JPH0410180B2 - - Google Patents

Info

Publication number
JPH0410180B2
JPH0410180B2 JP60255381A JP25538185A JPH0410180B2 JP H0410180 B2 JPH0410180 B2 JP H0410180B2 JP 60255381 A JP60255381 A JP 60255381A JP 25538185 A JP25538185 A JP 25538185A JP H0410180 B2 JPH0410180 B2 JP H0410180B2
Authority
JP
Japan
Prior art keywords
cadmium
cathode
nickel
hydroxide
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60255381A
Other languages
Japanese (ja)
Other versions
JPS62115662A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP60255381A priority Critical patent/JPS62115662A/en
Publication of JPS62115662A publication Critical patent/JPS62115662A/en
Publication of JPH0410180B2 publication Critical patent/JPH0410180B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は多孔性ニツケル焼結基板に硝酸カドミ
ウム溶液の含浸を伴う化学含浸法により水酸化カ
ドミウムを充填する焼結式カドミウム陰極の製造
方法に関する。
[Detailed description of the invention] (a) Industrial application field The present invention is a method for manufacturing a sintered cadmium cathode in which a porous nickel sintered substrate is filled with cadmium hydroxide by a chemical impregnation method involving impregnation of a cadmium nitrate solution. Regarding.

(ロ) 従来の技術 従来、焼結式カドミウム陰極は一般に多孔性ニ
ツケル焼結基板に、硝酸カドミウム溶液を含浸
し、次いでこの基板をアルカリ溶液中に浸漬して
基板の孔中の硝酸カドミウムを水酸化カドミウム
に変化させ水洗及び乾燥する化学含浸法により、
前記基板中に水酸化カドミウムを充填して作製さ
れている。この化学含浸法を用いて作製した極板
は極板中に硝酸根が残留し、この硝酸根が電池保
存特性を著しく低下させるため、その後苛性アル
カリ等の溶液中で1〜数回充放電する化成処理を
行なうことによつて極板中に残留する硝酸根が除
去される。ところが化成処理は通常0.2C程度の低
電流で充放電を行なうものであるから、化成処理
は多くの時間を要し、このため設備のスペースが
大きくなると共に連続化成を行なうことができな
い等の問題点があつた。
(b) Conventional technology Conventionally, a sintered cadmium cathode is generally produced by impregnating a porous sintered nickel substrate with a cadmium nitrate solution, and then immersing this substrate in an alkaline solution to remove the cadmium nitrate in the pores of the substrate. Through the chemical impregnation method of converting into cadmium oxide, washing with water and drying,
It is manufactured by filling the substrate with cadmium hydroxide. In the electrode plates produced using this chemical impregnation method, nitrate radicals remain in the electrode plates, and these nitrate radicals significantly reduce battery storage characteristics, so they are then charged and discharged in a solution such as caustic alkali one to several times. By performing chemical conversion treatment, nitrate radicals remaining in the electrode plate are removed. However, since chemical conversion treatment usually performs charging and discharging at a low current of about 0.2C, chemical conversion treatment requires a lot of time, which leads to problems such as increasing the space of the equipment and not being able to perform continuous chemical conversion. The point was hot.

そこで特開昭54−148235号公報では上記問題点
を解決するために、多孔性ニツケル焼結基板に硝
酸カドミウム溶液の含浸を伴う化学含浸法によつ
て水酸化カドミウムを充填した極板を200℃〜300
℃の温度で焼成して、前記水酸化カドミウムを酸
化カドミウムに変化させ、その後この極板をアル
カリ溶液中で充放電することが提案されている。
この方法では焼成によつて硝酸根の除去を容易に
行なうことができ、また焼成後の充放電を短時間
で行なえるため化成工程の連続化への展開が可能
であるが、得られる極板は従来の低電流で充放電
を行なう化成電板と比較すると、まだ充分なサイ
クル特性を有するとは言えず、また活物質含浸時
に用いる硝酸カドミウム溶液に硝酸ニツケルを添
加して、極板中に陰極放電反応を促進させると言
われる対極物質としての水酸化ニツケルを含有さ
せても、その後に焼成を行なうと充分に満足でき
るサイクル特性を得ることができなかつた。
Therefore, in order to solve the above problem, Japanese Patent Application Laid-open No. 148235/1983 has developed an electrode plate filled with cadmium hydroxide by a chemical impregnation method that involves impregnating a porous nickel sintered substrate with a cadmium nitrate solution at 200°C. ~300
It has been proposed to convert the cadmium hydroxide into cadmium oxide by firing at a temperature of 0.degree. C., and then charge and discharge the plate in an alkaline solution.
In this method, nitrate radicals can be easily removed by firing, and charging and discharging can be performed in a short time after firing, so it is possible to develop the chemical conversion process continuously. Compared to conventional chemically formed electrode plates that charge and discharge at low currents, they still cannot be said to have sufficient cycle characteristics.Also, nickel nitrate is added to the cadmium nitrate solution used for impregnating the active material, and Even if nickel hydroxide was included as a counter electrode substance which is said to promote the cathode discharge reaction, fully satisfactory cycle characteristics could not be obtained if firing was performed afterwards.

(ハ) 発明が解決しようとする問題点 本発明は前記焼成処理を施した焼結式カドミウ
ム陰極板のサイクル特性を向上させようとするも
のである。
(c) Problems to be Solved by the Invention The present invention aims to improve the cycle characteristics of a sintered cadmium cathode plate subjected to the above-mentioned firing treatment.

(ニ) 問題点を解決するための手段 本発明の焼結式カドミウム陰極の製造方法は、
多孔性ニツケル焼結基板に硝酸カドミウム溶液の
含浸を伴う化学含浸法により水酸化カドミウムを
充填した極板を、200℃以上の温度で焼成し、前
記水酸化カドミウムを実質的に全て酸化カドミウ
ムに変化させ、次いで苛性アルカリ中で強制的に
放電してニツケル焼結基板を酸化させることによ
り水酸化ニツケルを生成させた後、充電を行なう
ものである。
(d) Means for solving the problems The method for manufacturing a sintered cadmium cathode of the present invention includes:
A porous sintered nickel substrate is filled with cadmium hydroxide by a chemical impregnation method that involves impregnating a cadmium nitrate solution, and the electrode plate is fired at a temperature of 200°C or higher to convert substantially all of the cadmium hydroxide into cadmium oxide. Then, the sintered nickel substrate is forcibly discharged in a caustic alkali to oxidize the sintered nickel substrate to generate nickel hydroxide, and then charged.

(ホ) 作 用 焼結式カドミウム陰極を焼成した後に行なう充
電操作の前に、この陰極を苛性アルカリ中で強制
的に充電すると、活物質保持体である多孔性ニツ
ケル焼結基板の酸化が起こり水酸化ニツケルが極
板内に微量生成する。こうして生成した水酸化ニ
ツケルは、前述した様な焼成前に陰極中に含浸に
より添加した水酸化ニツケルとは異なり、陰極の
放電反応を促進させることができる。
(E) Effect If the sintered cadmium cathode is forcibly charged in caustic alkali before the charging operation after firing, the porous nickel sintered substrate that holds the active material will oxidize. A small amount of nickel hydroxide is generated within the electrode plate. The nickel hydroxide thus produced can accelerate the discharge reaction of the cathode, unlike the nickel hydroxide added by impregnation into the cathode before firing as described above.

また、多孔性ニツケル焼結基板に硝酸カドミウ
ム溶液の含浸を伴う化学含浸法によつて水酸化カ
ドミウムを充填した極板は、200℃以上の温度で
焼成すると極板中に残留する硝酸根が遊離した状
態となり、その後充電あるいは水洗等の操作を行
なうことで硝酸根を容易に極板外に追い出すこと
が可能であり焼成後に活物質の一部(20〜40%程
度)をアルカリ溶液中で充電することで充分除去
することができる。更に、焼成後の前記カドミウ
ム陰極はそのまま電池に組み込むと、陰極の充電
効率が低いため陽、陰極のバランスをとることが
できず、また、焼成により生成した酸化カドミウ
ムは吸水反応によつて水酸化カドミウムに変化す
るため電池内の電解液濃度を変化させるという不
都合が生じるが、上記焼成後のアルカリ溶液中で
の充電により水酸化カドミウムを金属カドミウム
に変化、生成させるとこれらを解決することがで
きる。
In addition, when a porous sintered nickel substrate is filled with cadmium hydroxide by a chemical impregnation method that involves impregnating a cadmium nitrate solution, the nitrate radicals remaining in the plate are liberated when fired at a temperature of 200°C or higher. After that, by performing operations such as charging or washing with water, the nitrate radicals can be easily expelled from the electrode plate. After firing, a portion of the active material (approximately 20 to 40%) is charged in an alkaline solution. It can be removed sufficiently by doing this. Furthermore, if the cadmium cathode after firing is incorporated into a battery as is, the charging efficiency of the cathode is low, making it impossible to balance the positive and negative electrodes, and the cadmium oxide produced by firing is oxidized by water absorption reaction. Since it changes to cadmium, there is an inconvenience that the electrolyte concentration inside the battery changes, but these problems can be solved by changing cadmium hydroxide into metal cadmium by charging it in an alkaline solution after firing. .

(ヘ) 実施例 多孔性ニツケル焼結基板を硝酸カドミウム溶液
に浸漬して、基板の孔中に硝酸カドミウムを含浸
した後、この基板を苛性カリ水溶液中に浸漬して
硝酸カドミウムを水酸化カドミウムに変化させ、
次いで水洗、乾燥を行なうという化学含浸法によ
る活物質充填操作を数回繰り返して行なつて、前
記基板の孔中に水酸化カドミウムを充填する。こ
の含浸終了後の極板を220℃で30分焼成し、次い
で苛性カリ水溶液中で極板容量に対して2Cの電
流値で10分間放電した後、同様にして苛性カリ中
で2Cの電流値で10分間充電し、水洗及び乾燥を
行なつて本発明陰極Aを作製した。
(f) Example A porous nickel sintered substrate is immersed in a cadmium nitrate solution to impregnate cadmium nitrate into the pores of the substrate, and then the substrate is immersed in a caustic potassium aqueous solution to change the cadmium nitrate into cadmium hydroxide. let me,
Next, the active material filling operation by a chemical impregnation method of washing with water and drying is repeated several times to fill the pores of the substrate with cadmium hydroxide. After this impregnation, the electrode plate was fired at 220℃ for 30 minutes, and then discharged in a caustic potassium aqueous solution at a current value of 2C for the electrode plate capacity for 10 minutes. The cathode A of the present invention was prepared by charging for a minute, washing with water, and drying.

また比較として前記本発明陰極Aの製造工程か
ら苛性カリ水溶液中での放電を除き、その他は同
一で比較陰極Bを作製した。
In addition, as a comparison, a comparative cathode B was prepared in the same manner as above except for discharging in a caustic potassium aqueous solution from the manufacturing process of the cathode A of the present invention.

第1図はこれら陰極のサイクリツクポルタンメ
トリーのチヤートであり、電位を矢印のように走
査して行けば、焼成後に強制的に放電を行なつた
本発明陰極Aは、+370mV付近から水酸化ニツケ
ルの放電反応が開始して電流が大きく流れ、更に
500mV付近から酸素ガス発生により電流が消費
される。また逆に走査すると+、350mVで水酸
化ニツケルの放電反応が起こる。即ち、本発明陰
極Aは第1図の〓a及び〓bに於いて水酸化ニツケル
の充電及び放電反応が顕著に現われ水酸化ニツケ
ルが生成していることがわかる。これに対して焼
成後に強制的に放電を行なつていない比較陰極で
はこの水酸化ニツケルの反応は生じておらず、水
酸化ニツケルは生成していないものと考えられ
る。
Figure 1 is a chart of cyclic portammetry of these cathodes. If the potential is scanned in the direction of the arrow, the cathode A of the present invention, which was forcibly discharged after firing, will be oxidized from around +370mV. Nickel's discharge reaction begins, a large current flows, and further
Current is consumed from around 500mV due to oxygen gas generation. When scanning in the opposite direction, a discharge reaction of nickel hydroxide occurs at +350 mV. That is, it can be seen that in the cathode A of the present invention, the charging and discharging reactions of nickel hydroxide appear conspicuously at lines a and b in FIG. 1, and nickel hydroxide is produced. On the other hand, in the comparative cathode which was not forcibly discharged after firing, this reaction of nickel hydroxide did not occur, and it is considered that nickel hydroxide was not generated.

上記本発明陰極A及び比較陰極Bを所定寸法に
切断し、通常の焼結式ニツケル陽極とこれら陰極
を夫々組み合わせてSCサイズ(1200mAH)のニ
ツケル−カドミウム電池を作製した。こうして作
製した電池を25℃に於いて0.1Cの電流値で16時間
充電した後25℃に於いて2Cの電流値で放電する
条件で充放電を繰り返し行なつたときのサイクル
特性を、1サイクル目の放電容量を夫々100%と
して第2図に示す。尚、第2図中A及びBは同一
符号の陰極を用いた電池を示す。
The above-mentioned cathode A of the present invention and comparative cathode B were cut into predetermined dimensions, and these cathodes were combined with an ordinary sintered nickel anode to prepare an SC size (1200 mAH) nickel-cadmium battery. The cycle characteristics of the battery produced in this way were determined by charging and discharging repeatedly under the conditions of charging at 25°C with a current value of 0.1C for 16 hours and then discharging with a current value of 2C at 25°C for one cycle. Fig. 2 shows the discharge capacity of each eye as 100%. Note that A and B in FIG. 2 indicate batteries using cathodes with the same symbols.

また前記本発明陰極Aを作製する際に用いた含
浸液としての硝酸カドミウム溶液をCd:Ni−
99:1(重量比)の割合で硝酸ニツケルを添加し
た硝酸カドミウム溶液に代え、その他は同一で本
発明陰極Cを作製すると共に、同様に前記比較陰
極Bを作製する際に用いた含浸液をCd:Ni=
99:1の割合で硝酸ニツケルを添加した硝酸カド
ミウム溶液に代えて比較陰極Dを作製し、これら
陰極を用いたニツケル−カドミウム電池のサイク
ル特性図を第3図に示した。
In addition, a cadmium nitrate solution as an impregnating liquid used in producing the cathode A of the present invention was used as a Cd:Ni−
Cathode C of the present invention was prepared with the other being the same except that the cadmium nitrate solution to which nickel nitrate was added at a ratio of 99:1 (weight ratio) was used, and the impregnating liquid used in the same manner when preparing the comparative cathode B was used. Cd: Ni=
Comparative cathode D was prepared in place of a cadmium nitrate solution to which nickel nitrate was added at a ratio of 99:1, and a cycle characteristic diagram of a nickel-cadmium battery using these cathodes is shown in FIG.

第2図及び第3図から明らかなように本発明陰
極A及びCを用いた電池は比較陰極B及びDを用
いた電池に比べてサイクル寿命が向上している。
これは本発明陰極A及びCが何れも焼成後に強制
放電を行なつて水酸化ニツケルを陰極中に生成し
ているのに対し、比較電池B及びDはこの強制放
電を行なつていないので水酸化ニツケルが生成し
ておらず、この水酸化ニツケルの生成の有無によ
つてサイクル特性の差が生じたものと考えられ
る。また本発明陰極Cに於いては焼成前に生成さ
れた水酸化ニツケルが焼成後の強制放電により、
その添加効果を充分に発揮できるようになつたも
のと考えられる。
As is clear from FIGS. 2 and 3, the batteries using cathodes A and C of the present invention have improved cycle life compared to the batteries using comparative cathodes B and D.
This is because cathodes A and C of the present invention both perform forced discharge after firing to generate nickel hydroxide in the cathode, whereas comparative batteries B and D do not perform this forced discharge, so that nickel hydroxide is generated in the cathode. It is thought that nickel oxide was not produced, and the difference in cycle characteristics was caused by whether or not nickel hydroxide was produced. In addition, in the cathode C of the present invention, nickel hydroxide generated before firing is caused by forced discharge after firing.
It is thought that the effect of its addition can now be fully demonstrated.

尚、0.1C〜0.2C程度の電流値で極板容量の150
%〜250%程度の充電量を与えていた従来の化成
に比較すれば、上記実施例では化成時間は1/10
〜1/30程度に短縮される。
In addition, at a current value of about 0.1C to 0.2C, the plate capacity is 150%
Compared to conventional chemical formation that gives a charge amount of about 250% to 250%, the formation time in the above example is 1/10.
It will be shortened to ~1/30.

(ト) 発明の効果 本発明の焼結式カドミウム陰極の製造方法は、
多孔性ニツケル焼結基板に硝酸カドミウム溶液の
含浸を伴う化学含浸水法により水酸化カドミウム
を充填した極板を200℃以上の温度で焼成し、前
記水酸化カドミウムを実質的に全て酸化カドミウ
ムに変化させ、次いで苛性アルカリ中で強制的に
放電し、その後充電を行なうものであるから、充
放電に要する時間を短縮することができ、また優
れたサイクル特性を得ることができる。
(g) Effects of the invention The method for manufacturing a sintered cadmium cathode of the present invention includes:
A porous nickel sintered substrate is filled with cadmium hydroxide by a chemical impregnation water method that involves impregnating a cadmium nitrate solution, and the electrode plate is fired at a temperature of 200°C or higher, and substantially all of the cadmium hydroxide is converted to cadmium oxide. Since the battery is then forcibly discharged in a caustic alkali and then charged, the time required for charging and discharging can be shortened and excellent cycle characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はサイクリツクボルタントリーのチヤー
ト、第2図及び第3図はサイクル特性図である。
FIG. 1 is a chart of cyclic voltage, and FIGS. 2 and 3 are cycle characteristic diagrams.

Claims (1)

【特許請求の範囲】[Claims] 1 多孔性ニツケル焼結基板に硝酸カドミウム溶
液の含浸を伴う化学含浸法により水酸化カドミウ
ムを充填した極板を、200℃以上の温度で焼成し、
前記水酸化カドミウムを実質的に全て酸化カドミ
ウムに変化させ、次いで苛性アルカリ中で強制的
に放電し、その後充電を行なうことを特徴とする
焼結式カドミウム陰極の製造方法。
1. An electrode plate filled with cadmium hydroxide by a chemical impregnation method involving impregnation of a cadmium nitrate solution into a porous sintered nickel substrate is fired at a temperature of 200°C or higher,
A method for producing a sintered cadmium cathode, which comprises converting substantially all of the cadmium hydroxide into cadmium oxide, then forcibly discharging in a caustic alkali, and then charging.
JP60255381A 1985-11-14 1985-11-14 Manufacture of sintered cadmium anode Granted JPS62115662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60255381A JPS62115662A (en) 1985-11-14 1985-11-14 Manufacture of sintered cadmium anode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60255381A JPS62115662A (en) 1985-11-14 1985-11-14 Manufacture of sintered cadmium anode

Publications (2)

Publication Number Publication Date
JPS62115662A JPS62115662A (en) 1987-05-27
JPH0410180B2 true JPH0410180B2 (en) 1992-02-24

Family

ID=17277970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60255381A Granted JPS62115662A (en) 1985-11-14 1985-11-14 Manufacture of sintered cadmium anode

Country Status (1)

Country Link
JP (1) JPS62115662A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3685726B2 (en) 2001-03-22 2005-08-24 三洋電機株式会社 Method for producing sintered cadmium negative electrode

Also Published As

Publication number Publication date
JPS62115662A (en) 1987-05-27

Similar Documents

Publication Publication Date Title
JP2000003707A (en) Alkaline storage battery
AU659631B2 (en) Method of preparing a rechargeable modified manganese-containing material by electrolytic deposition and related material
JPS62291871A (en) Enclosed type nickel-cadmium storage battery
US3236690A (en) Rechargeable alkaline cell and liquid phase-containing amalgam anode therefor
JPH0410180B2 (en)
JPH0221098B2 (en)
JPS63155552A (en) Enclosed type nickel-cadmium storage battery
JPS59872A (en) Manufacture of enclosed nickel-cadmium storage battery
JP2865391B2 (en) Method for producing nickel hydroxide electrode for alkaline storage battery
JP4411860B2 (en) Storage battery
JPS6188453A (en) Nickel positive electrode for alkaline storage battery
JP2003323913A (en) Method for manufacturing lead storage battery
JPS5933758A (en) Sealed nickel cadmium battery
JP3414184B2 (en) Method for producing positive electrode plate for alkaline storage battery
JPS612268A (en) Manufacture of sealed nickel-cadmium battery
JPS5838459A (en) Manufacture of plate for enclosed alkaline battery
JPH0320860B2 (en)
JP2001035526A (en) Nickel hydrogen storage battery
WO2001075993A1 (en) Nickel positive electrode plate and alkaline storage battery
JP2786906B2 (en) Manufacturing method of sealed alkaline storage battery
JPS63158761A (en) Solid hydrogen battery
JP2002343413A (en) Seal type lead-acid battery
JPS5838458A (en) Manufacture of plate for enclosed alkaline battery
JPH01146253A (en) Manufacture of cadmium electrode for battery
JPS61237371A (en) Manufacture of alkaline storage battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term