即ち、以上においては入力信号が無変調の場合
について説明したが、実際には、入力信号は
4PSK信号となつており、今、AFCループが動作
していない同期状態において考察すると、乗算器
4の出力には4PSK復調信号を2逓倍した信号が
出力されている。この信号は復調信号を2逓倍し
ただけであり、4PSK用位相誤差信号を得るため
の条件である4逓倍には逓倍次数が足りず、結
局、乗算器4の出力信号は位相誤差信号ともなり
得ず、単なる雑音成分となり、低域濾波器8にて
ある程度除去されるが、低域濾波器8の出力にも
残留することになり、結局電圧制御発振器9の出
力の再生キヤリア信号に含まれるジツタ成分を多
くすることになり、更には装置総合特性を表わす
符号誤り率特性を劣化させることになる。
In other words, although the above explanation is based on the case where the input signal is unmodulated, in reality, the input signal is
The signal is a 4PSK signal, and when considered in a synchronous state where the AFC loop is not operating, the multiplier 4 outputs a signal obtained by doubling the 4PSK demodulated signal. This signal is simply the demodulated signal multiplied by 2, and there is not enough multiplication order for 4 multiplication, which is the condition for obtaining a 4PSK phase error signal.In the end, the output signal of multiplier 4 can also be a phase error signal. However, although it is removed to some extent by the low-pass filter 8, it remains in the output of the low-pass filter 8, and the jitter contained in the reproduced carrier signal output from the voltage controlled oscillator 9 ends up being a mere noise component. This increases the number of components and further deteriorates the bit error rate characteristic representing the overall device characteristic.

このような欠点を除くために、第1図において
乗算回路5、減算回路6が付加されている。
In order to eliminate such drawbacks, a multiplication circuit 5 and a subtraction circuit 6 are added in FIG.

乗算回路4,5の出力には共に同一の復調信号
を2逓倍した信号が得られているので、減算回路
6にて両者を減算すれば、前述の信号は互いに打
消し合い、減算回路6の出力には出力されず上記
欠点は除去される。つまり、減算回路6の出力に
は周波数誤差信号のみを得ることができる。
Since the outputs of the multiplier circuits 4 and 5 are obtained by multiplying the same demodulated signal by 2, if the two are subtracted in the subtraction circuit 6, the above-mentioned signals cancel each other out, and the output of the subtraction circuit 6 is It is not output to the output, and the above drawback is eliminated. In other words, only the frequency error signal can be obtained as the output of the subtraction circuit 6.

そして前述したように差周波数ωが零付近にな
ると、位相同期回路が動作する。
Then, as described above, when the difference frequency ω becomes close to zero, the phase locked circuit operates.

即ち、直交位相検波器1の出力は逓倍回路2に
より4逓倍され位相誤差信号となり、この位相誤
差信号を、低域濾波器7を介して電圧制御発振器
9に入力し、電圧制御発振器9の制御信号とする
ことによつて、同期状態にはいる。同期状態であ
れば、差周波数ωは常に零であるので、AFCル
ープは動作を停止する。AFCループが動作して
いる時は、入力信号と電圧制御発振器9の出力と
は非同期状態であり、両者の位相関係はωtラジ
アンで常に変化している。そして、位相同期回路
が動作している時は、両者の位相差をnπ/2+π/4 (n=0、1、2、3)に保つて安定している。
That is, the output of the quadrature phase detector 1 is multiplied by 4 by the multiplier circuit 2 to become a phase error signal, and this phase error signal is input to the voltage controlled oscillator 9 via the low-pass filter 7 to control the voltage controlled oscillator 9. By setting it as a signal, a synchronized state is entered. In a synchronous state, the difference frequency ω is always zero, so the AFC loop stops operating. When the AFC loop is operating, the input signal and the output of the voltage controlled oscillator 9 are asynchronous, and the phase relationship between them is constantly changing by ωt radians. When the phase locked circuit is operating, the phase difference between the two is kept at nπ/2+π/4 (n=0, 1, 2, 3) and is stable.

このような位相同期回路の詳細については、例
えば特開昭52−92464号公報を参照されたい。
For details of such a phase synchronization circuit, please refer to, for example, Japanese Patent Laid-Open No. 52-92464.

尚、遅延回路3の遅延量τは主信号の1タイム
スロツト以内に選択され、その値が大きい場合に
は、周波数誤差信号の感度が大きくなるが、反面
雑音のキヤンセル量が少なくなる。乗算器4,5
には、アナログ乗算器はもちろんのことデイジタ
ル集積回路におけるEX−OR回路も用いること
ができる。
The delay amount .tau. of the delay circuit 3 is selected within one time slot of the main signal, and when the value is large, the sensitivity of the frequency error signal increases, but on the other hand, the amount of noise cancellation decreases. Multiplier 4, 5
Not only analog multipliers but also EX-OR circuits in digital integrated circuits can be used.

又、第1図においては入力信号として4PSK波
を用いて説明したが、本発明はそれ以上の多値直
交変調波にも適用可能であることは明らかであ
り、その場合には、第1図における逓倍回路2と
して、その変調方式に適合した逓倍回路を用いれ
ば良い。
Furthermore, in FIG. 1, the explanation has been made using a 4PSK wave as the input signal, but it is clear that the present invention can be applied to a multi-level orthogonal modulated wave with more than that, and in that case, the input signal shown in FIG. As the multiplier circuit 2, a multiplier circuit suitable for the modulation method may be used.

以上本発明の構成及び作用をその良好な一実施
例について説明したが、それは単なる例示的なも
のであり、ここで説明された実施例によつてのみ
本願発明が限定されるものでないことは勿論であ
る。
Although the structure and operation of the present invention have been explained above with reference to one preferred embodiment thereof, it is merely an example, and it goes without saying that the present invention is not limited only to the embodiment described here. It is.

このように、本発明によれば、復調され、且つ
2逓倍された主信号である雑音を含まない周波数
誤差信号を得ることができるので、電圧制御発振
器出力のC/N値を劣化させることはない。
As described above, according to the present invention, it is possible to obtain a frequency error signal that does not include noise, which is the demodulated and doubled main signal, so that the C/N value of the voltage controlled oscillator output is not degraded. do not have.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロツク構成
図である。 1……直交位相検波器、2……逓倍回路、3…
…遅延回路、4,5……乗算回路、6……減算回
路、7,8……低域濾波器、9……電圧制御発振
器。
FIG. 1 is a block diagram showing one embodiment of the present invention. 1... Quadrature phase detector, 2... Multiplier circuit, 3...
...Delay circuit, 4, 5... Multiplication circuit, 6... Subtraction circuit, 7, 8... Low pass filter, 9... Voltage controlled oscillator.

Claims (1)

【特許請求の範囲】[Claims] 1 入力信号を直交位相検波して二つの直交位相
検波出力を出力する検波手段と、この検波手段の
一方の検波出力に所定の位相遅延差をもたせて他
方の検波出力と乗算し周波数誤差信号を得る第1
の乗算手段と、上記検波手段の二つの検波出力を
乗算する第2の乗算手段と、上記第1の乗算手段
と上記第2の乗算手段との間で減算する減算手段
と、上記検波手段の二つの検波出力を入力として
演算し位相誤差信号を得る手段と、上記減算手段
の出力信号及び上記位相誤差信号を制御信号とし
てこの制御信号により発振周波数が変化する出力
信号を上記検波手段に供給する発振手段とを具備
することを特徴とした同期検波受信装置。
1. A detection means that performs orthogonal phase detection of an input signal and outputs two orthogonal phase detection outputs, and one detection output of this detection means that has a predetermined phase delay difference and is multiplied by the other detection output to generate a frequency error signal. 1st to get
a second multiplication means for multiplying the two detection outputs of the detection means; a subtraction means for subtracting between the first multiplication means and the second multiplication means; means for calculating a phase error signal by inputting the two detection outputs, and supplying an output signal whose oscillation frequency changes according to the control signal to the detection means using the output signal of the subtraction means and the phase error signal as control signals. A synchronous detection receiving device comprising oscillation means.
JP57209118A 1982-11-29 1982-11-29 Receiver of synchronous detection Granted JPS5999848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57209118A JPS5999848A (en) 1982-11-29 1982-11-29 Receiver of synchronous detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57209118A JPS5999848A (en) 1982-11-29 1982-11-29 Receiver of synchronous detection

Publications (2)

Publication Number Publication Date
JPS5999848A JPS5999848A (en) 1984-06-08
JPH0410777B2 true JPH0410777B2 (en) 1992-02-26

Family

ID=16567581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57209118A Granted JPS5999848A (en) 1982-11-29 1982-11-29 Receiver of synchronous detection

Country Status (1)

Country Link
JP (1) JPS5999848A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4895038B2 (en) * 2007-06-04 2012-03-14 株式会社デンソー Seat belt switch device

Also Published As

Publication number Publication date
JPS5999848A (en) 1984-06-08

Similar Documents

Publication Publication Date Title
US4642573A (en) Phase locked loop circuit for demodulating suppressed carrier signals
US4143322A (en) Carrier wave recovery system apparatus using synchronous detection
EP0533208A2 (en) PSK demodulator with feedback circuit for correcting phase and freqency errors
US4394626A (en) Phase synchronizing circuit
US5909148A (en) Carrier phase synchronizing circuit
JPS63151246A (en) Process and circuit for synchdonizing carrier wave in synchronous demodulator
EP0529618B1 (en) Demodulating device
JPS6347182B2 (en)
US6255858B1 (en) Phase-frequency detector and phase-locked loop circuit incorporating the same
JP3028063B2 (en) Carrier phase synchronization circuit
JPS60203045A (en) Phase locking detection demodulator
JPH0410777B2 (en)
FI97662C (en) Procedure for carrier recovery
JP3383318B2 (en) Digital modulation wave demodulator
JP3414554B2 (en) Demodulator
JPS644386B2 (en)
JP3254009B2 (en) Circuit including phase locked loop
JPS6330049A (en) Msk demodulation circuit
JP3462277B2 (en) Carrier recovery circuit
EP0709992B1 (en) Costas loop
JP2837916B2 (en) AFC device
JP2837915B2 (en) AFC device
JPS60102050A (en) Phase control circuit for burst signal
JPH0129342B2 (en)
JPH04280538A (en) Carrier recovery device