JPH04104939A - High temperature superconductor - Google Patents

High temperature superconductor

Info

Publication number
JPH04104939A
JPH04104939A JP2218768A JP21876890A JPH04104939A JP H04104939 A JPH04104939 A JP H04104939A JP 2218768 A JP2218768 A JP 2218768A JP 21876890 A JP21876890 A JP 21876890A JP H04104939 A JPH04104939 A JP H04104939A
Authority
JP
Japan
Prior art keywords
superconductivity
elements
high temperature
phenomenon
temperature superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2218768A
Other languages
Japanese (ja)
Inventor
Koji Okada
岡田 洪至
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2218768A priority Critical patent/JPH04104939A/en
Publication of JPH04104939A publication Critical patent/JPH04104939A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To provide a high temperature superconductor having improved superconductivity at a high temperature by compounding at least one kind of Pb, Sn, K, Sc, etc., as adhesive element, at least one kind of La, Y, Bi, etc., as peritectic element and least one kind of Na, K, Sc, etc., as super-conductive phenomenon-accelerating element. CONSTITUTION:The powder of raw materials comprising at least one kind of Pb, Sn, F, Br and Cl as adhesive element, the powder of raw materials comprising La, Y, other lanthanide element, Bi, Tl and Cu as peritectic element and the powder of a raw material comprising Na, K, Sc, Se, Te, Ba, Sr, Ca and Ce as superconductivity phenomenon-accelerating element are homogeneously mixed with each other in a prescribed weight ratio, placed in a biscuit tray for high temperatures, calcined at approximately 800 deg.C in air, mixed with water and subsequently press-molded. The calcination product is fired at approximately 850 deg.C in an inert gas atmosphere such as Ar to prepare the high temperature superconductor.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電力界、電機界等で用いられる高温超電導体
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a high-temperature superconductor used in the electric power field, electric machine field, etc.

(従来技術と問題点) 従来、超電導体は、金属ニオブ等の極低温における超電
導体が用いられてきたが、近年、酸化物セラミックスの
超電導体(所謂、高温超電導体)が開発され、液体窒素
融点レベルでも、超電導現象を起こす物質が開発されて
いる。
(Prior art and problems) Conventionally, ultra-low temperature superconductors such as metal niobium have been used as superconductors, but in recent years, oxide ceramic superconductors (so-called high-temperature superconductors) have been developed, and liquid nitrogen Materials that exhibit superconductivity even at melting point levels have been developed.

然るに、これらはイツトリウム系にせよ、ビスマス系、
タリウム系にせよ、−190°C前後に冷却しなければ
、工業的な応用規模の超電導現象を起こさない、また、
常温超電導体は、物質的にも、理論的にも、実現不可能
であることが現在判っている。
However, these are yttrium-based, bismuth-based,
Even with thallium-based materials, superconductivity on an industrial scale will not occur unless the material is cooled to around -190°C.
It is now known that room-temperature superconductors are physically and theoretically impossible to achieve.

本発明者は、これらを鑑み、独自の超1を導理論より、
より高い温度で超電導現象を起こす高温超電導体を鋭意
研究した結果、−120℃でも超電導現象を起こす物質
の開発に成功した。
In view of these, the inventor has developed a unique super 1 based on the derived theory,
As a result of intensive research into high-temperature superconductors that exhibit superconductivity at higher temperatures, they succeeded in developing a material that exhibits superconductivity even at -120°C.

(解決する手段) 本発明者は、高温超電導理論、即ち、原子格子内を自由
電子が乱流状態を起こして流れるという独自の高温超電
導理論と、元素の選択指標θより選択する元素を推定し
、検討した結果、本発明を完成したもので、本発明の要
旨とするところは、接着元素としての鉛、錫、フッ素、
臭素、塩素の一種又は二種以上を、包晶元素としてのラ
ンタン、イツトリウム、ランタノイド類、ビスマス、タ
リウム、銅の一種又は二種以上と、そして超電導現象促
進元素としてのナトリウム、カリウム、スカンジウム、
ルビジウム、セシウム、マグネシウム、セレン、テルル
、バリウム、ストロンチウム、カルシウム、セリウムの
一種又は二種以上の元素を含む酸化物セラミックス系の
高温超電導体を提供せんとするところにある。
(Means for solving the problem) The present inventor estimated the elements to be selected based on the high temperature superconductivity theory, that is, the unique high temperature superconductivity theory in which free electrons flow in an atomic lattice in a turbulent state, and the element selection index θ. As a result of the study, the present invention was completed, and the gist of the present invention is that lead, tin, fluorine,
One or more of bromine and chlorine, one or more of lanthanum, yttrium, lanthanoids, bismuth, thallium, and copper as peritectic elements, and sodium, potassium, scandium as elements promoting superconductivity,
The present invention aims to provide an oxide ceramic-based high-temperature superconductor containing one or more of the following elements: rubidium, cesium, magnesium, selenium, tellurium, barium, strontium, calcium, and cerium.

(作 用) 本発明の高温超電導体の説明に先立ち、本発明の開発の
引き金となった高温超電導理論の説明からする。
(Function) Prior to explaining the high temperature superconductor of the present invention, the high temperature superconductivity theory that triggered the development of the present invention will be explained.

従来の超電導理論は、1972年ノーベル物理学賞に輝
やく、所謂BC3理論がある。原子核のクツション下、
クーパ一対と呼ばれる一対の電子が、(−)電荷を取り
合いながら、原子格子をくぐり抜けるという一種のトル
ネル効果により、その超電導現象は解明したものとされ
た。
The conventional theory of superconductivity is the so-called BC3 theory, which won the Nobel Prize in Physics in 1972. Under the cushion of the atomic nucleus,
The phenomenon of superconductivity was thought to be explained by a kind of tunnel effect in which a pair of electrons, called a Cooper pair, pass through an atomic lattice while exchanging (-) charges.

然し、本発明者は、高温超電導体の超電導現象での、こ
のBC3理論を否定する。何故なら、本発明者は、高温
超電導現象は、原子格子内の空隙を、自由電子群が乱流
として流れる現象と推定した。即ち、K、  L、 M
、 N、O,P殻等の殻内電子の楕円回転運動による電
子雲の配向性のある空隙をぬって、自由電子が流れる乱
流現象と推定する。                
    フBC3理論の原子核のクツション運動(Yオ
ノン効果)は、陽子と電子のクーロン力による引っ張り
力が作用する為、反って電気抵抗を生ぜしめる原因とな
るので、原子格子の原子核のクツション運動を否定する
However, the present inventor denies this BC3 theory regarding the superconducting phenomenon of high-temperature superconductors. This is because the present inventor estimated that the high-temperature superconductivity phenomenon is a phenomenon in which free electron groups flow as a turbulent flow through gaps in an atomic lattice. That is, K, L, M
This is presumed to be a turbulent phenomenon in which free electrons flow through oriented gaps in the electron cloud due to the elliptical rotation of electrons in shells such as N, O, and P shells.
The cushioning motion of the nucleus in the BC3 theory (Y-onone effect) is caused by the pulling force due to the Coulomb force of protons and electrons, which warps and causes electrical resistance, so the cushioning motion of the nucleus in the atomic lattice is denied. do.

本発明者は、1988年10月、高温超電導体に用いら
れる過去の研究実績の元素より、次の元素の選択指標θ
を提案した。
In October 1988, the inventor determined the selection index θ for the following elements based on past research results for elements used in high-temperature superconductors.
proposed.

指標θ=比重/原子量 元素の指標θが小さい程、超電導現象を起こし易い、こ
のθに関わり、本発明者は、1989年1月29日に、
アクチノイドを除く全元素について計算した。この計算
結果で、高温超電導体に用いられる元素の正しい選択指
標であることが判る。
Index θ = specific gravity/atomic weight The smaller the index θ of an element, the easier it is to cause a superconducting phenomenon.Regarding this θ, the present inventor on January 29, 1989,
Calculations were made for all elements except actinides. This calculation result proves to be a correct selection indicator for elements used in high-temperature superconductors.

表1と表2を参考とすれば、バリウム、ストロンチウム
、カルシウム、鉛、錫、セリウム、臭素、フッ素、塩素
、ランタン、イツトリウム、ランタノイド類、ビスマス
、タリウム、ナトリウム、カリウム、スカンジウム、マ
グネシウム、ルビジウム、セシウム、セリウム、セレン
、テルルが指標θが小さく、超電導体に採用されるのに
効果的であることが判る。
Referring to Tables 1 and 2, barium, strontium, calcium, lead, tin, cerium, bromine, fluorine, chlorine, lanthanum, yttrium, lanthanides, bismuth, thallium, sodium, potassium, scandium, magnesium, rubidium, It can be seen that cesium, cerium, selenium, and tellurium have a small index θ and are effective for use in superconductors.

こうして、高温超電導分野の現在の状況が良く説明出来
る。特にストロンチウム、バリウム、カルシウムが、ル
ビジウム、セシウムに次いでθが小さいので、多用され
るのが判る。
In this way, the current situation in the field of high temperature superconductivity can be well explained. In particular, it can be seen that strontium, barium, and calcium are frequently used because they have the smallest θ after rubidium and cesium.

元素の選択指標θが小さいということは、即ち、原子量
一定として、比重が小さいこと、原子密度が小さく、原
子格子に空隙がある程、軽いという意味で、この原子格
子内の空隙が広い程、超電導現象を起こし易い元素であ
ることを示し、本発明者の超電導理論に重要な意味を持
つ指標である。
The fact that the selection index θ of an element is small means that, assuming a constant atomic weight, the specific gravity is small, the atomic density is small, and the more voids there are in the atomic lattice, the lighter the element is. This indicates that the element is likely to cause superconductivity, and is an index that has important meaning in the inventor's theory of superconductivity.

本発明者は、高温超電導体内に起こる超電導現象を、原
子格子内の空隙を、自由電子が乱流として流れる現象と
推定する。その場合、電力電荷の下、自由電子が、原子
核周囲を廻るに、  L、 M。
The present inventor presumes that the superconducting phenomenon that occurs in a high-temperature superconductor is a phenomenon in which free electrons flow as a turbulent flow through gaps in an atomic lattice. In that case, as free electrons revolve around the nucleus under a power charge, L, M.

N、 O,P殻の殻内電子が正規な楕円回転運動をする
為に生じる電子雲の、配向性のある空隙を垣間ぬって、
乱流状態で、永遠に流れる現象を推定する。この場合、
原子核の陽子とのクーロン力が弱いと、より流れ易い為
、ナトリウム、カリウム、スカンジウム、マグネシウム
等の軽量元素の採用も重要な選択思考である。又、超電
導体のイオン状態としての原子の電子殻は、中性状態と
してのフルバランスの殻内電子を有することが重要で、
自由電子が乱流として流れる際の統計的な容易さとなろ
う。この場合、ランタン、イツトリウム、ランタノイド
類、ビスマス、タリウム、銅等の元素が重要な役割を果
たしているのかも知れない。
Passing through the oriented voids of the electron cloud created by the regular elliptical rotation of the electrons in the N, O, and P shells,
Estimate the phenomenon of eternal flow in turbulent flow conditions. in this case,
If the Coulomb force with the protons in the nucleus is weak, it will flow more easily, so the use of lightweight elements such as sodium, potassium, scandium, and magnesium is also an important selection consideration. In addition, it is important that the electron shell of an atom in the ionic state of a superconductor has a full balance of electrons in the shell as a neutral state.
This would be the statistical ease with which free electrons flow as a turbulent flow. In this case, elements such as lanthanum, yttrium, lanthanides, bismuth, thallium, and copper may play an important role.

本発明者が提唱した元素の選択指標θは優れたものであ
るが、次に高温で電気抵抗のある物質が、何故低温で超
電導現象を起こすのか説明する。
The element selection index θ proposed by the present inventor is excellent, but next we will explain why a substance that has electrical resistance at high temperatures exhibits a superconducting phenomenon at low temperatures.

物質が低温の場合、熱的に冷却されている為、K、L、
 M、N、 O,P殻等の電子殻に存在する殻内電子の
軌道間移動がない為、一種の安定状態になると考えられ
る。勿論、殻内電子は、正規の楕円回転運動をする為に
、電子雲が生ずるのは事実であるが、軌道間移動がない
為に、原子格子に一種の電子雲を垣間ぬった配向性のあ
る空隙がより広くなる。このより広い空隙を、自由電子
群の自由路とするなら、この低温の場合の自由路を、自
由電子群が乱流状態で流れて、超電導現象を起こすのだ
と推定する。
When a substance is at a low temperature, it is thermally cooled, so K, L,
Since there is no inter-orbital movement of intra-shell electrons that exist in electron shells such as M, N, O, and P shells, it is thought that a kind of stable state exists. Of course, it is true that an electron cloud is generated because the in-shell electrons undergo regular elliptical rotation motion, but since there is no inter-orbital movement, the orientation is such that a kind of electron cloud appears in the atomic lattice. The void where there is becomes wider. If we assume that this wider gap is the free path for the free electrons, then we assume that the free path at low temperatures is one in which the free electrons flow in a turbulent state, causing the superconducting phenomenon.

この場合、クーロン力が弱い軽量元素が用いられると、
より好ましいし、前述のように、原子核の陽子エネルギ
ーに対応した(−)エネルギーの殻内電子数が陽子数に
一致し、原子核が電気的に中性状態のフルバランスの時
に、特に陽子とのクーロン力による抵抗がなく、超電導
現象を起こし易い。
In this case, if a lightweight element with weak Coulomb force is used,
It is more preferable, and as mentioned above, when the number of electrons in the shell of (-) energy corresponding to the proton energy of the atomic nucleus matches the number of protons, and the atomic nucleus is in a fully balanced electrically neutral state, especially when the number of electrons in the shell with the protons is There is no resistance due to Coulomb force, and superconductivity easily occurs.

こうして、本発明者は、BC3理論の根幹をなすクーパ
一対による超電導現象の解明を否定した。
In this way, the present inventor denied the elucidation of the superconducting phenomenon by the Cooper pair, which forms the basis of the BC3 theory.

何故なら、低温状態で、原子核に一種の安定状態にある
ことが、超1導現象を起こす理論的解明をした今、原子
核のクツション運動は反って電気抵抗を生ずる原因とな
るからである。クーパ一対を否定した為に、一般に云わ
れるフォノン効果の否定にもつながる。勿論、原子格子
内を乱流状態で、自由電子が無数に通過することで、原
子核に若干のクツションによる振動はあるだろうし、そ
のことで、測定不能の微小電気抵抗が存在するかも知れ
ない。
This is because, now that we have theoretically clarified that the existence of a kind of stable state in the atomic nucleus at low temperatures causes the superconducting phenomenon, the cushioning motion of the atomic nucleus warps and causes electrical resistance. Since the Cooper pair is denied, this also leads to the denial of the generally-mentioned phonon effect. Of course, as countless free electrons pass through the atomic lattice in a turbulent state, there will probably be some cushioning vibrations in the atomic nucleus, and as a result, there may be a tiny electrical resistance that cannot be measured.

更に、電子雲と自由電子の流れの交錯で、やはり多少の
電気抵抗はあるかも知れない。又、自由電子群が原子核
の陽子に近付かないのは、エネルギーバランスの確保が
されない為だし、又、電子殻内の楕円回転運動による殻
内電子の電子雲と、自由電子群が近付かないのは、電子
の(−)電荷による斥力がある為である。
Furthermore, due to the interaction between the electron cloud and the flow of free electrons, there may still be some electrical resistance. Also, the reason why the free electron group does not approach the protons of the atomic nucleus is because the energy balance is not ensured, and the reason why the free electron group does not approach the electron cloud of the in-shell electrons due to the elliptical rotation movement within the electron shell. This is because there is a repulsive force due to the (-) charge of the electrons.

高温部1!1導体に関して、原子の構造が重要である。High Temperature Part 1!1 Regarding the conductor, the atomic structure is important.

超電導現象に方向性があるのは、原子構造の原子格子内
に、空隙の配向性がある為だし、より空隙の広い部位と
角度を目脂して、自由電子が乱流として流れるのが、超
電導現象だからである。
The reason why the superconducting phenomenon is directional is because there is an orientation of voids within the atomic lattice of the atomic structure, and free electrons flow as a turbulent flow by using the wide spaces and angles of the voids. This is because it is a superconducting phenomenon.

本発明者は、計算した表1と表2より、その元素の選択
指標θ値と現在迄の関連業界の研究成果から、これらの
重要な元素を三つに分類した。
The present inventor classified these important elements into three groups based on the selection index θ value of the element and the research results of related industries to date, based on the calculated Tables 1 and 2.

一つは、クーロン力の弱い軽量元素、カリウム、ナトリ
ウム、スカンジウム、マグネシウムと、それにθの極め
て小さいセシウム、ルビジウム、セレン、テルル、バリ
ウム、ストロンチウム、カルシウム、セリウム等の特に
超電導現象を起こし易い超電導現象促進元素、二つには
、これら超電導現象促進元素の遷移性のあるうつろい易
い元素の原子格子をカバーするランタン、イツトリウム
、ランタノイド類、ビスマス、タリウム、銅等の包晶元
素、そして三つは超電導体の機械的性質を改善する鉛、
錫、フッ素、臭素、塩素等の接着元素である。
One is light elements with weak Coulomb force, such as potassium, sodium, scandium, and magnesium, and superconducting phenomena that are particularly prone to superconducting phenomena, such as cesium, rubidium, selenium, tellurium, barium, strontium, calcium, and cerium, which have extremely small θ. The second is peritectic elements such as lanthanum, yttrium, lanthanides, bismuth, thallium, copper, etc. that cover the atomic lattice of transitional and transitional elements of these superconducting promoting elements, and the third is superconducting elements. Lead, which improves the mechanical properties of the body
Adhesive elements such as tin, fluorine, bromine, and chlorine.

これらの元素は全て選択指標θが小さい為に、これらを
組み合わせて製造された酸化物セラミックスは、より高
温で超電導現象を起こし易い。
Since all of these elements have a small selection index θ, oxide ceramics produced by combining these elements tend to cause superconductivity at higher temperatures.

ここで、超電導現象促進元素と目されたものは、原子核
の陽子エネルギーが小で、クーロン力が弱いか、又はル
ビジウム、セシウム等の指標θが極めて小さくて、特に
超電導現象を起こし易い元素である。又包晶元素は従来
のランタン、イツトリウム、ビスマス、タリウム、銅等
の高温超電導体の代表する元素群で、特に安定的な元素
である。
Here, the elements considered to promote superconductivity are those that have a low proton energy in their atomic nucleus, weak Coulomb force, or have an extremely small index θ, such as rubidium or cesium, and are particularly likely to cause superconductivity. . Further, peritectic elements are a group of elements representative of conventional high temperature superconductors such as lanthanum, yttrium, bismuth, thallium, and copper, and are particularly stable elements.

又、接着元素は、鉛、錫の軟質な元素、又は陰イオン元
素としてのフッ素、臭素、塩素である。これらは、原子
内の接着性を改善し、且つ得られた高温超電導体の機械
的性質を改善して、ワイヤーバルク、薄膜の形状に拘ら
ず、得られた超電導体の靭性等の機械的性質に付与して
、加工し易くする為の元素である。
Further, the adhesive element is a soft element such as lead or tin, or an anionic element such as fluorine, bromine, or chlorine. These improve the intraatomic adhesion and the mechanical properties of the obtained high-temperature superconductor, and improve the mechanical properties such as toughness of the obtained superconductor regardless of the shape of the wire bulk or thin film. It is an element added to make it easier to process.

ここで、包晶元素であるイツトリウムも、優れた原子間
接着効果で、機械的性質を改善する重合効果がある。
Here, yttrium, which is a peritectic element, also has an excellent interatomic adhesion effect and a polymerization effect that improves mechanical properties.

以下、本発明の例をもって詳細に説明する。Hereinafter, the present invention will be explained in detail using examples.

乳鉢で、カリウム2、セリウム2、ビスマス1、鉛2の
割合で混合した。(K源;塩素酸カリウム、Cs源;炭
酸セシウム、Bi源;酸化ビスマス、鉛源;硝酸鉛)物
質を均一混合し、高温用の素焼きの皿に入れ、空気中で
、s o o ’cの炉温で、2時間焼成した。焼成後
、皿にこびりついた焼成物質をスプーンでかき落し、水
で押し固めた。再びこの物質を850°Cの炉温で、2
時間焼成した。得られた物質の電気比抵抗を測定したと
ころ、150に以下で、電気抵抗零の超電導現象を示し
た。同現象は安定しており、何度測定しても、経時如何
に拘らず、超電導現象を示した。又、得られた物質を銀
パイプに詰め、延伸させたところ、細い線材が欠陥なく
得られた。これは鉛の効果と思われる。
In a mortar, 2 parts potassium, 2 parts cerium, 1 part bismuth, and 2 parts lead were mixed. (K source; potassium chlorate; Cs source; cesium carbonate; Bi source; bismuth oxide; lead source; lead nitrate). It was baked for 2 hours at a furnace temperature of . After baking, the baked material stuck to the plate was scraped off with a spoon, and the material was compacted with water. This material was heated again at an oven temperature of 850°C for 2
Baked for an hour. When the electrical resistivity of the obtained material was measured, it was found to be less than 150, indicating a superconducting phenomenon with zero electrical resistance. This phenomenon was stable, and no matter how many times it was measured, it showed superconductivity regardless of the age. Furthermore, when the obtained material was packed into a silver pipe and stretched, a thin wire rod was obtained without any defects. This seems to be an effect of lead.

本発明の酸化物セラミックスは、前出特許請求範囲によ
るが、元素を適宜配合して、適正配合比とすれば良く、
その得られる物質は、より高温で超電導現象を示す。
The oxide ceramics of the present invention are according to the claims of the above-mentioned patents, but the elements may be appropriately blended to achieve an appropriate blending ratio.
The resulting material exhibits superconducting phenomena at higher temperatures.

本発明品は、線材、薄膜、棒状、角材、バルク等の形状
にとられれない。
The product of the present invention does not take the shape of a wire, thin film, rod, square, bulk, or the like.

又採用される元素源の多くは、その元素を含んでいれば
良く、実施方法としては、沈積法、アルコキシド法、蒸
着法等でも好ましい初期の目的を達した物質が得られる
In addition, most of the element sources that can be employed are sufficient as long as they contain the element, and materials that achieve the desired initial purpose can also be obtained by a deposition method, an alkoxide method, a vapor deposition method, or the like.

(実施例) 実施例−1 乳鉢で、カリウム1、セシウム2、イツトリウム1、フ
ッ素1の割合で混合した(K源;塩素酸カリウム、Cs
源;炭酸セシウム、Y源;酸化イツトリウム、F源;純
粋粉末)物質を均一混合し、高温用の素焼きの皿に入れ
、空気中で、炉温850°Cで、−時間焼成した。
(Example) Example-1 In a mortar, 1 part potassium, 2 parts cesium, 1 part yttrium, and 1 part fluorine were mixed (K source; potassium chlorate, Cs
Source; cesium carbonate;

焼成後、皿にこびりついた焼成物質をスプーンでかき落
し、水で押し固めた。再び、この物質を不活性のアルゴ
ンガス雰囲気で、炉温s o o ’cで、2時間焼成
した。
After baking, the baked material stuck to the plate was scraped off with a spoon, and the material was compacted with water. Again, this material was calcined for 2 hours in an inert argon gas atmosphere at a furnace temperature of soo'c.

得られた物質の電気比抵抗を測定したところ、150に
以下で、電気抵抗零の超電導現象を示した。同現象は経
時後も安定していた。
When the electrical resistivity of the obtained material was measured, it was found to be less than 150, indicating a superconducting phenomenon with zero electrical resistance. This phenomenon remained stable over time.

実施例−2 乳鉢で、ナトリウム1、ルビジウム1、セシウム1、ビ
スマス1、鉛1 (Na源;塩素酸ナトリウム、pb源
;炭酸ルビジウム、Cs源;炭酸セシウム、Bi源;酸
化ビスマス、鉛源;硝酸鉛)物質を均一混合し、水に均
一分散して、分散液の下部にセントしたMgO基板に沈
積させ、一定時間後に取り出し、沈積した物質を850
℃、−時間焼成して、約5μの薄膜を得た。この薄膜の
電気比抵抗を測定したところ、140に以下で、電気抵
抗零の超電導現象を示した。同現象は、経時後も、安定
していた。
Example-2 In a mortar, 1 sodium, 1 rubidium, 1 cesium, 1 bismuth, 1 lead (Na source; sodium chlorate, PB source; rubidium carbonate, Cs source; cesium carbonate, Bi source; bismuth oxide, lead source; The material (lead nitrate) is uniformly mixed, uniformly dispersed in water, deposited on an MgO substrate placed at the bottom of the dispersion, taken out after a certain period of time, and the deposited material is
C. for - hours to obtain a thin film of about 5 microns. When the electrical resistivity of this thin film was measured, it was found to be 140 or less, indicating a superconducting phenomenon with zero electrical resistance. The same phenomenon remained stable over time.

(発明の効果) 以上の如く、本発明品は、ある一定温度以下で超電導現
象を示し、且つその性能は、従来より、より高温で、超
電導現象を起こす優位性が判る。
(Effects of the Invention) As described above, it can be seen that the product of the present invention exhibits a superconducting phenomenon below a certain temperature, and its performance is superior to that of the conventional product in causing a superconducting phenomenon at a higher temperature.

特許出願人  岡  1) 洪  至Patent applicant: Oka 1) Hong Hong

Claims (1)

【特許請求の範囲】[Claims]  接着元素としての鉛、錫、フッ素、臭素、塩素の一種
又は二種以上と、包晶元素としてのランタン、イットリ
ウム、ランタノイド類、ビスマス、タリウム、銅の一種
又は二種以上と、そして超電導現象促進元素としてのナ
トリウム、カリウム、スカンジウム、ルビジウム、セシ
ウム、マグネシウム、セレン、テルル、バリウム、スト
ロンチウム、カルシウム、セリウムの一種又は二種以上
の元素を含むことを特徴とする酸化物セラミックス系の
高温超電導体。
One or more of lead, tin, fluorine, bromine, and chlorine as adhesive elements, one or more of lanthanum, yttrium, lanthanides, bismuth, thallium, and copper as peritectic elements, and promotion of superconductivity An oxide ceramic-based high-temperature superconductor characterized by containing one or more of the elements sodium, potassium, scandium, rubidium, cesium, magnesium, selenium, tellurium, barium, strontium, calcium, and cerium.
JP2218768A 1990-08-20 1990-08-20 High temperature superconductor Pending JPH04104939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2218768A JPH04104939A (en) 1990-08-20 1990-08-20 High temperature superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2218768A JPH04104939A (en) 1990-08-20 1990-08-20 High temperature superconductor

Publications (1)

Publication Number Publication Date
JPH04104939A true JPH04104939A (en) 1992-04-07

Family

ID=16725093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2218768A Pending JPH04104939A (en) 1990-08-20 1990-08-20 High temperature superconductor

Country Status (1)

Country Link
JP (1) JPH04104939A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8703651B2 (en) * 2012-07-06 2014-04-22 Dale Richard Harshman Layered ionic superconductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8703651B2 (en) * 2012-07-06 2014-04-22 Dale Richard Harshman Layered ionic superconductor

Similar Documents

Publication Publication Date Title
JP2005219982A (en) Translucent conductive material
WO2006011581A1 (en) Thermoelectric conversion material and process for producing the same
JPH04104939A (en) High temperature superconductor
Hume-Rothery VIII. The crystal structures of the elements of the B sub-groups and their connexion with the periodic table and atomic structures
EP0284438B1 (en) Superconducting materials and methods of manufacturing the same
JP3165770B2 (en) Manufacturing method of oxide superconductor
JPH0864873A (en) Thermoelectric semiconductor material
JP2588951B2 (en) High temperature PTC thermistor and manufacturing method thereof
EP0389086B1 (en) Single crystalline fibrous superconductive composition and process for preparing the same
JP2597656B2 (en) Superconducting material having high critical temperature and method for producing the same
Ahmed et al. Influence of Both Cooling Rate and TeO 2 Addition on the Properties of YBCO Superconductor
JP2556712B2 (en) Method for manufacturing oxide superconductor
JPH03228863A (en) Approximate superconductor
JP3034267B2 (en) Oxide superconductor
JPH04300202A (en) Superconductor using oxide and production thereof
JPH0745357B2 (en) Superconducting fibrous single crystal and method for producing the same
WO1996021252A1 (en) HIGH Tc OXIDE SUPERCONDUCTORS
JPS63315565A (en) Superconducting material composition
US5304537A (en) M-Tl-Ba-Cu-O high temperature superconductors wherein M is selected from the group consisting of Ti, Zr and Hf
JP2854338B2 (en) Copper oxide superconductor
JPH03170335A (en) Oxide super conductor and its preparation
JPH04137406A (en) Conductive oxide
JPH0465346A (en) Superconducting composition
JPH02271961A (en) Oxide superconducting material and production thereof
JPH0292863A (en) Oxide-base multiple sintered compact and production thereof and resistor form using same