JPH041059B2 - - Google Patents

Info

Publication number
JPH041059B2
JPH041059B2 JP58088991A JP8899183A JPH041059B2 JP H041059 B2 JPH041059 B2 JP H041059B2 JP 58088991 A JP58088991 A JP 58088991A JP 8899183 A JP8899183 A JP 8899183A JP H041059 B2 JPH041059 B2 JP H041059B2
Authority
JP
Japan
Prior art keywords
annealing
secondary recrystallization
temperature gradient
grains
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58088991A
Other languages
Japanese (ja)
Other versions
JPS59215419A (en
Inventor
Yozo Suga
Tadao Nozawa
Tadashi Nakayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP58088991A priority Critical patent/JPS59215419A/en
Publication of JPS59215419A publication Critical patent/JPS59215419A/en
Publication of JPH041059B2 publication Critical patent/JPH041059B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は磁束密度の高い特にB8が1.96T以上
の一方向性珪素鋼板を製造すための2次再結晶焼
鈍法に関するものである。 一方向性珪素鋼板は変圧器の鉄心材料として使
われ、低励磁における高磁束密度と鉄損の低いこ
とが重要である。一方向性珪素鋼板の開発の歴史
は鉄損改善の歴史であり、鉄損の改善は主として
B8(磁化力800AT/mにおける磁束密度)の改善
によつてなされてきた。一方形性珪素鋼板の起源
はN.P.Gossの2段冷延法にあり、この製造法に
多くの改善がかさねられB8が高い鉄損の低い一
方向性珪素鋼板が生産されてきた。特、特公昭40
−15654号公報および特公昭51−13469号公報に記
載された方法の提案により、現在では高B8の一
方向性珪素鋼板が開発され、B8が高く、鉄損の
低いすぐれた一方向性珪素鋼板が現在生産されて
いる。 一方、一般的に工業製品では、B8が高くなる
とともに結晶粒が大きくなる傾向があり、B8
ある程度以上良くしても180°磁区巾が大きくなる
ために渦電流損が増大し、冶金的にはこれ以上の
鉄損の減少の期待がうすくなつてきているのが現
状である。この難点を改善するにはB8の高い一
方向性珪素鋼板の180°磁区巾を細分化する必要が
あり、従来より種々試みられ、細分化の効果も確
認されている。 本発明者らはB8のきわめて高い一方向性珪素
鋼板を製造するための研究を行い、特開昭57−
2839号公報で2次再結晶を温度勾配下で行う方法
について提案した。 第1図はAlNを析出相として含む一次再結晶
板を温度勾配下で2次再結晶させたときの、結晶
粒と結晶方位との関係を示したものである。即ち
同図aは各結晶粒の状態、bは各結晶粒の(100)
極点図である。図から理想的{110}〔001〕方位
(同図bのX点)にもつとも近いもの(結晶粒)
のみが優先的に成長するのがわかる。これが温度
勾配2次再結晶の基本現象でほとんど完全な
Goss方位を有する一方向性珪素鋼板を容易につ
くることができる。 通常の2次再結晶焼鈍においては、まず2次核
の核化を経てから2次再結晶粒に成長するが、こ
の核発生と粒成長に明確な区別があるわけではな
く最終仕上焼鈍過程で同時に行われると考えられ
る。しかし温度勾配焼鈍においてはまず尖鋭な
Goss核を発生させ、それのみを粒成長させる。
即ち、核発生と粒成長を分離した条件下で行うと
ころに特徴があると考えている。 温度勾配を大きくとれる場合(例えば単板を温
度勾配焼鈍する場合)は粒成長フロントに島粒を
生じさせることなく尖鋭なGoss粒を成長させる
ことができる。これは温度勾配によるいわゆるサ
ーマルインヒビシヨン(thermal inhibiton)に
よつて1次再結晶粒の成長をおさえGoss粒の粒
成長を優位にするためと説明できる。しかし工業
的には最終仕上焼鈍は5〜20トンコイルで行われ
るために鋼板全体を高温度勾配下で2次再結晶さ
せることはかなり困難である。従つて工業的には
サーマルインヒビシヨン効果に加えて、析出物に
よる抑制効果が重要になると推定される。 本発明は上述のような実験室で確認された温度
勾配焼鈍による高B8効果を、工業規模のコイル
焼鈍において、安定して発揮させるための方法を
提供することを目的としたものである。 即ち、本発明はC:0.010〜0.10%、Si:2.5〜
4.0%、酸可溶性Al:0.010〜0.065%、残部Feお
よび不可避的不純物を含む珪素鋼素材を熱間圧
延、冷間圧延、脱炭焼鈍して得られた鋼板に、1
次再結晶領域と2次再結晶領域の境界領域に温度
勾配を与えながら2次再結晶を発現進行せしめる
最終焼鈍を施すことからなる一方向性珪素鋼板の
製造方法において、前記最終焼鈍工程における雰
囲気中の窒素含有量を高くして前記鋼板の2次再
結晶開始時の窒素含有量を130〜200ppmとするこ
とを特徴とする磁束密度の高い一方向性珪素鋼板
の製造方法を要旨とするものである。 以下、本発明を詳細に説明する。 まず、本発明者らは第2図に模式的に示したよ
うにコイル1の上面から加熱2する方法によつて
温度勾配下2次再結晶焼鈍3を行つた。第3図は
使用した炉とコイルの断面の様子を示したもので
ある。炉7は加熱ヒーターとして、天井ヒーター
4および側面ヒーター5を有しており、それらは
独立に入力を制御できる。コイル1は外周部およ
び内周部を断熱材6によつて断熱され、コイルは
可能な限り上端面のみから熱を受けるように工夫
した。これによつてコイルの上端温度を下端温度
よりも高い状態に維持しながら温度勾配をコイル
の巾方向につけた。 上記の方法によつて製造された一方向性珪素鋼
板のB8はほとんど同じ熱処理条件であるにもか
かわらず常にB8で本発明者らが目標としている
1.96T以上のものが得られるとは限らず、焼鈍の
状態によつては1.96T以下の場合もあつた。 第4図は5トンのコイルを第3図による熱処理
条件で温度勾配下に焼鈍した場合の結晶粒組織の
1部とそれに対応するB8の値を示したものであ
る。同図aの場合、結晶粒はコイル上端からほと
んど直線的に粒成長し、B8値(表面被膜のつい
た状態)は非常に高く試料全体でほぼ同じであ
る。一方、同図bの場合はaと異なり単一粒が試
料全体をおおうことがなく、ところどころに別な
粒が発生すること、また大きな粒の中にとりのこ
された島粒の存在が特徴的である。単一粒が直線
的に成長している領域のB8はきわめて高いが、
他の粒の混つた領域B8はやや劣ることが判明し
た。 第5図aは第4図bを拡大して示したものでコ
イル上端から生長してきた大きな粒(A,B,
C,G,F等)とこの粒の成長フロントの前に出
現した粒(D,E等)および粒中にとり残されて
いる粒(,,等)が観察される。これらの
小さな結晶粒は第5図bに示す極点図及び第1表
方位の表で示すように、大きな粒3,9にくらべ
て方位がかなりわるく、B8を劣化させる原因と
なる。即ち、温度勾配焼鈍によつて最高のB8
得るには、はじめに成長しはじめた方位のよい粒
の成長フロントの前に他の方位の粒を形成させな
いことによつて達成される。
This invention relates to a secondary recrystallization annealing method for producing grain-oriented silicon steel sheets with high magnetic flux density, particularly B8 of 1.96T or higher. Unidirectional silicon steel sheets are used as core materials for transformers, and important features include high magnetic flux density and low iron loss at low excitations. The history of the development of unidirectional silicon steel sheets is a history of iron loss improvement, and iron loss improvement is mainly due to
This has been achieved by improving B 8 (magnetic flux density at a magnetizing force of 800 AT/m). The origin of unidirectional silicon steel sheets lies in the NPGoss two-stage cold rolling process, and many improvements have been made to this manufacturing method to produce unidirectional silicon steel sheets with high B8 and low iron loss. Special, special public service 1977
With the proposal of the method described in -15654 publication and Japanese Patent Publication No. 51-13469, a high B8 unidirectional silicon steel sheet has now been developed, which has excellent unidirectionality with high B8 and low core loss. Silicon steel sheets are currently being produced. On the other hand, in general, industrial products tend to have larger crystal grains as B8 increases, and even if B8 is improved beyond a certain level, the 180° magnetic domain width increases, resulting in increased eddy current loss and metallurgical problems. The current situation is that expectations for further reductions in iron loss are fading. In order to improve this difficulty, it is necessary to subdivide the 180° magnetic domain width of the unidirectional silicon steel plate with a high B8 , and various attempts have been made in the past, and the effects of subdivision have been confirmed. The present inventors conducted research to manufacture a unidirectional silicon steel sheet with an extremely high B8 , and
In Publication No. 2839, we proposed a method for performing secondary recrystallization under a temperature gradient. FIG. 1 shows the relationship between crystal grains and crystal orientation when a primary recrystallization plate containing AlN as a precipitated phase is subjected to secondary recrystallization under a temperature gradient. In other words, a in the figure shows the state of each crystal grain, and b shows the (100) state of each crystal grain.
It is a pole figure. From the figure, the one (crystal grain) that is closest to the ideal {110}[001] orientation (point X in figure b)
It can be seen that only 100% of the population grows preferentially. This is the basic phenomenon of temperature gradient secondary recrystallization, which is almost completely
Unidirectional silicon steel sheets with Goss orientation can be easily produced. In normal secondary recrystallization annealing, secondary nuclei first undergo nucleation and then grow into secondary recrystallized grains, but there is no clear distinction between nucleation and grain growth, and the final annealing process It is thought that they will be carried out at the same time. However, in temperature gradient annealing, sharp
Generates Goss nuclei and grows only them.
In other words, we believe that the feature is that nucleation and grain growth are performed under separate conditions. When a large temperature gradient can be obtained (for example, when temperature gradient annealing is performed on a veneer), sharp Goss grains can be grown without producing island grains at the grain growth front. This can be explained by the so-called thermal inhibition caused by the temperature gradient suppressing the growth of primary recrystallized grains and favoring the growth of Goss grains. However, industrially, final annealing is carried out using 5 to 20 ton coils, so it is quite difficult to secondary recrystallize the entire steel plate under a high temperature gradient. Therefore, from an industrial perspective, in addition to the thermal inhibition effect, it is assumed that the suppressing effect due to the precipitates is important. The present invention aims to provide a method for stably exhibiting the high B8 effect of temperature gradient annealing, which was confirmed in the laboratory as described above, in industrial-scale coil annealing. That is, in the present invention, C: 0.010~0.10%, Si: 2.5~
A steel plate obtained by hot rolling, cold rolling, and decarburization annealing a silicon steel material containing 4.0%, acid-soluble Al: 0.010 to 0.065%, balance Fe and unavoidable impurities.
In a method for producing a grain-oriented silicon steel sheet, which comprises performing final annealing to develop and advance secondary recrystallization while applying a temperature gradient to a boundary region between a secondary recrystallization region and a secondary recrystallization region, the atmosphere in the final annealing step A method for producing a unidirectional silicon steel sheet with a high magnetic flux density, characterized by increasing the nitrogen content in the steel sheet so that the nitrogen content at the start of secondary recrystallization of the steel sheet is 130 to 200 ppm. It is. The present invention will be explained in detail below. First, the present inventors performed secondary recrystallization annealing 3 under a temperature gradient by heating 2 from the upper surface of the coil 1 as schematically shown in FIG. Figure 3 shows a cross-sectional view of the furnace and coil used. The furnace 7 has a ceiling heater 4 and a side heater 5 as heaters, and the input of these heaters can be controlled independently. The outer and inner circumferential parts of the coil 1 are insulated by a heat insulating material 6, and the coil is designed to receive heat only from the upper end surface as much as possible. As a result, a temperature gradient was created in the width direction of the coil while maintaining the upper end temperature of the coil higher than the lower end temperature. B 8 of the unidirectional silicon steel sheet manufactured by the above method is always B 8 , which is the aim of the inventors even though the heat treatment conditions are almost the same.
It was not always possible to obtain a value of 1.96T or higher, and depending on the annealing conditions, there were cases where the value was 1.96T or lower. FIG. 4 shows a portion of the grain structure and the corresponding B 8 value when a 5-ton coil is annealed under the temperature gradient under the heat treatment conditions shown in FIG. 3. In the case of Figure a, the crystal grains grow almost linearly from the top of the coil, and the B8 value (with a surface coating) is very high and almost the same throughout the sample. On the other hand, in case b of the same figure, unlike in case a, a single grain does not cover the entire sample, and different grains occur here and there, and the presence of island grains left behind among large grains is characteristic. be. B8 in the region where single grains grow linearly is extremely high;
It was found that the area B8 where other grains were mixed was slightly inferior. Figure 5a is an enlarged view of Figure 4b, showing large grains (A, B,
C, G, F, etc.), grains that appeared before the growth front of these grains (D, E, etc.), and grains left behind in the grains (,, etc.) are observed. These small grains have a much worse orientation than the larger grains 3 and 9, as shown in the pole figure and the first orientation table shown in FIG . That is, obtaining the highest B 8 by temperature gradient annealing is achieved by not allowing grains with other orientations to form before the growth front of grains with good orientation that begin to grow first.

【表】 本発明者らはさらに研究を進め、ストリツプコ
イルの形態でなされる工業的生産によつて得られ
る製品の磁束密度(B8値)を安定化させるため
の技術的手段について検討を加えた結果、仕上焼
鈍工程における2次再結晶開始時に鋼中に含まれ
るN量を多くすると、高い磁束密度(B8値)を
有する製品を安定して得ることができることを見
出した。 即ち、たとえば脱炭焼鈍を兼ねる1次再結晶焼
鈍後にストリツプに塗布されるMgOを主成分と
する焼鈍分離剤中のB含有量を低くしかつ、仕上
焼鈍工程における2次再結晶発現以前の焼鈍雰囲
気中のN2分圧を高くする(含有量を多くする)
ことによつ、2次再結晶開始時に鋼中にNが多量
に吸収され、高い磁束密度(B8値)を有する製
品を安定して得ることができるとの結論に至つ
た。 次に上記結論に至つた経過にいついて説明す
る。 先ず、本発明者らは温度勾配下2時再結晶焼鈍
における雰囲気および焼鈍分離剤のB8におよぼ
す影響を検討した。試料寸法は21cm(R.D.)×84
cmであり、このような鋼板を約20枚積層し、6個
の加熱ゾーンをもつた温度勾配炉に装入し、約5
℃/cmの温度勾配下で圧延方向と直角の方向に粒
成長させた。 第6図は焼鈍雰囲気とB8の関係を示したもの
で、これにより、B8の焼鈍雰囲気に強く依存し、
N2%が大きくなるほどB8が高くなることがわか
る。第7図は焼鈍分離剤MgO中のホウ素(B)含有
量とB8との関係を示したものである。B含有量
の少ないMgOを用いた方がB8が高くなることを
示している。 次に本発明者らは約5トンのコイルを第4図で
示したような設備において、雰囲気とMgOの種
類をかえて温度勾配焼鈍した。その結果を第8図
に示す。同図では、板温が約950℃における温度
勾配が約5℃/cm以上の領域のB8の平均値を示
す。MgO中のBの含有量が少なくまたN2100%
の場合にB8が高くなること、また、N225%+
H275%雰囲気でもBが100PPMの場合はB8が高
くなることを示している。 第9図は2次再結晶開始時の鋼板中のN量と
B8の関係を示したものである。N量の多いほど
B8が高くなる傾向がある。温度勾配2次再結晶
に必要なN量は、使用雰囲気のN2%、MgOのB
量によつて制御することが可能であることを示し
ており温度勾配焼鈍によるB8向上効果を十分に
発揮させるために必要なN量については、2次再
結晶焼鈍中に、鋼板に200PPM以上安定して吸収
させることはむずかしく、また180〜200PPMで
B8はほとんど飽和に達すること、たとえ200PPM
以上含有できたとしつも2次再結晶後の純化に不
利になることも予想されたので、上限を200PPM
とした。また、本発明の目的としているB8
1.96Tを安定して実現するには約130PPM程度必
要でありこれを下限とした。 鋼板中のN量の増加によつて温度勾配2次再結
晶焼鈍によるB8向上効果が顕著になる理由につ
いては、現時点で必ずしも明瞭でないが、上述し
た実験例から次のことが推察される。即ち、2次
再結晶焼鈍中のN吸収が容易になるため多くの
AlNが形成され、インヒビター効果が強くなり
2次再結晶開始温度が上昇する。これは2次再結
晶成長フロントでの新しい2次再結晶粒の発生が
抑えられることを意味する。このようにしてすで
に発生している尖鋭なGoss方位を有する2次再
結晶粒は低温域へむかつて成長し、きわめて高い
B8を有する結晶粒となるのである。 (実施例) 実施例 1 重量で、C:0.058%、Si:2.95%、Mn:0.083
%、S:0.025%、Al:0.025%、N:0.008%、残
部Feおよび不可避的不純物からなる連続鋳造に
よつて得られたスラブに、熱間圧延、焼鈍、冷間
圧延、脱炭焼鈍を兼ねる1次再結晶焼鈍を施した
後、B(硼素)を約100ppm含有するMgOを主成
分とする焼鈍分離剤を塗布して5トンのストリツ
プコイルとした。 このストリツプコイルから幅21cm(RD(圧延
方向))×80cmの試料を10枚切り出した。そのうち
5枚は、表面の焼鈍分離剤を削ぎ落とし、水洗、
乾燥した後、B含有量が約1300ppmであるMgO
を主成分とする焼鈍分離剤を塗布し、乾燥した。 これら焼鈍分離剤中のB含有量が異なる10枚の
試料を結束し、当て板をあてがい、これら試料の
長さ方向に等間隔に6個の熱電対を張り付け、炉
長:1mで各々独立に温度制御ができる6ゾーン
の加熱帯を温度勾配焼鈍炉において、H2:75vol
%+N2:25vol%の雰囲気中、約5℃/cmの温度
勾配下に仕上(2次再結晶)焼鈍した。試料の先
端部約20cmが2次再結晶完了した時点で焼鈍を中
止し、試料を炉外に引き出した。 試料の長手方向6箇所から化学分析試料を切り
出し、totalN量を分析した。Bを100ppm含有す
る焼鈍分離剤を塗布した試料の1次再結晶と2次
再結晶の境界域は約1050℃であり、この境界域の
1次再結晶側のtotalN量は約190ppmであつた。
一方、Bを1300ppm含有する焼鈍分離剤を塗布し
た試料の1次再結晶と2次再結晶の境界域は約
980℃であり、この境界域の1次再結晶側の
totalN量は約110ppmであつた。 焼鈍分離剤中のB量と2次再結晶発現前の鋼中
N量の関係は、次のように考察される。即ち、焼
鈍分離剤中のB量が多いほど、低温で鋼板(スト
リツプ)表面にタイトな酸化物皮膜を形成し易く
(実験事実)、従つて、Nの鋼中への拡散が阻止さ
れ易くなるものと推定される。 上記ストリツプコイルを、H2:75%+N2:25
%の雰囲気中で、温度勾配焼鈍(仕上焼鈍)し
た。昇温速度は、室温から650℃までは50℃/hr、
650〜1200℃間は20℃/hrであつた。温度勾配を
生じさせるために、ストリツプコイの外周面に断
熱材を巻き、ストリツプコイル上面から加熱し
た。 温度勾配が5℃/cm以上の領域の製品の磁束密
度(B8値)の平均値は1.975Teslaであつた。一
方、同一の成分組成のストリツプコイルであつ
て、Bを1300ppm含有する焼鈍分離剤を塗布し
て、上記におけると同様の条件で温度勾配(仕上
焼鈍)して得られた温度勾配が5℃/cm以上の領
域の製品の磁束密度(B8値)の平均値は
1.945Teslaであつた。 実施例 2 重量で、C:0.062%、Si:2.98%、Mn:0.075
%、S:0.028%、Al:0.027%、N:0.0082%、
残部Feおよび不可避的不純物からなる連続鋳造
によつて得られたスラブに、実施例1における同
様の処理を施して得られた2個の5トンストリツ
プコイルの一方には、B含有量が約390ppmであ
る焼鈍分離剤を塗布し、他方の5トンストリツプ
コイルには、B含有量が約1300ppmである焼鈍分
離剤を塗布した。 各々のストリツプコイルから、実施例1におけ
ると同様の方法で分析用試料を切り出し、N2
100%の雰囲気中で、2次再結晶焼鈍を施し、板
(ストリツプ)温度とtotalN量の関係を調べた。
1次再結晶と2次再結晶の境界域における1次再
結晶側のtotalN量は、B含有量が約390ppmであ
る焼鈍分離剤を塗布したストリツプコイルの場
合、約170ppmであり、B含有量が約1300ppmで
ある焼鈍分離剤を塗布したストリツプコイルの場
合、約120ppmであつた。 これらのストリツプコイルを、N2:100%雰囲
気中で、実施例1におけると同様の方法で温度勾
配焼鈍した。温度勾配が5℃/cm以上の領域の製
品の磁束密度(B8値)の平均値は、前者が
1.983Tesla、後者で1.967Teslaであつた。 実施例 3 重量で、C:0.062%、Si:2.90%、Mn:0.075
%、S:0.026%、Al:0.026%、N:0.008%、残
部Feおよび不可避的不純物からなる連続鋳造に
よつて得られたスラブに、実施例1におけると同
様の処理を施し後、B含有量が約390ppmである
焼鈍分離剤を塗布し、巻き取つて5トンのストリ
ツプコイルとした。 このストリツプコイルに、N2:100%の雰囲気
中で、温度勾配下に仕上(2次再結晶)焼鈍を施
した。昇温速度は、室温から650℃までは50℃/
hr、650〜1200℃の間では15℃/hrであつた。 ストリツプコイル全体を所定の温度勾配下に焼
鈍するために、仕上焼鈍中にストリツプコイルを
上昇させるようにした。即ち、ストリツプコイル
の上端面が2次再結晶温度に到達するまで、スト
リツプコイルの上端面を炉床と同一高さとなるま
で沈めておき、ストリツプコイルの上端面が2次
再結晶し始めた時、2次再結晶粒の成長速度に対
応する速度でストリツプコイルを上昇させた。こ
の間、温度勾配をつける目的で、仕上焼鈍炉のベ
ースプレート中に冷却ガスを流し、ストリツプコ
イル下端面から抜熱を行つた。 この仕上焼鈍での板温(ストリツプ温度)が
1050℃における温度勾配が約3.5℃/cm以上の領
域の製品の磁束密度(B8値)の平均値は
1.985Teslaであつた。 第10図a,b,cに上記実施例による2次再
結晶粒のマクロ組織を示す。aはコイル巻厚外
周、bは同じく中央、cは同じく内周のマクロ組
織である。コイル巻厚の外周、中央、内周のいず
れをみても、コイル上端(図において上方)に発
生した粒は圧延方向と直角の方向に直線的に成長
しその間島粒がほとんど生じていない。このよう
な結晶粒では、2次再結晶焼鈍時のコイルセツト
および平坦化焼鈍によつて生ずる微少方位変動
([001]軸の圧延面に対する傾き)以外はほとん
ど理想的Goss方位に近いものが得られる。 (発明の効果) 本発明によれば、温度勾配焼鈍法を用いて工業
的規模で方向性電磁鋼板を製造するに際し、極め
て磁束密度(B8値)の高い製品を安定して得る
ことができ、産業上大きな効果を奏する。
[Table] The present inventors further conducted research and considered technical means for stabilizing the magnetic flux density ( B8 value) of products obtained through industrial production in the form of strip coils. As a result, it was found that by increasing the amount of N contained in the steel at the start of secondary recrystallization in the final annealing process, it was possible to stably obtain a product with a high magnetic flux density ( B8 value). That is, for example, by reducing the B content in the annealing separator mainly composed of MgO applied to the strip after the primary recrystallization annealing that also serves as decarburization annealing, Increase the partial pressure of N2 in the atmosphere (increase the content)
In particular, it was concluded that a large amount of N was absorbed into the steel at the start of secondary recrystallization, making it possible to stably obtain a product with a high magnetic flux density (B 8 value). Next, the process that led to the above conclusion will be explained. First, the present inventors investigated the influence of the atmosphere and annealing separator on B 8 during two-hour recrystallization annealing under a temperature gradient. Sample size is 21cm (RD) x 84
cm, and about 20 such steel plates were stacked and charged into a temperature gradient furnace with 6 heating zones, and about 5 cm
Grain growth was performed in a direction perpendicular to the rolling direction under a temperature gradient of °C/cm. Figure 6 shows the relationship between annealing atmosphere and B8 , which shows that B8 strongly depends on the annealing atmosphere.
It can be seen that the larger the N2 %, the higher the B8 . FIG. 7 shows the relationship between the boron (B) content in the annealing separator MgO and B8 . This shows that B 8 is higher when MgO with a lower B content is used. Next, the present inventors subjected about 5 tons of coils to temperature gradient annealing in the equipment shown in FIG. 4 while changing the atmosphere and the type of MgO. The results are shown in FIG. The figure shows the average value of B 8 in a region where the temperature gradient is about 5° C./cm or more at a plate temperature of about 950° C. Low B content in MgO and 100% N2
B 8 becomes higher when , and N 2 25% +
This shows that even in a 75% H 2 atmosphere, B 8 becomes high when B is 100 PPM. Figure 9 shows the amount of N in the steel sheet at the start of secondary recrystallization.
This shows the relationship of B8 . The higher the amount of N
B8 tends to be high. The amount of N required for temperature gradient secondary recrystallization is as follows: N2 % of the working atmosphere, B of MgO
The amount of N required to fully exhibit the B8 improvement effect of temperature gradient annealing is 200 PPM or more in the steel sheet during secondary recrystallization annealing. It is difficult to absorb stably, and at 180 to 200 PPM.
B 8 almost reaches saturation, even 200PPM
Even if it could contain more than
And so. Moreover, B 8 ≧ which is the object of the present invention
Approximately 130 PPM is required to stably achieve 1.96T, and this was set as the lower limit. The reason why the B 8 improvement effect by temperature gradient secondary recrystallization annealing becomes more pronounced with an increase in the amount of N in the steel sheet is not necessarily clear at present, but the following can be inferred from the experimental examples described above. In other words, since N absorption during secondary recrystallization annealing becomes easier, many
AlN is formed, the inhibitor effect becomes stronger, and the temperature at which secondary recrystallization starts increases. This means that the generation of new secondary recrystallized grains at the secondary recrystallized growth front is suppressed. In this way, the secondary recrystallized grains with the sharp Goss orientation that have already been generated grow towards the low temperature region and become extremely high.
This results in crystal grains with B8 . (Example) Example 1 By weight, C: 0.058%, Si: 2.95%, Mn: 0.083
%, S: 0.025%, Al: 0.025%, N: 0.008%, balance Fe and unavoidable impurities.The slab obtained by continuous casting was subjected to hot rolling, annealing, cold rolling, and decarburization annealing. After performing primary recrystallization annealing, which also serves as a primary recrystallization annealing, a 5-ton strip coil was made by applying an annealing separator mainly composed of MgO containing about 100 ppm of B (boron). Ten samples with a width of 21 cm (RD (rolling direction)) x 80 cm were cut from this strip coil. Five of them were processed by scraping off the annealing separator on the surface, washing with water,
After drying, MgO with B content of about 1300ppm
An annealing separator mainly composed of was applied and dried. These 10 samples with different B contents in the annealing separator were bundled, a patch plate was applied, and 6 thermocouples were pasted at equal intervals along the length of the samples, each with a furnace length of 1 m. H 2 : 75vol in a temperature gradient annealing furnace with six temperature-controlled heating zones.
Finish annealing (secondary recrystallization) was performed in an atmosphere of %+N 2 :25 vol % under a temperature gradient of about 5° C./cm. When the secondary recrystallization of about 20 cm of the tip of the sample was completed, annealing was stopped and the sample was pulled out of the furnace. Chemical analysis samples were cut out from six locations in the longitudinal direction of the sample, and the total N content was analyzed. The boundary area between primary recrystallization and secondary recrystallization of the sample coated with an annealing separator containing 100 ppm B was approximately 1050°C, and the total N content on the primary recrystallization side of this boundary area was approximately 190 ppm. .
On the other hand, the boundary area between primary recrystallization and secondary recrystallization of the sample coated with an annealing separator containing 1300 ppm of B is approximately
980℃, and the temperature on the primary recrystallization side of this boundary area is
The total N amount was about 110 ppm. The relationship between the amount of B in the annealing separator and the amount of N in the steel before secondary recrystallization is considered as follows. In other words, the greater the amount of B in the annealing separator, the easier it is to form a tight oxide film on the surface of the steel plate (strip) at low temperatures (experimental fact), and therefore the easier it is to prevent N from diffusing into the steel. It is estimated that The above strip coil, H 2 : 75% + N 2 : 25
% atmosphere, temperature gradient annealing (finish annealing) was performed. The heating rate is 50℃/hr from room temperature to 650℃,
The rate was 20°C/hr between 650 and 1200°C. To create a temperature gradient, a heat insulating material was wrapped around the outer circumferential surface of the strip coil, and the strip coil was heated from the top. The average value of the magnetic flux density ( B8 value) of the products in the region where the temperature gradient was 5° C./cm or more was 1.975 Tesla. On the other hand, a strip coil with the same composition was coated with an annealing separator containing 1300 ppm of B, and the temperature gradient (finish annealing) obtained was 5°C/cm under the same conditions as above. The average value of magnetic flux density ( B8 value) for products in the above range is
It was 1.945 Tesla. Example 2 By weight, C: 0.062%, Si: 2.98%, Mn: 0.075
%, S: 0.028%, Al: 0.027%, N: 0.0082%,
One of the two 5-ton strip coils obtained by applying the same treatment as in Example 1 to a slab obtained by continuous casting consisting of the balance Fe and unavoidable impurities had a B content of about An annealing separator with a B content of about 1300 ppm was applied to the other 5 ton strip coil. A sample for analysis was cut from each strip coil in the same manner as in Example 1, and N 2 :
Secondary recrystallization annealing was performed in a 100% atmosphere, and the relationship between strip temperature and total N content was investigated.
The total N amount on the primary recrystallization side in the boundary area between primary recrystallization and secondary recrystallization is approximately 170 ppm in the case of a strip coil coated with an annealing separator with a B content of approximately 390 ppm. For strip coils coated with annealing separator, which was about 1300 ppm, it was about 120 ppm. These strip coils were temperature gradient annealed in the same manner as in Example 1 in a 100% N 2 atmosphere. The average value of magnetic flux density ( B8 value) for products in areas where the temperature gradient is 5℃/cm or more is
The latter was 1.983 Tesla, and the latter was 1.967 Tesla. Example 3 By weight, C: 0.062%, Si: 2.90%, Mn: 0.075
%, S: 0.026%, Al: 0.026%, N: 0.008%, balance Fe and unavoidable impurities. After performing the same treatment as in Example 1, a slab containing B Approximately 390 ppm of annealing separator was applied and wound into a 5 ton strip coil. This strip coil was subjected to finish annealing (secondary recrystallization) under a temperature gradient in an atmosphere of 100% N 2 . The temperature increase rate is 50℃/from room temperature to 650℃.
hr, was 15°C/hr between 650 and 1200°C. In order to anneal the entire strip coil under a predetermined temperature gradient, the strip coil was raised during final annealing. That is, until the upper end of the strip coil reaches the secondary recrystallization temperature, the upper end of the strip coil is submerged to the same height as the hearth, and when the upper end of the strip coil begins to undergo secondary recrystallization, the The strip coil was raised at a rate corresponding to the growth rate of the recrystallized grains. During this time, in order to create a temperature gradient, cooling gas was flowed into the base plate of the final annealing furnace to remove heat from the lower end surface of the strip coil. The plate temperature (strip temperature) in this final annealing is
The average value of the magnetic flux density ( B8 value) of products in the area where the temperature gradient is approximately 3.5℃/cm or more at 1050℃ is
It was 1.985 Tesla. Figures 10a, b, and c show macrostructures of secondary recrystallized grains according to the above embodiment. a is the outer periphery of the coil winding thickness, b is the same center, and c is the macro structure of the inner periphery. Regardless of whether you look at the outer periphery, center, or inner periphery of the coil winding thickness, the grains generated at the upper end of the coil (upper in the figure) grow linearly in the direction perpendicular to the rolling direction, and there are almost no island grains in between. With such grains, a Goss orientation close to the ideal one can be obtained, except for slight orientation fluctuations (the inclination of the [001] axis with respect to the rolled surface) caused by coil set and flattening annealing during secondary recrystallization annealing. . (Effects of the Invention) According to the present invention, when producing grain-oriented electrical steel sheets on an industrial scale using the temperature gradient annealing method, it is possible to stably obtain products with extremely high magnetic flux density ( B8 value). , which has great industrial effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はAlNを析出相として含む1次再結晶
板を温度勾配下で2次再結晶させたときの結晶粒
と結晶方位との関係を示したもので、aは各結晶
粒の状態を示す模式図、bは各結晶粒の(100)
極点図、第2図は温度勾配下2次再結晶焼鈍を実
施する場合のコイル上面からの加熱の態様を示す
図、第3図は温度勾配下2次再結晶焼鈍を実施す
る装置の一例およびコイル断面を示す図、第4図
a,bは第3図に示す加熱装置により温度勾配下
2次再結晶焼鈍を施して得られたコイルの結晶粒
のマクロ組織の一部とそれに対応するB8の値を
示す図、第5図aは第4図bのマクロ組織を拡大
して示した図、第5図bはその極点図、第6図は
焼鈍雰囲気とB8との関係を示す図、第7図は焼
鈍分離剤MgO中のホウ素含有量とB8との関係を
示す図、第8図は焼鈍雰囲気及び焼鈍分離剤
MgO中のホウ素含有量とB8との関係を示す図、
第9図は2次再結晶時N量とB8との関係を示す
図、第10図a,b,cは実施例3により得られ
たコイルの2次再結晶粒のマクロ組織を示す図で
ある。
Figure 1 shows the relationship between crystal grains and crystal orientation when a primary recrystallization plate containing AlN as a precipitated phase is subjected to secondary recrystallization under a temperature gradient, and a indicates the state of each crystal grain. Schematic diagram shown, b is (100) of each grain
Pole figure, Figure 2 is a diagram showing the mode of heating from the top surface of the coil when performing secondary recrystallization annealing under a temperature gradient, and Figure 3 is an example of an apparatus for performing secondary recrystallization annealing under a temperature gradient. Figures 4a and 4b, which show the cross section of the coil, show part of the macrostructure of the crystal grains of the coil obtained by secondary recrystallization annealing under a temperature gradient using the heating device shown in Figure 3, and the corresponding B Figure 5a is an enlarged view of the macrostructure of Figure 4b, Figure 5b is its pole figure, and Figure 6 is the relationship between the annealing atmosphere and B8 . Figure 7 shows the relationship between the boron content in the annealing separator MgO and B8 , and Figure 8 shows the annealing atmosphere and annealing separator.
A diagram showing the relationship between boron content in MgO and B8 ,
FIG. 9 is a diagram showing the relationship between the N content and B 8 during secondary recrystallization, and FIGS. 10 a, b, and c are diagrams showing the macrostructure of secondary recrystallized grains of the coil obtained in Example 3. It is.

Claims (1)

【特許請求の範囲】[Claims] 1 C:0.010〜0.10%、Si:2.5〜4.0%、酸可溶
性Al:0.010〜0.065%、残部Feおよび不可避的不
純物を含む珪素鋼素材を熱間圧延、冷間圧延、脱
炭焼鈍して得られた鋼板に、1次再結晶領域と2
次再結晶領域の境界領域に温度勾配を与えながら
2次再結晶を発現進行せしめる最終焼鈍を施すこ
とからなる一方向性珪素鋼板の製造方法におい
て、前記最終焼鈍工程における雰囲気中の窒素含
有量を高くして前記鋼板の2次再結晶開始時の窒
素含有量を130〜200ppmとすることを特徴とする
磁束密度の高い一方向性珪素鋼板の製造方法。
1 A silicon steel material containing C: 0.010 to 0.10%, Si: 2.5 to 4.0%, acid-soluble Al: 0.010 to 0.065%, the balance Fe and unavoidable impurities is hot rolled, cold rolled, and decarburized annealed. The primary recrystallization area and the secondary recrystallization area are
In a method for producing a grain-oriented silicon steel sheet, which comprises performing final annealing to develop and advance secondary recrystallization while applying a temperature gradient to the boundary region of the secondary recrystallization region, the nitrogen content in the atmosphere in the final annealing step is A method for producing a unidirectional silicon steel sheet with a high magnetic flux density, characterized in that the nitrogen content at the start of secondary recrystallization of the steel sheet is 130 to 200 ppm.
JP58088991A 1983-05-20 1983-05-20 Production of grain-oriented silicon steel sheet having high magnetic flux density Granted JPS59215419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58088991A JPS59215419A (en) 1983-05-20 1983-05-20 Production of grain-oriented silicon steel sheet having high magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58088991A JPS59215419A (en) 1983-05-20 1983-05-20 Production of grain-oriented silicon steel sheet having high magnetic flux density

Publications (2)

Publication Number Publication Date
JPS59215419A JPS59215419A (en) 1984-12-05
JPH041059B2 true JPH041059B2 (en) 1992-01-09

Family

ID=13958270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58088991A Granted JPS59215419A (en) 1983-05-20 1983-05-20 Production of grain-oriented silicon steel sheet having high magnetic flux density

Country Status (1)

Country Link
JP (1) JPS59215419A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156226A (en) * 1985-12-27 1987-07-11 Nippon Steel Corp Production of grain oriented electrical steel sheet having uniform glass film and excellent magnetic characteristic
CA2006292C (en) * 1988-12-22 1997-09-09 Yoshiyuki Ushigami Very thin electrical steel strip having low core loss and high magnetic flux density and a process for producing the same
DE69027553T3 (en) * 1989-03-30 1999-11-11 Nippon Steel Corp Process for producing grain-oriented electrical sheets with high magnetic flux density
JPH0823047B2 (en) * 1990-11-19 1996-03-06 新日本製鐵株式会社 Method for producing grain-oriented electrical steel sheet with excellent magnetic and coating properties

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572839A (en) * 1980-06-04 1982-01-08 Nippon Steel Corp Production of unidirectional silicon steel plate of high magnetic flux density
JPS57207114A (en) * 1981-06-16 1982-12-18 Nippon Steel Corp Manufacture of anisotropic electric steel plate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572839A (en) * 1980-06-04 1982-01-08 Nippon Steel Corp Production of unidirectional silicon steel plate of high magnetic flux density
JPS57207114A (en) * 1981-06-16 1982-12-18 Nippon Steel Corp Manufacture of anisotropic electric steel plate

Also Published As

Publication number Publication date
JPS59215419A (en) 1984-12-05

Similar Documents

Publication Publication Date Title
JP5273944B2 (en) Manufacturing method of mirror-oriented electrical steel sheet
EP2743358B1 (en) Method for producing oriented magnetic steel sheet
KR20180113556A (en) Method for manufacturing directional electromagnetic steel sheet
JPH0211728A (en) Ultrahigh speed annealing of unoriented electric iron plate
JPS6250529B2 (en)
JPS5850295B2 (en) Manufacturing method of unidirectional silicon steel sheet with high magnetic flux density
CN114867872A (en) Oriented electrical steel sheet and method for manufacturing the same
JPS6056403B2 (en) Method for manufacturing semi-processed non-oriented electrical steel sheet with extremely excellent magnetic properties
JPH04173923A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property as well as in film characteristic
JP2003171718A (en) Manufacturing method of magnetic steel sheet of excellent mean magnetic characteristic in rolled surface
JP4239458B2 (en) Method for producing grain-oriented electrical steel sheet
JPH041059B2 (en)
JP4241226B2 (en) Method for producing grain-oriented electrical steel sheet
JPH08100216A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
CN111417737B (en) Grain-oriented electromagnetic steel sheet with low iron loss and method for producing same
KR950002895B1 (en) Ultrahigh-silicon directional electrical steel sheet and production thereof
JP5600991B2 (en) Method for producing grain-oriented electrical steel sheet
JPS6253572B2 (en)
JPS6242968B2 (en)
JP4258156B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP7338511B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPS6256924B2 (en)
JPS61190017A (en) Production of grain oriented silicon steel sheet having low iron loss
JPS6256205B2 (en)
WO2022210504A1 (en) Method for manufacturing grain-oriented electromagnetic steel sheet