JPH04107227A - Device for continuously producing cast ingot by electron beam melting - Google Patents

Device for continuously producing cast ingot by electron beam melting

Info

Publication number
JPH04107227A
JPH04107227A JP22446590A JP22446590A JPH04107227A JP H04107227 A JPH04107227 A JP H04107227A JP 22446590 A JP22446590 A JP 22446590A JP 22446590 A JP22446590 A JP 22446590A JP H04107227 A JPH04107227 A JP H04107227A
Authority
JP
Japan
Prior art keywords
ingot
cast ingot
chamber
electron beam
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22446590A
Other languages
Japanese (ja)
Inventor
Ryuji Nakao
隆二 中尾
Shigeo Fukumoto
成雄 福元
Hidemaro Takeuchi
竹内 英麿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP22446590A priority Critical patent/JPH04107227A/en
Publication of JPH04107227A publication Critical patent/JPH04107227A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the taking-out of a cast ingot during producing into the atmospheric air and to continuously produce the cast ingot by providing a cast ingot taking-out hole an a furnace bottom wall in an electron beam melting furnace and a dummy bar, which in hermetically contact with an annular sealing means and extends to a mold at the upper end part thereof. CONSTITUTION:In the condition of charging the upper end part 30A of dummy bar 30 into the mold 9, melting material 3A is irradiated with the electron beam 2 from an electron gun 1 and melted, and by driving the cast ingot drawing-out shaft 28 downward, the cast ingot 10 is taken out to the atmospheric air from a seal bearing 12. The cast ingot 10 taken out into the atmospheric air is cooled till coming to a black ingot by spouting the cooling water 17 from water cooling nozzle group 16. Then, after shutting off the cooling water 17 with draining rolls 18, the cast ingot can be cut off at the prescribed length with the flame of torch 19 for cutting.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は電子ヒーム溶解法によって鋳塊を連続的に製造
する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an apparatus for continuously producing ingots by an electronic heat melting method.

[従来の技術] 電子ビーム溶解炉は電子ビームの特徴である高温・高真
空下ての溶解および凝固を活かし、T1やZr等の活性
金属や高合金鋼、超合金鋼の鋳塊の製造手段として近年
広く使用されている。従来の電子ビーム溶解炉はハツチ
式て鋳塊を製造しており、第3図にその一例を示す。
[Prior art] Electron beam melting furnaces are a means of producing ingots of active metals such as T1 and Zr, high alloy steels, and superalloy steels by utilizing the characteristics of electron beams, such as melting and solidification under high temperature and high vacuum conditions. It has been widely used in recent years as A conventional electron beam melting furnace produces ingots using a hatch type, and an example thereof is shown in FIG.

第3図に示すように、従来の電子ビーム溶解炉は鋳塊製
造室26か同一真空度に保持てきるように真空排気装置
22か設置されている。鋳塊の製造は電子銃1から発生
した′電子ビーム2を溶解材料3Aに照射して、溶滴7
を鋳型9に滴下させるとともに電子ヒーム2を鋳型9内
にも照射して鋳塊10の上面に溶融ブール6を形成させ
なから鋳塊lOをF方に引抜き鋳塊製造室26内て鋳塊
全体か凝固温度以下となるまで冷却される。なお、鋳塊
10の引抜きは鋳塊基板27を介して鋳塊引抜き軸28
の下一端に取付けられた駆動装置(図示せず)により行
われ、該駆動装置はシールヘアリング12により鋳塊製
造室26としゃ断さねて、大気雰囲気下に置かれている
。溶解材料3Aを溶解して後は、真空バルブ5を閉じて
、新しい溶解材料と入れ替え、材料供給装置4A内を真
空引きする。この間は溶解材料3Bを溶解し、真空引き
か完了すると、真空バルブ5を開いて、新しい溶解材料
を溶解する。このような溶解炉の例としては、例えば特
開平01−79328号公報に示されている。
As shown in FIG. 3, the conventional electron beam melting furnace is equipped with a vacuum evacuation device 22 so as to maintain the ingot manufacturing chamber 26 at the same degree of vacuum. The ingot is produced by irradiating the molten material 3A with an electron beam 2 generated from an electron gun 1 to form a droplet 7.
is dropped into the mold 9, and the electron beam 2 is also irradiated into the mold 9 to form a molten boule 6 on the upper surface of the ingot 10.The ingot 10 is then pulled out in the direction F and placed in the ingot manufacturing chamber 26. The whole is cooled down to below the solidification temperature. Note that the ingot 10 is pulled out via the ingot base plate 27 via the ingot pulling shaft 28.
This is carried out by a drive device (not shown) attached to the lower end of the ingot production chamber 26, which is not separated from the ingot production chamber 26 by the seal hair ring 12 and is placed under an atmospheric atmosphere. After melting the melted material 3A, the vacuum valve 5 is closed, the melted material is replaced with a new melted material, and the inside of the material supply device 4A is evacuated. During this time, the melted material 3B is melted, and when the evacuation is completed, the vacuum valve 5 is opened and a new melted material is melted. An example of such a melting furnace is shown in, for example, Japanese Unexamined Patent Publication No. 01-79328.

このような溶解炉では、製造する鋳塊10の長さか鋳塊
製造室26の長さによって制約されるとともに、鋳塊1
0を溶解炉外に取出す時は、−旦真空系を切って取り出
す必要があり、溶解を再開するときは、再度真空引きを
行う必要があるために、非常に生産効率が低かった。
In such a melting furnace, the length of the ingot 10 to be manufactured or the length of the ingot production chamber 26 is limited, and the length of the ingot 1
When taking the 0 out of the melting furnace, it was necessary to cut off the vacuum system and take it out, and when restarting melting, it was necessary to evacuate again, resulting in extremely low production efficiency.

[発明か解決しようとする課題] 従来の電子ビーム溶解炉ては連続的に鋳塊を製造するこ
とか不可能であり、生産効率が非常に低かった。
[Problem to be solved by the invention] It is impossible to continuously produce ingots using conventional electron beam melting furnaces, and the production efficiency is extremely low.

本発明は鋳塊を製造中に大気下に取出すことを可能にし
、取出した該鋳塊を必要に応して水冷し、かつ切断用ト
ーチにて切断を行うことによって、鋳塊を連続的に製造
することを目的とするものである。
The present invention enables the ingot to be taken out into the atmosphere during production, cools the taken out ingot with water as necessary, and cuts it with a cutting torch, thereby continuously cutting the ingot. The purpose is to manufacture.

[課題を解決するための手段コ 本発明の請求項1は、電子ビーム溶解炉の炉底壁23に
鋳塊取出し口25を設け、鋳塊取出し口25の内周部位
に環状シール手段12を設け、環状シール手段12と気
密に接触し上端部が鋳型9まて延びたタミーバー30を
設けたことを特徴とする電子ビーム溶解による鋳塊の連
続製造装置。
[Means for Solving the Problems] Claim 1 of the present invention provides an ingot outlet 25 on the bottom wall 23 of an electron beam melting furnace, and an annular sealing means 12 on the inner circumference of the ingot outlet 25. An apparatus for continuously manufacturing ingots by electron beam melting, characterized in that a tummy bar 30 is provided, which is in airtight contact with an annular sealing means 12 and whose upper end extends to a mold 9.

また本発明の請求項2は鋳型9と溶解炉側壁24との間
に仕切り壁14を気密に設けることて、溶解室8および
鋳塊室11を形成し、溶解室8および鋳塊室11のそれ
そわに真空排気装fi22.21を接続して設けたこと
を特徴とする請求項第1項記載の電子ビーム溶解による
鋳塊の連続製造装置である。
In addition, claim 2 of the present invention provides that the melting chamber 8 and the ingot chamber 11 are formed by airtightly providing a partition wall 14 between the mold 9 and the side wall 24 of the melting furnace. 2. An apparatus for continuously producing ingots by electron beam melting according to claim 1, characterized in that a vacuum evacuation device fi22.21 is connected thereto.

以下、本発明の請求項1の具体例を第1図に示す実施例
によって詳細に説明する。第1図において、第3図に示
す従来装置の例と同様の部材には同一の参照符号を付け
、その詳細な説明は省略する。
Hereinafter, a specific example of claim 1 of the present invention will be explained in detail with reference to the embodiment shown in FIG. In FIG. 1, members similar to those in the example of the conventional device shown in FIG. 3 are given the same reference numerals, and detailed explanation thereof will be omitted.

25は鋳塊室底壁23に設けられた鋳塊取出し口、12
は鋳塊取出し口25に設けられ鋳塊lOと気密に接1−
る環状シール手段としての、例えばシールヘアリンつて
ある。15は鋳塊lOを下方へ引抜くための鋳塊引抜き
ロール、16は冷却水17によって鋳塊10を冷却する
ための水冷ノズル群、18は冷却された鋳塊lOの表面
の水を取り除くための水切りロール、19は冷却水を取
り除いた後の鋳塊lOを所要の長さに切断するための切
断用トーチである。30はシールヘアリンク12と気密
に接触可能なタミーi<−を示し、−1端部か鋳型9ま
て延び、下部か引抜きロール15に挟持されて、鋳塊l
Oを支持するとともに、溶解を開始して後、鋳塊10か
シールヘアリング12の部tヶに利達するまでの間、鋳
塊取出し口25をシールするものである。
25 is an ingot outlet provided in the bottom wall 23 of the ingot chamber;
is provided at the ingot outlet 25 and is in airtight contact with the ingot lO.
For example, a sealing hair ring is used as an annular sealing means. 15 is an ingot pulling roll for pulling the ingot 10 downward; 16 is a group of water-cooled nozzles for cooling the ingot 10 with cooling water 17; and 18 is for removing water on the surface of the cooled ingot 10. The draining roll 19 is a cutting torch for cutting the ingot 10 to a required length after removing the cooling water. Reference numeral 30 indicates a tammy i<- which can be in airtight contact with the sealing hair link 12, the -1 end extends to the mold 9, the lower part is held between the drawing rolls 15, and the ingot l
It supports the ingot O and seals the ingot outlet 25 until the ingot 10 reaches the part t of the sealing hair ring 12 after melting has started.

鋳型9の内壁は鋳塊10と気密に接触し、溶解室8と鋳
塊室11との間の通気を遮断するために、第4図に示す
ように逆テーパ−(上広がり)であることか好ましい。
The inner wall of the mold 9 should be inversely tapered (widening upward), as shown in FIG. 4, in order to make airtight contact with the ingot 10 and block ventilation between the melting chamber 8 and the ingot chamber 11. Or preferable.

即ち、第4図において、D、は鋳型F端の幅、D2は鋳
型下端の幅、Lは鋳型の上端から下端まての長さを示す
。逆テーパー量は(1)式て走入さねる。
That is, in FIG. 4, D represents the width of the F end of the mold, D2 represents the width of the lower end of the mold, and L represents the length from the upper end to the lower end of the mold. The amount of reverse taper is determined by formula (1).

逆テーパー量(%)=”−D2xlOO・・・ (1)
し 第5図に溶解室8と鋳塊室】1との間に什切り壁14を
気密に設け、溶解室8と鋳塊室11を別々の真空排気装
置2】、22にて真空引きを行い、溶解室をI X 1
0−’Torr、鋳塊室を1 x IQ−2Torrと
して、溶解を開始して、鋳塊の製造を行った場合の鋳型
の逆テーパー率と溶解室8の真空度の関係を示す。
Reverse taper amount (%)=”-D2xlOO... (1)
As shown in Fig. 5, a partition wall 14 is airtightly provided between the melting chamber 8 and the ingot chamber 1, and the melting chamber 8 and the ingot chamber 11 are evacuated using separate evacuation devices 2 and 22. and the lysis chamber I
The relationship between the inverse taper ratio of the mold and the degree of vacuum in the melting chamber 8 is shown when melting is started and an ingot is manufactured with the ingot chamber at 0-' Torr and the ingot chamber at 1.times.IQ-2 Torr.

図に示すように、逆テーパー率か負の側においては溶解
室8の真空度か悪くなり、電子ヒームの照射か不安定と
なってしまう。一方、逆テーパー率か0%以上において
は、溶解室の真空度は高位に安定する。
As shown in the figure, when the reverse taper ratio is on the negative side, the degree of vacuum in the melting chamber 8 becomes poor, and the electron beam irradiation becomes unstable. On the other hand, when the reverse taper ratio is 0% or more, the degree of vacuum in the melting chamber is stable at a high level.

第6図に鋳型の逆テーパー率と鋳塊の表面疵発生量の関
係を示す。なお、鋳塊の表面疵発生量は、鋳塊全面の1
mm以上の割れ疵の長さと個数を測定して、疵の全長を
求め、これを鋳塊の単位面積当りに換算した値である。
FIG. 6 shows the relationship between the reverse taper ratio of the mold and the amount of surface defects on the ingot. The amount of surface defects on the ingot is 1% on the entire surface of the ingot.
The length and number of cracks of mm or more are measured to determine the total length of the cracks, and this is the value converted per unit area of the ingot.

図に示すように、鋳型の逆テーパー率10%以下におい
て、表面疵発生量は低位に安定する。
As shown in the figure, when the reverse taper ratio of the mold is 10% or less, the amount of surface defects is stable at a low level.

次に本発明の請求項2の具体例を第2図に示す実施例に
よって詳細に説明する。第2図において、第1図と同様
の部材は同一の参照符号を付け、その詳細な説明は省略
する。
Next, a specific example of claim 2 of the present invention will be explained in detail with reference to an embodiment shown in FIG. In FIG. 2, members similar to those in FIG. 1 are given the same reference numerals, and detailed explanation thereof will be omitted.

鋳型9と溶解炉側壁24とを接続して仕切り壁14が気
密に設けられており、この仕切り壁14によって、溶解
室8と鋳塊室11とが仕切られている。鋳塊室11およ
び溶解室8のそれぞれには排気バイブI3.29を介し
て真空排気装置21.22か接続して設けられている。
A partition wall 14 is airtightly provided to connect the mold 9 and the melting furnace side wall 24, and the melting chamber 8 and the ingot chamber 11 are partitioned off by the partition wall 14. A vacuum evacuation device 21.22 is connected to each of the ingot chamber 11 and the melting chamber 8 via an evacuation vibrator I3.29.

5A、5Bは材料供給装置4A、4Bに出側に設けられ
溶解室8と材料供給装置4八、4Bの間を気密に開閉す
るための真空バルブ、31A、31Bは材料供給装置4
A、4B内を減圧するための真空排気装置であり、材料
供給装置4A、4Bとの間を排気パイプ32A、32B
によって接続されている。これにより電子ビーム溶解中
に溶解材料3A、3Bを材料供給装置4A、4Bの双方
から交互に供給することかできる。
5A and 5B are vacuum valves provided on the outlet side of the material supply devices 4A and 4B for airtightly opening and closing between the melting chamber 8 and the material supply devices 48 and 4B; 31A and 31B are the material supply devices 4;
This is a vacuum evacuation device for reducing the pressure inside A and 4B, and exhaust pipes 32A and 32B are connected between the material supply devices 4A and 4B.
connected by. Thereby, the melting materials 3A and 3B can be alternately supplied from both the material supply devices 4A and 4B during electron beam melting.

以上の説明は電子ビーム溶解炉のうち、ロット溶解炉の
例を示したが、本発明はハース溶解炉にも適用すること
ができる。
Although the above description has given an example of a lot melting furnace among electron beam melting furnaces, the present invention can also be applied to a hearth melting furnace.

[作用コ 第1図に示す請求項1の発明において鋳塊の連続製造に
際しては、ダミーバー30の上端部30Aを、鋳型9に
装入した状態て電子銃1から電子ビーム2を溶解材料3
Aに照射して、溶解材料3Aを溶解するとともに、鋳塊
引抜き軸28を下方へ駆動させ、鋳塊10をシールヘア
リンク12から大気下に取り出す。
[Function] In the invention of claim 1 shown in FIG. 1, during continuous production of ingots, the upper end portion 30A of the dummy bar 30 is inserted into the mold 9, and the electron beam 2 is ejected from the electron gun 1 to the melted material 3.
A is irradiated to melt the melted material 3A, and the ingot pulling shaft 28 is driven downward to take out the ingot 10 from the seal hair link 12 into the atmosphere.

大気下に取り出された鋳塊10は、鋼の垂直型連続製造
装置と同し方法を用いて、水冷ノズル群16より冷却水
17を放出して冷却することによって黒片となるまで冷
却する。その後、水切りロール18で冷却水17をしゃ
断した後、切断用トーチ19より火焔20を出して、所
定の長さに切断することかできる。
The ingot 10 taken out into the atmosphere is cooled until it becomes black pieces by discharging cooling water 17 from the water cooling nozzle group 16 using the same method as in the vertical continuous manufacturing apparatus for steel. Thereafter, after cutting off the cooling water 17 with the draining roll 18, a flame 20 is emitted from the cutting torch 19 to cut into a predetermined length.

鋳塊を連続的に製造するためには、溶解材料も連続的に
供給する必要がある。これは溶解材粗界の溶解完了後、
真空バルブ5を閉じる。次に溶解材料3Bを市道させて
溶解を継続する。この間に材料供給装置4Aに新しい溶
解材料を装入した後、材料供給装置4A内を真空引きを
行い、真空引き完了後、真空バルブ5を開いて、溶解材
料3Bを後退させるとともに溶解材料3Aを前進させ、
以下同様の動作を縁り返して溶解を継続する。
In order to continuously produce ingots, it is also necessary to continuously supply molten material. This is after the melting of the melting material coarse boundary is completed.
Close vacuum valve 5. Next, the melted material 3B is poured into the melted material 3B to continue melting. During this time, after loading a new melted material into the material supply device 4A, the inside of the material supply device 4A is evacuated, and after the evacuation is completed, the vacuum valve 5 is opened to retreat the melted material 3B and remove the melted material 3A. advance,
Thereafter, the same operation is repeated over and over again to continue dissolving.

第2図に示す請求項2の発明においては、溶解室8と鋳
塊室11か仕切り壁14によって気密に区切られており
、そわそわ独立の真空排気装置21.22により真空排
気を行う。例えば溶解室8は1O−5〜1O−3Tor
rに鋳塊室11は10−3〜10− ’Torrの真空
度に維持する。鋳型9内て凝固した鋳塊10は鋳塊室1
1を通過した後、鋳塊引抜きロール15の駆動によって
、シールヘアリンク14を介して、人気下に引き出され
る。
In the invention of claim 2 shown in FIG. 2, the melting chamber 8 and the ingot chamber 11 are airtightly separated by a partition wall 14, and vacuum evacuation is performed by independent evacuation devices 21 and 22. For example, the melting chamber 8 has a pressure of 1O-5 to 1O-3Tor.
The ingot chamber 11 is maintained at a vacuum level of 10-3 to 10-' Torr. The ingot 10 solidified in the mold 9 is placed in the ingot chamber 1.
1, the ingot is pulled out through the sealing hair links 14 by driving the ingot drawing rolls 15.

本発明装置においては、シールベアリンク12の部位か
ら多少の外気か鋳塊室11に侵入しても、鋳塊室11と
溶解室8の間に仕切り壁14を設け、鋳塊室11を減圧
しているために、侵入外気か鋳塊室11てうすめられる
こと、および仕切り壁14による通気遮断効果によって
、溶解室8の高真空度か維持される。このため溶解室8
の真空度低下による溶解の不安定化あるいは中断等の問
題は生しない。
In the apparatus of the present invention, even if some outside air enters the ingot chamber 11 through the sealed bear link 12, a partition wall 14 is provided between the ingot chamber 11 and the melting chamber 8, and the ingot chamber 11 is depressurized. Therefore, the high degree of vacuum in the melting chamber 8 is maintained by the intrusion of outside air into the ingot chamber 11 and by the ventilation blocking effect of the partition wall 14. For this reason, the dissolution chamber 8
There are no problems such as destabilization or interruption of melting due to a decrease in the degree of vacuum.

なお、鋳塊室11は侵入外気をうすめる効果を大きくす
るために、容積を大きくすることか望ましい [実施例] 第1図に示した本発明装置を用いてSUS:104ステ
ンレス鋼の300mmφ鋳塊を製造した場合の実施につ
いて説明する。
It is preferable that the volume of the ingot chamber 11 is increased in order to increase the effect of reducing intrusion of outside air [Example] Using the apparatus of the present invention shown in FIG. We will explain the implementation when manufacturing.

第1表に溶解室および鋳塊室の平均真空度、鋳型の逆デ
ーバー率、連続溶解量、単位時間当りの生産量、鋳塊の
表面疵発生量および鋳塊の手入れ歩留について示す。
Table 1 shows the average degree of vacuum in the melting chamber and the ingot chamber, the reverse Dever ratio of the mold, the amount of continuous melting, the amount of production per unit time, the amount of surface defects on the ingot, and the maintenance yield of the ingot.

なお、従来装置例のNo、5とNo、6は第3図に示す
電子ビーム溶解炉を用いて溶解を行った。また、鋳塊の
手入れ歩留は、旋盤により鋳塊を無疵となるまて表面研
削を行つだ結果を示す。
Note that conventional apparatus examples No. 5 and No. 6 were melted using an electron beam melting furnace shown in FIG. In addition, the treatment yield of the ingot is the result of surface grinding the ingot using a lathe until it becomes defect-free.

本発明装置例は、溶解室と鋳塊室の真空度か安定に維持
され、5000kgまで溶解を行うことが出来、鋳塊の
表面疵も少なく、97.5%以上の手入れ歩留を達成し
ている。
The apparatus of the present invention maintains a stable vacuum level in the melting chamber and the ingot chamber, can melt up to 5000 kg, has few surface defects on the ingot, and achieves a treatment yield of 97.5% or more. ing.

これに対し、従来装置例No、5.No、6は鋳塊の手
入れ歩留は高いか、連続的に鋳塊を製造することが出来
ないために、生産性が非常に悪い。
In contrast, conventional device example No. 5. In No. 6, the ingot maintenance yield is high or the ingot cannot be continuously produced, so the productivity is very poor.

[発明の効果] 以上述へたように、本発明装置により、鋳塊を連続的に
製造することが可能になり、かつ、鋳塊の表面疵も低位
に安定する。
[Effects of the Invention] As described above, the apparatus of the present invention enables continuous production of ingots, and also stabilizes surface defects of the ingots to a low level.

このことにより、従来の課題であった電子ビーム溶解炉
の生産性か大幅に向上し、3交代制での操業も可能にな
った。また、電子銃の容量の小さな電子ビーム溶解炉に
おいても、長尺の鋳塊の製造が可能になって、設備費の
削減も可能になる。
As a result, the productivity of the electron beam melting furnace, which had been an issue in the past, has been significantly improved, and operation in three shifts has become possible. Further, even in an electron beam melting furnace with a small capacity electron gun, it becomes possible to manufacture long ingots, and equipment costs can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明装置の実施例を示す図(一
部断面図)、第3図は従来装置の例を示す図(一部断面
図)、第4図は本発明装置における鋳型の例を示す断面
図、第5図は鋳型の逆テーパー率と溶解室の真空度の関
係を示す図、第6図は鋳型の逆デーバー率と鋳塊の表面
疵発生量の関係を示す図である。
1 and 2 are diagrams (partially sectional view) showing an example of the device of the present invention, FIG. 3 is a diagram (partially sectional view) showing an example of a conventional device, and FIG. 4 is a diagram showing an example of the device of the present invention (partially sectional view). A cross-sectional view showing an example of a mold, Figure 5 is a diagram showing the relationship between the reverse taper ratio of the mold and the degree of vacuum in the melting chamber, and Figure 6 is a diagram showing the relationship between the reverse taper ratio of the mold and the amount of surface defects on the ingot. It is a diagram.

Claims (1)

【特許請求の範囲】 1、電子ビーム溶解炉の炉底壁(23)に鋳塊取出し口
(25)を設け、鋳塊取出し口(25)の内周部位に環
状シール手段(12)を設け、環状シール手段(12)
と気密に接触し上端部が鋳型(9)まで延びたダミーバ
ー(30)を設けたことを特徴とする電子ビーム溶解に
よる鋳塊の連続製造装置。 2、鋳型(9)と溶解炉側壁(24)との間に仕切り壁
(14)を気密に設けることで、溶解室(8)および鋳
塊室(11)を形成し、溶解室(8)および鋳塊室(1
1)のそれぞれに真空排気装置(22)、(21)を接
続して設けたことを特徴とする請求項第1項記載の電子
ビーム溶解による鋳塊の連続製造装置。
[Claims] 1. An ingot outlet (25) is provided on the bottom wall (23) of the electron beam melting furnace, and an annular sealing means (12) is provided on the inner circumference of the ingot outlet (25). , annular sealing means (12)
An apparatus for continuous production of ingots by electron beam melting, characterized in that a dummy bar (30) is provided which is in airtight contact with the dummy bar (30) and whose upper end extends to the mold (9). 2. By airtightly providing a partition wall (14) between the mold (9) and the melting furnace side wall (24), a melting chamber (8) and an ingot chamber (11) are formed, and the melting chamber (8) and ingot chamber (1
2. An apparatus for continuously manufacturing ingots by electron beam melting according to claim 1, characterized in that vacuum evacuation devices (22) and (21) are connected to and provided in each of step 1).
JP22446590A 1990-08-28 1990-08-28 Device for continuously producing cast ingot by electron beam melting Pending JPH04107227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22446590A JPH04107227A (en) 1990-08-28 1990-08-28 Device for continuously producing cast ingot by electron beam melting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22446590A JPH04107227A (en) 1990-08-28 1990-08-28 Device for continuously producing cast ingot by electron beam melting

Publications (1)

Publication Number Publication Date
JPH04107227A true JPH04107227A (en) 1992-04-08

Family

ID=16814216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22446590A Pending JPH04107227A (en) 1990-08-28 1990-08-28 Device for continuously producing cast ingot by electron beam melting

Country Status (1)

Country Link
JP (1) JPH04107227A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008049358A (en) * 2006-08-23 2008-03-06 Shinko Electric Co Ltd Induction smelting apparatus
CN105135893A (en) * 2015-10-09 2015-12-09 核工业理化工程研究院 Electron-beam melting furnace feeding mechanism
CN111118302A (en) * 2019-12-31 2020-05-08 浙江正达模具有限公司 Crystallizer for metal electroslag remelting, electroslag remelting device and electroslag remelting method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008049358A (en) * 2006-08-23 2008-03-06 Shinko Electric Co Ltd Induction smelting apparatus
CN105135893A (en) * 2015-10-09 2015-12-09 核工业理化工程研究院 Electron-beam melting furnace feeding mechanism
CN105135893B (en) * 2015-10-09 2017-06-06 核工业理化工程研究院 Electron beam furnace feed mechanism
CN111118302A (en) * 2019-12-31 2020-05-08 浙江正达模具有限公司 Crystallizer for metal electroslag remelting, electroslag remelting device and electroslag remelting method

Similar Documents

Publication Publication Date Title
US8141617B2 (en) Method and apparatus for sealing an ingot at initial startup
US8413710B2 (en) Continuous casting sealing method
JPS6161899B2 (en)
EP1531020B1 (en) Method for casting a directionally solidified article
US7484549B2 (en) Continuous casting of reactionary metals using a glass covering
JPH04107227A (en) Device for continuously producing cast ingot by electron beam melting
CN106270434A (en) A kind of novel amorphous master alloy ingot continuous casting system and using method thereof
JPS63165047A (en) Continuous melting and casting method by electron beam
JPH1072604A (en) Apparatus for producing metallic powder
JPH0531568A (en) Plasma melting/casting method
JP3242520B2 (en) Polycrystalline silicon production method and crucible for polycrystalline silicon production
US3286310A (en) Continuous casting mold venting apparatus
JPH0399752A (en) Mold for continuous casting high melting point and active metal
JPH0741880A (en) Cooling method and device for sponge titanium reducing furnace
JP3105989B2 (en) Casting method
GB1406026A (en) Prevention of shrinkage cavities and voids in metal ingots
JPH08197200A (en) Air insulating chamber of twin drum type continuous casting machine and method for maintaining and managing drum
JP2021062387A (en) Apparatus for melt casting
JP2000053411A (en) Apparatus for production of polycrystalline silicon lump
KR20220147306A (en) Ingot casting equipment designed to prevent mold erosion
JPH07116819A (en) Method for pretreating metal for casting and device therefor
CN115301909A (en) Suspension smelting equipment with pull-down dummy ingot function and pull-down dummy ingot method
JPS62207831A (en) Electron beam melting method
SU1215862A1 (en) Method of cooling foundry moulds
JPH0263646A (en) Vacuum casting apparatus