JPS59215419A - Production of grain-oriented silicon steel sheet having high magnetic flux density - Google Patents
Production of grain-oriented silicon steel sheet having high magnetic flux densityInfo
- Publication number
- JPS59215419A JPS59215419A JP58088991A JP8899183A JPS59215419A JP S59215419 A JPS59215419 A JP S59215419A JP 58088991 A JP58088991 A JP 58088991A JP 8899183 A JP8899183 A JP 8899183A JP S59215419 A JPS59215419 A JP S59215419A
- Authority
- JP
- Japan
- Prior art keywords
- annealing
- secondary recrystallization
- silicon steel
- steel sheet
- temperature gradient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Electromagnetism (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Treatment Of Metals (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は磁束密度の高い%VCB sが1.96 T
以上の一方向性珪素銅板を製造するだめの2次再結晶焼
鈍法に関するものである。[Detailed description of the invention] This invention has a high magnetic flux density of %VCB s of 1.96 T.
The present invention relates to a secondary recrystallization annealing method for producing the above-mentioned unidirectional silicon copper plate.
一方向性珪素鋼板は変圧器の鉄心材料として使われ、低
励磁における高磁束密度と鉄損の低いことが重要である
。一方向性珪素鋼板の開発の歴史は鉄損改善の歴史であ
シ、鉄損の改善は主としてB++ (磁化力800 A
T/mにおける磁束密度)の改善によってなされてきた
。一方向性珪素鋼板の起源はN、 P、 Gosaの2
段冷延法にあシ、この製造法に多くの改善がかさねらn
Bsが高く鉄損の低い一方向性珪素鋼板が生産さnてき
た。Q!jK、特公昭40−15654号公報および特
公昭51.−13469号公報に記載された方法の提案
にょ9、現在では高B8の一方向性珪素鋼板が開発さ几
、Bsが商ぐ、鉄損の低いすぐnた一方向性珪素鋼板が
現在生産さnている。Unidirectional silicon steel sheets are used as core materials for transformers, and important features include high magnetic flux density and low iron loss at low excitations. The history of the development of unidirectional silicon steel sheets is a history of iron loss improvement, and iron loss improvement is mainly achieved by B++ (magnetizing power 800 A
This has been achieved by improving the magnetic flux density (T/m). The origins of unidirectional silicon steel sheets are N, P, and Gosa.
Many improvements have been made to this manufacturing method due to the multi-stage cold rolling process.
Unidirectional silicon steel sheets with high Bs and low iron loss have been produced. Q! jK, Special Publication No. 40-15654 and Special Publication No. 51. According to the proposal of the method described in Publication No. 13469, a high B8 unidirectional silicon steel sheet has been developed, and a low core loss unidirectional silicon steel sheet sold by Bs is currently in production. There are n.
一方、一般的に工業製品では、Bsが篩くなるとともに
結晶粒が大きくなる傾向があシ、Bsをある程度以上良
くしても1000磁区巾が大きくなるために渦電流損が
増大し、冶金的にはこn以上の鉄損の減少の期待がうす
・くなってきているのが現状である。この難点を改@す
るにはB8の高い一方向性珪素鋼板の1000磁区巾を
細分化する必要が心知従来よシ種々試みらn、細分化の
効果も確認さnている。On the other hand, in general, in industrial products, as the Bs becomes sieved, the crystal grains tend to become larger, and even if the Bs is improved beyond a certain level, the 1000 magnetic domain width increases, resulting in increased eddy current loss and metallurgical The current situation is that expectations for a reduction in iron loss of more than this n are dwindling. In order to overcome this difficulty, it is necessary to subdivide the 1000 magnetic domain width of the B8 high unidirectional silicon steel plate. Various attempts have been made in the past, and the effect of subdivision has also been confirmed.
本発明者らはB8のきわめて高い一方向性珪素鋼板′f
、製造するための研究を行い、特開昭57−2839号
公報で2次再結晶を温度勾配下で行う方法について提案
した。The present inventors have developed a B8 extremely high unidirectional silicon steel plate'f.
conducted research on its production, and proposed a method of performing secondary recrystallization under a temperature gradient in Japanese Patent Application Laid-Open No. 57-2839.
第1図はAtNを析出相として含む一次再結晶板を温度
勾配下で2次再結晶させたときの、結晶粒と結晶方位と
の関係を示したものである。即ち同図(、)は各結晶粒
の状態、(b)は各結晶粒の(Zoo)極点図である。FIG. 1 shows the relationship between crystal grains and crystal orientation when a primary recrystallization plate containing AtN as a precipitated phase is subjected to secondary recrystallization under a temperature gradient. That is, the figure (,) shows the state of each crystal grain, and (b) shows the (Zoo) pole figure of each crystal grain.
図から理想的(110)(001)方位(同図(b)の
X点)にもっとも近いもの(結晶粒■)のみが優先的に
成長するのがわかる。これが温度勾配2次再結晶の基本
現象でほとんど完全なGoss方位を■する一方同性珪
素鋼板を容易につくることができる。It can be seen from the figure that only those (crystal grains ■) closest to the ideal (110) (001) orientation (point X in the figure (b)) grow preferentially. This is the basic phenomenon of temperature gradient secondary recrystallization, and it is possible to easily produce a homogeneous silicon steel sheet with almost perfect Goss orientation.
通常の2次再結晶焼鈍においては、まず2成核の核化を
経てから2次再結晶粒に成長するが、この核発生と粒成
長に明確な区別があるわけではなく最終仕上焼鈍過程で
同時に行わnると考えらnる。しかし温度勾配焼鈍にお
いてはまず尖鋭なGosa核全発生させ、七nのみを粒
成長させる。即ち、核発生と粒成長を分離した条件下で
行うところに特徴があると考えている。In normal secondary recrystallization annealing, secondary nuclei first undergo nucleation and then grow into secondary recrystallized grains, but there is no clear distinction between nucleation and grain growth, and the final annealing process It is considered that they are performed at the same time. However, in temperature gradient annealing, all sharp Gosa nuclei are first generated, and only 7n grains are allowed to grow. In other words, we believe that the feature is that nucleation and grain growth are performed under separate conditions.
温度勾配を大きくとnる場合(例えば単板を温度勾配焼
鈍する場合)は粒成長フロントに島粒を生じさぜること
なく尖鋭なGO8!1粒を成長させることができる。こ
nは温度勾配によるいわゆるサーマルインヒビシ、 y
(thermal Inhjbition )によっ
て1次再結晶粒の成長をおさえ001111粒の粒成長
を優位にするためと説明できる。しかし工業的には最終
仕上焼鈍は5〜20トンコイルで行わnるために鋼板全
体を高温度勾配下で2次再結晶させることはかなり困難
である。従って工業的にCまサーマルインヒビジョン効
果に加えて、析出物による抑制効果が重要になると推足
さnる。When the temperature gradient is increased (for example, when temperature gradient annealing is performed on a veneer), sharp GO8!1 grains can be grown without producing island grains at the grain growth front. This is the so-called thermal inhibition caused by temperature gradient, y
It can be explained that this is because the growth of primary recrystallized grains is suppressed by thermal inhjbition and the grain growth of 001111 grains is made dominant. However, industrially, final annealing is carried out using 5 to 20 ton coils, so it is quite difficult to secondary recrystallize the entire steel plate under a high temperature gradient. Therefore, in addition to the carbon thermal inhibition effect, it is believed that the suppression effect by the precipitates is important in industrial terms.
本発明は上述のような実験室で確認さ扛た温度勾配焼鈍
による高B8効果を、工業規模のコイル焼鈍において、
安定して発揮させるための方法を提供することを目的と
したものである。The present invention utilizes the high B8 effect of temperature gradient annealing, which was confirmed in the laboratory as described above, in industrial-scale coil annealing.
The purpose is to provide a method for stable performance.
即ち本発明はc:o、oio〜0.10%、Si:2.
5〜4.0%、酸可溶性At: 0.010〜0.06
5%、残部Feおよび不可避的不純物を含む珪素鋼素材
全熱間圧延、冷間圧延、脱炭焼鈍及び最終焼鈍するに当
り、該最終か1と鈍の1次再結晶領域と2次再結晶領域
の境界領域に温度勾配を与えながら2次再結晶焼鈍する
に際し、2次曲“結晶開始時に、前記鋼板中の窒素含有
量を130〜200 PPMとすることを特徴とする磁
束密度の商い一方向性珪素鋼板の製造方法を要旨とする
ものである。That is, in the present invention, c: o, oio ~ 0.10%, Si: 2.
5-4.0%, acid-soluble At: 0.010-0.06
5%, balance Fe and unavoidable impurities, during full hot rolling, cold rolling, decarburization annealing and final annealing, the final recrystallization region and the secondary recrystallization region are When carrying out secondary recrystallization annealing while applying a temperature gradient to the boundary region of the regions, a magnetic flux density quotient characterized in that the nitrogen content in the steel sheet is set to 130 to 200 PPM at the start of crystallization. The gist of this paper is a method for manufacturing grain-oriented silicon steel sheets.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
まず、本発明者らは第2図に模式的に示したようにコイ
ル1の上面から加熱2する方法によって温度勾配下2次
再結晶焼鈍37!−行った。第3図は使用した炉とコイ
ルの断面の様子を示したものである。炉7は加熱ヒータ
ーとして、天井ヒーター4および側面ヒーター5を有し
ており、それらは独立に大刀を制御できる。コイル1は
外周部および内周部を断熱材6によって断熱さn、コイ
ルは可能な限シ上端面のみから熱を受けるように工夫し
た。こfLKよりてコイルの上端温度全下端温度よシも
高い状態に維持しながら温度勾配全コイルの巾方向につ
けた・
上記の方法によって製造した一方向性珪素鋼板のBsN
はとんど同じ熱処理条件であるにもη・かわらず常[B
8で本発明者らが目標としている1、 96 T以下の
ものが得らnるとは限らず、焼鈍の状態によっては1.
96 T以下の場合もあった。First, the present inventors performed secondary recrystallization annealing 37 under a temperature gradient by heating the coil 1 from the upper surface as schematically shown in FIG. -I went. Figure 3 shows a cross-sectional view of the furnace and coil used. The furnace 7 has a ceiling heater 4 and a side heater 5 as heaters, and these can independently control the long sword. The outer and inner circumferential parts of the coil 1 are insulated by a heat insulating material 6, and the coil is devised so that it receives heat only from the upper end surface as much as possible. A temperature gradient was created in the width direction of all the coils while maintaining the upper end temperature of the coil and the lower end temperature higher than fLK.BsN of the unidirectional silicon steel sheet manufactured by the above method
Even under almost the same heat treatment conditions, η・[B
It is not always possible to obtain 1.96 T or less, which is the goal of the present inventors, at 1.8 and depending on the annealing condition.
In some cases, it was less than 96 T.
第4図は5トンのコイル全第3図による熱処理条件で温
度勾配下に焼鈍したU)合の結晶粒組織の1部とそれに
対応するB8の値を示したものである。同図(a)の場
合、結晶も/はコイル上端からhとんと直線的に粒成長
し、B 8値(表面被膜のついた状態)は非常Vこ尚〈
試料全体でtlは同じである。FIG. 4 shows a part of the grain structure of case U), which was annealed under the temperature gradient under the heat treatment conditions shown in FIG. 3 for a 5 ton coil, and the corresponding value of B8. In the case of Figure (a), the crystal grains grow linearly from the top of the coil, and the B8 value (with a surface coating) is extremely V.
tl is the same throughout the sample.
一方、同図(b)の場合は(、)と異なり単一粒が試料
全体をおおうことがなく、ところどころに別な粒が発生
すること、また大きな粒の中にとりのこさnた島粒の存
在が特徴的である。単一粒が直線的に成長している領域
のB8はきわめて高いが、他の粒の混った領域B8はや
や劣ることが判明した。On the other hand, in the case of (b) in the same figure, unlike (,), a single grain does not cover the entire sample, and other grains are generated here and there, and there are also island grains trapped among large grains. is characteristic. It was found that B8 in the region where single grains grow linearly is extremely high, but B8 in the region where other grains are mixed is slightly inferior.
第5図(a)は前も4図(b) k拡大して示したもの
でコイル上端から生長してきた大きな粒(A 、 B
、 C。Figure 5(a) is an enlarged view of the previous figure and Figure 4(b), showing large grains (A, B) growing from the upper end of the coil.
,C.
G、F等)とこの粒の成長フロントの前に出現した粒(
D、E等)および膣中にと9残さ扛ている粒(■、■、
0等)が観察さnる。こ几らの小さな結晶粒は第5図(
b)に示す極点図及び第1表方位の表で示すように、大
きな粒3,9にくらべて方位がかなりわるく、B8を劣
化させる原因となる。G, F, etc.) and the grain that appeared before the growth front of this grain (
D, E, etc.) and 9 particles remaining in the vagina (■, ■,
0, etc.) are observed. The small crystal grains of Koori et al. are shown in Figure 5 (
As shown in the pole figure and the first orientation table shown in b), the orientation is much worse than that of large grains 3 and 9, which causes deterioration of B8.
即ち、温度勾配焼鈍によって最高のB8を得るには、は
じめに成長しはじめた方位のよい粒の成長フロントの前
に他の方位の粒を形成させないことによって達成さnる
。That is, obtaining the highest B8 by temperature gradient annealing is achieved by not allowing grains with other orientations to form before the growth front of grains with good orientation that have started to grow.
第1表結晶粒A、B、C,D、E、F、Gの結晶方位
本発明者らは更に研究を進め、実コイルにおける高いB
8の安定化の方法について検討を加えた結果、2次¥+
結晶開始時に鋼中に含MさnるN量 −を多くすると
高B8効果が安定して得らnること −が確認さn
た。即ち、焼鈍分離剤の性質とくにMgO中のB含有量
【低めることまた焼鈍雰囲気中のN2含有量を高めるこ
と等によって、2次再結晶 −開始時に鋼中にN揃]
が多量に安定吸収さnlこnが高いB8か安定して得ら
nる原因になるとの結 −輪に至った・
を次に上記結論に至った経
過について説明する。 j先ず、本発明者らは温度
勾配下2次再結晶焼鈍における雰囲気および焼鈍分離剤
のB8におよは ′す影響を検討した。試料寸法は2
1儒(R,D、 ) X 84cmであり、このような
鋼板を約20枚積層し、6個の加熱ゾーンをもった温度
勾配炉に装入し、約5ン徳の温度勾配下で圧延方向と直
角の方向に粒成長させた。
9第6図は焼鈍雰囲気とB8の関係を示し
たもので、こnにより、B8は焼鈍雰囲気に強く依存し
・ 、・N2%が大きくなるほどB8が向くなること
がわかる。第7図は焼鈍分離剤MgO中のホウ素(B)
含付拙とB8との関係を示したものでおる。B含有量の
少ないMgOを用いた方がB8が茜くなることと示して
いる。Table 1: Crystal orientation of crystal grains A, B, C, D, E, F, and G. The present inventors further conducted research and found that
As a result of considering the stabilization method of 8, the secondary ¥+
It was confirmed that a high B8 effect could be stably obtained by increasing the amount of N contained in the steel at the start of crystallization.
Ta. That is, by reducing the properties of the annealing separator, especially the B content in MgO, and by increasing the N2 content in the annealing atmosphere, secondary recrystallization - N uniformity in the steel at the start]
It has been concluded that a large amount of B8 is stably absorbed in large amounts, which causes high B8 or stable absorption.
Next, I will explain the process that led to the above conclusion. First, the present inventors investigated the influence of the atmosphere and annealing separator on B8 in secondary recrystallization annealing under a temperature gradient. The sample size is 2
Approximately 20 such steel plates were laminated, placed in a temperature gradient furnace with 6 heating zones, and rolled under a temperature gradient of approximately 5 mm. The grains were grown in the direction perpendicular to the direction.
9 Figure 6 shows the relationship between the annealing atmosphere and B8, and it can be seen that B8 strongly depends on the annealing atmosphere.The larger the N2%, the more B8 becomes oriented. Figure 7 shows boron (B) in the annealing separator MgO.
This shows the relationship between the inclusion and B8. It is shown that B8 becomes madder when MgO with a lower B content is used.
次に本発明者らは約5トンのコイルを第4図で云したよ
うな設備において、雰囲気とMgOの種すηとかえて温
度勾配焼鈍した。その結果を第8図に示t0同図では、
板温が約950℃における温度勾j己が約5味以上の領
域のB8の平均値を示す。Next, the present inventors subjected about 5 tons of coil to temperature gradient annealing in the equipment shown in FIG. 4, with the atmosphere replaced by MgO seed η. The results are shown in Figure 8.
The average value of B8 in the region where the temperature gradient is about 5 degrees or more at a board temperature of about 950°C is shown.
fldgo中OBの含有量が少なくまたN2100%の
場音にB8が高くなること、また、N225%+H□7
5 %開気でもBが100 PPMの場合はB8が筒く
な乙ことを示している。The content of OB in fldgo is small, and B8 is high in the field sound of 100% N2, and N225% + H□7
Even if the air is 5% open, if B is 100 PPM, this indicates that B8 is not cylindrical.
第9図は2次再結晶開始時の銅板中のN (f、(とB
8の関係を示したものでるる。N−Mの多いほどB8が
高くなる傾向がある。温度勾配2次書粕晶C必要なN量
は、使用雰囲気のN2%、MgOのB量にLって制御す
ることが可能であることを示しており温度勾配焼鈍によ
るB8向上効果を十分VC”dv揮させるfcめに必要
なN量については、2次再結晶焼鈍中に、鋼板に200
PPM以上安定して吸収させることはむずかしく、ま
た180〜200 PPMでB8はほとんど飽和に達す
ること、たとえ200PPM以上含有できたとしても2
次再結晶後の純化に不利になることも予想さnたので、
上限を200PPMとした。また、本発明の目的として
いるB8≧1.96Tを安定して実現するには約130
PPM程度必要でありこ扛を下限とした。Figure 9 shows N (f, (and B) in the copper plate at the start of secondary recrystallization.
This shows the relationship between 8. There is a tendency for B8 to increase as N-M increases. It is shown that the necessary N amount can be controlled by adjusting the N2% of the working atmosphere and the B amount of MgO, and the B8 improvement effect by temperature gradient annealing can be sufficiently VC. Regarding the amount of N required for fc for dv volatilization, 200
It is difficult to stably absorb more than PPM, and B8 almost reaches saturation at 180 to 200 PPM, so even if it can contain more than 200 PPM, 2
Since it was expected that it would be disadvantageous for purification after the next recrystallization,
The upper limit was set to 200 PPM. In addition, in order to stably achieve B8≧1.96T, which is the objective of the present invention, approximately 130
The lower limit was set as PPM or so.
鋼板中のNmの増加によって温度勾配2次ゼ1結晶焼鈍
によるB8向上効果が顕著になる理由については、現時
点で必ずしも明瞭でないが、上述した実験例から次のこ
とが推察さf+、る。即ち、2次再結晶焼鈍中のN吸収
が容易になるため多くのA7Nが形成さn、インヒビタ
ー効果が強くなシ2次再結晶開始温度が上昇する。こn
は2次再結晶成長フロントでの新しい2次−Fコ” K
晶)立の発生が抑えらnることを意味する。このように
してすでに発生している尖銃なGoas方位金南する2
次再結晶粒は低温域へむかって成長し、きわめて商いB
8を有する結晶粒となるのである。The reason why the effect of improving B8 by temperature gradient secondary zeolite annealing becomes more pronounced with an increase in Nm in the steel sheet is not necessarily clear at present, but the following can be inferred from the above-mentioned experimental examples. That is, since N absorption during the secondary recrystallization annealing becomes easy, a large amount of A7N is formed, and the secondary recrystallization start temperature at which the inhibitor effect is strong increases. Kon
is a new 2nd-F co”K at the 2nd-order recrystallization growth front.
This means that the occurrence of crystallization is suppressed. In this way, the sharp gun that has already occurred is the Goas direction Kinnan 2
The next recrystallized grains grow toward the low temperature region, and the quotient is extremely low.
This results in crystal grains having a diameter of 8.
実施例1゜
C:0.058%、St:2.95%、Mn:0.08
3%ls゛0.025%、AtO,025%、N:0.
008%を含む連鋳スンプ全熱延−焼鈍−冷延一説炭焼
鈍処理して得た約5トンの1次再結晶板コイルにホウ素
含有釦約100 PPMのMgOを塗布した。このコイ
ルをN225%、H275%雰囲気中で温度勾配焼鈍し
た。Example 1°C: 0.058%, St: 2.95%, Mn: 0.08
3%ls゛0.025%, AtO, 025%, N:0.
About 100 PPM of MgO was coated on a boron-containing button to about 5 tons of primary recrystallized plate coil obtained by continuous casting sump full hot rolling, cold rolling and charcoal annealing treatment containing 0.008%. This coil was subjected to temperature gradient annealing in an atmosphere of 25% N and 75% H2.
昇温速度は室温から650℃まで50 Vhr 、 6
50〜1200℃まで20℃、/hr′t″おった。温
度勾配を生じさせるために、コイルの外周に助熱徊をま
きコイル上面から加熱した。温度勾配が約5℃h以上の
領域のB8の平均は、1.975 Te5laで1)り
た。The temperature increase rate is 50 Vhr from room temperature to 650°C, 6
The temperature ranged from 50 to 1200°C by 20°C/hr't''. In order to create a temperature gradient, a heating aid was placed around the outer circumference of the coil and the coil was heated from the top. The average of B8 was 1.975 Te5la.
実施例2゜
C:0.062 % 、Si2.98 % 、Mn
二 〇、075 % 、 s :0.028%、 A
t: 0027%、N:0.0082%を含む実施例1
と同様な処理で得た2個の5トンコイルの一方にはホウ
素含有量約390 PPM、他の5トンコイルには同じ
く約1300 PPMのMgO金塗布した。Example 2°C: 0.062%, Si2.98%, Mn
20,075%, s:0.028%, A
Example 1 containing t: 0027%, N: 0.0082%
One of the two 5-ton coils obtained in the same manner as above was coated with MgO gold having a boron content of about 390 PPM, and the other 5-ton coil was coated with MgO gold with a boron content of about 1300 PPM.
これらのコイルをN2100%雰囲気中で実施例1と同
様な方法で温度勾配焼鈍した。温度勾配が約5VcTr
L以上の領域のB8の平均は、前者で1.983Tes
las後者で1.967 Te5laでl= v fc
。These coils were subjected to temperature gradient annealing in a 100% N2 atmosphere in the same manner as in Example 1. Temperature gradient is approximately 5VcTr
The average of B8 in the area above L is 1.983Tes in the former
las latter is 1.967 Te5la is l = v fc
.
実施例3
C:0.062%、St:2.90%、 Mn : 0
.071%、s:0.026%、At:0.026%、
N:0.008%を含む連Eスラブ全熱延−焼鈍−冷延
一説炭焼鈍処理して得た1次再結晶板にホウ素含有量約
390 PPMのMgO金塗布して10トンコイルとし
た。このコイルをN2100%雰囲気中で温度勾配下で
2次再結晶焼鈍した。昇温速度は室温から650’Cま
で50Vhr。Example 3 C: 0.062%, St: 2.90%, Mn: 0
.. 071%, s: 0.026%, At: 0.026%,
A 10-ton coil was prepared by coating MgO gold with a boron content of about 390 PPM on a primary recrystallized plate obtained by completely hot rolling, annealing, and cold rolling a continuous E slab containing 0.008% N. This coil was subjected to secondary recrystallization annealing under a temperature gradient in a 100% N2 atmosphere. The temperature increase rate is 50Vhr from room temperature to 650'C.
650℃力Δら1200℃まで15 ′C/hrでhっ
た。The temperature was increased from 650°C to 1200°C at 15'C/hr.
コイル全体を所定の温度勾配下で焼鈍するため、焼鈍中
にコイルを上昇するようにした。即ち、コイルの上端面
が2次再結晶温度に到達するまで、該上端面を炉床と同
一高さになるように沈めておき、次いで該上端面が2次
再結晶し始めると、2次再結晶粒の成長速度に対応した
速度でコイルを上昇せしめた。この間温度勾配をつける
目的でペースプレート中に冷却ガスを流しコイル下部が
ら抜熱を行なった〇
このような方法で焼鈍したコイルの、也温か1050℃
における温度勾配が約35°CAJ涛以上の領域のB8
の平均は1.985Teala T l(> ッ7’c
。In order to anneal the entire coil under a predetermined temperature gradient, the coil was raised during annealing. That is, until the upper end surface of the coil reaches the secondary recrystallization temperature, the upper end surface is submerged to the same height as the hearth, and then, when the upper end surface begins to undergo secondary recrystallization, the secondary recrystallization temperature is lowered. The coil was raised at a rate corresponding to the growth rate of the recrystallized grains. During this time, cooling gas was passed through the pace plate to remove heat from the bottom of the coil in order to create a temperature gradient.The temperature of the coil annealed in this way was 1050℃.
B8 in the area where the temperature gradient is about 35° CAJ or more
The average of is 1.985Teala T l(>7'c
.
第1O図(a) 、(b) p (c) Ic上記実施
例による2次再結晶粒のマクロ組織をパす。(a)はコ
イル巻厚外周、(b)は同じく中央、(c)は同じく内
周のマクロk]↓織である。コイル巻厚の外周、中央、
内周のいす!しをみても、コイル上端(図において上方
)Eて発生した粒は圧延方向と直角の方向に直線的に成
長しその間島粒がほとんど生じでいない。このような結
晶粒では、2次再結晶焼鈍時のコイルセットおよび平坦
化焼鈍によって生ずる微少方位変動([001]軸の圧
延面に対づ−る傾き)以夕Iはほとんどア1:想的G0
38方位に近いものが得らnる。FIG. 1O (a), (b) p (c) Ic The macrostructure of the secondary recrystallized grains according to the above embodiment is shown. (a) shows the outer periphery of the coil winding thickness, (b) shows the same at the center, and (c) shows the macro k]↓ weave at the inner periphery. Coil winding thickness outer periphery, center,
Inner chair! As can be seen, the grains generated at the upper end of the coil (upper side in the figure) grow linearly in the direction perpendicular to the rolling direction, and there are hardly any island grains. In such crystal grains, minute orientation fluctuations (the inclination of the [001] axis with respect to the rolled surface) caused by the coil set during secondary recrystallization annealing and the flattening annealing result in almost all A1: Imaginary changes in orientation. G0
An image close to 38 directions can be obtained.
第1図はAtN 2f枦出相として含む1次再結晶板を
温度勾配下で2次再結晶させたときの結晶粒と結晶方位
との関係を示したもので、(a)は各結晶粒の状態を示
す模式図、(b)は各結晶粒の(100)極点図、第2
図は温度勾配下2次再結晶焼鈍を実施する場合のコイル
上面からの加熱の態様を示す図、第3図は温度勾配下2
次再結晶焼鈍を実施する装置の一例およびコイル断面を
示す図、第4図(a) (b)は第3図に示す加熱装置
により温度勾配下2次再結晶焼鈍金施して得ら扛たコイ
ルの結晶粒のマクロ組織の一部とそnK対応するBBO
値を示す図、第5図(、)は第4図(b)のマクロ組織
を拡大して示した図、第5図(b)はその極点図、第6
図は焼鈍雰囲気とB8との関係を示す図、第7図は焼鈍
分離剤MgO中のホウ素含有量とB8との関係を示す図
・第8図は焼鈍雰囲気及び焼鈍分離剤MgO中のホウ素
含有量とBRとの関係を示す図、第9図は2次再結晶時
Ni−とB8との関係を示す図、第10図(a) (b
)(c)は実施例3により得らnたコイルの2次再結晶
粒のマクロ組織を示す図である。
第1図
]
一97=
箒2図
第 1
べ’、LJ。
第5 図 (αン
$5回(b)
R・ρ。
〃225% 局76% Nz100表第7回
H引ハrのβ含有量
第8 口Figure 1 shows the relationship between crystal grains and crystal orientation when a primary recrystallization plate containing AtN 2f extruded phase is subjected to secondary recrystallization under a temperature gradient, and (a) shows the relationship between each crystal grain. (b) is the (100) pole figure of each crystal grain, the second
The figure shows the mode of heating from the top surface of the coil when performing secondary recrystallization annealing under a temperature gradient.
Figures 4(a) and 4(b) show an example of an apparatus for carrying out secondary recrystallization annealing and a cross section of the coil. Part of the macrostructure of the crystal grains of the coil and its corresponding BBO
Figure 5 (, ) is an enlarged view of the macrostructure in Figure 4 (b), Figure 5 (b) is its pole figure, and Figure 6 () is a diagram showing the values.
The figure shows the relationship between the annealing atmosphere and B8. Figure 7 shows the relationship between the boron content in the annealing separator MgO and B8. Figure 8 shows the annealing atmosphere and the boron content in the annealing separator MgO. Figure 9 shows the relationship between Ni- and B8 during secondary recrystallization, Figure 10 (a) (b) shows the relationship between the amount and BR.
) and (c) are diagrams showing the macrostructure of secondary recrystallized grains of the coil obtained in Example 3. Figure 1] 197= Broom 2 Figure 1 Be', LJ. Fig. 5 (αn$5 times (b) R・ρ.〃225% 76% Nz100 table 7th H pull Har β content 8th mouth
Claims (3)
.5〜4.0%、酸可溶性At: 0.010〜0.0
65%、残部Feおよび不可避的不純物を含む珪素鋼素
材を熱間圧延、冷間圧延、脱炭焼鈍及び最終焼鈍するに
当シ、該最終焼鈍の1次再結晶領域と2次再結晶領域の
境界領域に温度勾配を与えながら2次再結晶焼鈍するに
際し、2次再結晶開始時に、前記鋼板中の窒累含有蓋を
130〜200 PPMとすることを特徴とする磁束密
度の高い一方向性珪素鋼板の製造方法。(1) C: 0.010-0.10%, Si: 2
.. 5-4.0%, acid-soluble At: 0.010-0.0
When hot rolling, cold rolling, decarburization annealing, and final annealing a silicon steel material containing 65% Fe and unavoidable impurities, the primary recrystallization region and the secondary recrystallization region of the final annealing are Unidirectionality with high magnetic flux density, characterized in that when secondary recrystallization annealing is performed while giving a temperature gradient to the boundary region, the nitrogen content in the steel plate is set to 130 to 200 PPM at the start of secondary recrystallization. Method of manufacturing silicon steel plate.
素とする特許請求の範囲第1項記載の方法。(2) The method according to claim 1, wherein the secondary recrystallization annealing atmosphere contains 25% or more hydrogen and the remainder p hydrogen.
以下含肩するMgOよりなる焼鈍分離剤を塗布する特許
請求の範囲第1項記載の方法。(3) Add 800 PPM of B to the electromagnetic steel material before final annealing.
The method according to claim 1, wherein an annealing separator made of MgO, which will be referred to below, is applied.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58088991A JPS59215419A (en) | 1983-05-20 | 1983-05-20 | Production of grain-oriented silicon steel sheet having high magnetic flux density |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58088991A JPS59215419A (en) | 1983-05-20 | 1983-05-20 | Production of grain-oriented silicon steel sheet having high magnetic flux density |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59215419A true JPS59215419A (en) | 1984-12-05 |
JPH041059B2 JPH041059B2 (en) | 1992-01-09 |
Family
ID=13958270
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58088991A Granted JPS59215419A (en) | 1983-05-20 | 1983-05-20 | Production of grain-oriented silicon steel sheet having high magnetic flux density |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59215419A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62156226A (en) * | 1985-12-27 | 1987-07-11 | Nippon Steel Corp | Production of grain oriented electrical steel sheet having uniform glass film and excellent magnetic characteristic |
EP0390142A2 (en) * | 1989-03-30 | 1990-10-03 | Nippon Steel Corporation | Process for producing grain-oriented electrical steel sheet having high magnetic flux density |
JPH04183817A (en) * | 1990-11-19 | 1992-06-30 | Nippon Steel Corp | Production of grain-oriented electrical steel sheet having superior magnetic characteristic and superior characteristic of coating film |
US5415703A (en) * | 1988-12-22 | 1995-05-16 | Nippon Steel Corporation | Very thin electrical steel strip having low core loss and high magnetic flux density and a process for producing the same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS572839A (en) * | 1980-06-04 | 1982-01-08 | Nippon Steel Corp | Production of unidirectional silicon steel plate of high magnetic flux density |
JPS57207114A (en) * | 1981-06-16 | 1982-12-18 | Nippon Steel Corp | Manufacture of anisotropic electric steel plate |
-
1983
- 1983-05-20 JP JP58088991A patent/JPS59215419A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS572839A (en) * | 1980-06-04 | 1982-01-08 | Nippon Steel Corp | Production of unidirectional silicon steel plate of high magnetic flux density |
JPS57207114A (en) * | 1981-06-16 | 1982-12-18 | Nippon Steel Corp | Manufacture of anisotropic electric steel plate |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62156226A (en) * | 1985-12-27 | 1987-07-11 | Nippon Steel Corp | Production of grain oriented electrical steel sheet having uniform glass film and excellent magnetic characteristic |
JPH0459370B2 (en) * | 1985-12-27 | 1992-09-22 | Nippon Steel Corp | |
US5415703A (en) * | 1988-12-22 | 1995-05-16 | Nippon Steel Corporation | Very thin electrical steel strip having low core loss and high magnetic flux density and a process for producing the same |
EP0390142A2 (en) * | 1989-03-30 | 1990-10-03 | Nippon Steel Corporation | Process for producing grain-oriented electrical steel sheet having high magnetic flux density |
JPH04183817A (en) * | 1990-11-19 | 1992-06-30 | Nippon Steel Corp | Production of grain-oriented electrical steel sheet having superior magnetic characteristic and superior characteristic of coating film |
Also Published As
Publication number | Publication date |
---|---|
JPH041059B2 (en) | 1992-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11603572B2 (en) | Grain-oriented electrical steel sheet and method for manufacturing same | |
JP2019119933A (en) | Low iron loss directional electromagnetic steel sheet and manufacturing method therefor | |
JPS6250529B2 (en) | ||
JPH0241565B2 (en) | ||
CN111417737B (en) | Grain-oriented electromagnetic steel sheet with low iron loss and method for producing same | |
JPH08188824A (en) | Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density | |
JP3392664B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss | |
JPS59215419A (en) | Production of grain-oriented silicon steel sheet having high magnetic flux density | |
JPH059666A (en) | Grain oriented electrical steel sheet and its manufacture | |
JPH0121851B2 (en) | ||
JP3392579B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss | |
KR950002895B1 (en) | Ultrahigh-silicon directional electrical steel sheet and production thereof | |
CN114829657A (en) | Oriented electrical steel sheet and method for manufacturing the same | |
JPS6242968B2 (en) | ||
JP7463976B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
KR970007333B1 (en) | Method for manufacturing oriented electrical steel sheet having high magnetic density | |
JPS6256205B2 (en) | ||
KR101141281B1 (en) | A method for manufacturing grain-oriented electrical steel sheet | |
KR970007161B1 (en) | Making method of oriented electrical steel sheet having low iron loss | |
JP2020007637A (en) | Production process of grain-oriented electromagnetic steel sheet | |
WO2022210504A1 (en) | Method for manufacturing grain-oriented electromagnetic steel sheet | |
JPS63259024A (en) | Manufacture of grain-oriented silicon steel sheet excellent in magnetic property | |
JPS60135524A (en) | Production of grain oriented silicon steel sheet | |
JPH029089B2 (en) | ||
JPH04268021A (en) | Production of nonoriented electric steel plate having superior magnetic characteristic |