JPH0399252A - Method and apparatus for estimating and displaying remaining life of member - Google Patents

Method and apparatus for estimating and displaying remaining life of member

Info

Publication number
JPH0399252A
JPH0399252A JP1235723A JP23572389A JPH0399252A JP H0399252 A JPH0399252 A JP H0399252A JP 1235723 A JP1235723 A JP 1235723A JP 23572389 A JP23572389 A JP 23572389A JP H0399252 A JPH0399252 A JP H0399252A
Authority
JP
Japan
Prior art keywords
length
remaining life
damage
determined
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1235723A
Other languages
Japanese (ja)
Other versions
JP2802114B2 (en
Inventor
Shigeo Sakurai
茂雄 桜井
Masahiro Otaka
大高 正広
Tasuku Shimizu
翼 清水
Ryoichi Kaneko
金子 了市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1235723A priority Critical patent/JP2802114B2/en
Publication of JPH0399252A publication Critical patent/JPH0399252A/en
Application granted granted Critical
Publication of JP2802114B2 publication Critical patent/JP2802114B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

PURPOSE:To achieve higher reliability and safety by measuring limit damage length and actual length of a flaw. CONSTITUTION:Degree of damage is detected as length (a) of a flaw with a detector 5. The length ai of a damage is estimated at the subsequent operation, for example, after 6 months from the length (a) detected. The subsequent formula is determined from a detection or calculation value of the length of the flaw at present. log (a)=C(t/ tr), wherein C represents constant determined by grain size, tr breaking life, (t) elapsed time for member under a high temperature. On the other hand, a hysteresis loop area A is detected with an aging detector 10 to calculate a limit damage length acr for the member from the area A. A forecast limit damage length acri after 6 months is forecast by estimating a progress of the limit damage length acr. The lengths ai and acri are compared and when the estimated damage length ai does not reach the forecast limit damage length acri, after the estimating period, the life of the member does not yet expire even after the 6 months. Hence, the extra life of the member is diagnosed. In the diagnosis of the residual life, the life is determined as time until it reaches intersection between extension of the estimated damage length ai and extension of the forecast limit damage value acri as 100% of life.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は材料を劣化させる環境下例えば高温環境下や高
放射線下等で使用される部材の余寿命診断に係り、特に
、部材の余寿命を非熟練者でも的確に信頼性良く且つ迅
速に診断するに好適な余寿命診断方法及び診断装置並び
に診断結果を表示する表示方法及び表示装置に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to the remaining life diagnosis of components used in environments that degrade materials, such as high temperature environments and high radiation environments, and particularly relates to the remaining life diagnosis of components. The present invention relates to a remaining life diagnosing method and a diagnostic device suitable for accurately, reliably and quickly diagnosing even an unskilled person, and a display method and a display device for displaying the diagnosis results.

[従来の技術] 火力発電プラントや原子力発電プラント等を運転する場
合、その運転の安全性や電力の安定供給を図る必要があ
る。そこで、プラントを構成する各種の部品が損壊して
故障を起こし、プラントを長時間運転停止させることが
ないように、各部品が最良の状態となるように保つ必要
がある。一方、まだ寿命が尽きないのに部品を新品に交
換するの )は、コストが嵩み無駄であると共に、−船
釣な初期故障率の高さを鑑みるとプラントの円滑な運転
をも阻害する要因となる。従って、各部品の余寿命を診
断し、損壊する要因の高い部品から交換するのがコスト
の面からも、また、プラント運転効率や安全性の面から
も好ましい。
[Background Art] When operating a thermal power plant, a nuclear power plant, etc., it is necessary to ensure operational safety and stable supply of electric power. Therefore, it is necessary to maintain each part in the best condition so that the various parts constituting the plant will not be damaged and malfunction, causing the plant to be shut down for a long period of time. On the other hand, replacing parts with new ones even though their lifespan has not yet expired is not only costly and wasteful, but also impedes the smooth operation of the plant, given the high initial failure rate. It becomes a factor. Therefore, it is preferable to diagnose the remaining life of each component and replace the components starting with those that are most likely to cause damage, in terms of cost, plant operation efficiency, and safety.

従来の余寿命診断では、例えば特開昭60−19665
7号公報に記載されているように、高温部材の使用状態
量から温度・応力を算出し、この算出量と高温部材の硬
さ・分極特性・欠陥状態等の部材状態量とから、この高
温部材の受けている損傷量を算出し、この算出値から余
寿命を推定している。
In the conventional remaining life diagnosis, for example,
As described in Publication No. 7, the temperature and stress are calculated from the usage state quantities of the high-temperature member, and the high-temperature The amount of damage sustained by the component is calculated, and the remaining life is estimated from this calculated value.

実際に行われている余寿命診断では、上記従来技術と同
様に複数項目に及ぶ非破壊検査結果を評価し、その部品
の余寿命を推定している。
In the remaining life diagnosis that is actually performed, the remaining life of the component is estimated by evaluating the results of non-destructive tests covering a plurality of items, similar to the above-mentioned conventional technology.

[発明が解決しようとする課題] 従来の余寿命診断技術では、複数項目に及ぶ非破壊検査
結果を用いて余寿命を推定しているが、的確な推定を行
うには、高度な知識と豊がな経験がないとできず、非熟
練者がこの余寿命を診断することができないという問題
がある。これは、従来はやみくもに色々な非破壊検査結
果を求め、これらの相互関係(因果関係)を定量化する
ことなく、この因果関係を経験に頼って判断しているた
めである。
[Problem to be solved by the invention] Conventional remaining life diagnosis technology estimates remaining life using non-destructive test results covering multiple items, but accurate estimation requires advanced knowledge and wealth. There is a problem in that non-experts cannot diagnose the remaining lifespan because it requires experience. This is because in the past, various non-destructive test results were obtained blindly, and the causal relationship was determined based on experience without quantifying their mutual relationship (causal relationship).

本発明の第1の目的は、的確な余寿命を診断することが
できる(高温)部材の余寿命診断方法及び装置を提供す
ることにある。
A first object of the present invention is to provide a method and apparatus for diagnosing the remaining life of a (high temperature) member that can accurately diagnose the remaining life.

本発明の第2の目的は、非熟練者でも容易且つ迅速に余
寿命を判断できる表示方法及び表示装置を提供すること
にある。
A second object of the present invention is to provide a display method and display device that allow even an unskilled person to easily and quickly determine the remaining life.

[課題を解決するための手段] 上記第1の目的は、部材の物理量を検出してその部材の
現時点での限界損傷長さacr(この長さは、傷の長さ
がこの長さに達したときその部材が損壊することを示す
値である。従って、この長さは材料の劣化が進むにつれ
て短くなる。)を求め、この限界損傷長さaCrと、実
際に検出した部材表面あるいは内部の傷の長さaとから
部材の余寿命を診断することで、達成される。
[Means for Solving the Problem] The first objective is to detect the physical quantity of a member and determine the current critical damage length acr (this length is the length that the flaw has reached). This is the value indicating that the member will be damaged when the material is damaged. Therefore, this length will become shorter as the material deteriorates. This is achieved by diagnosing the remaining life of the member from the length a of the scratch.

上記第1の目的は、また、部材の物理量を検出してその
部材の限界損傷長さacrの進行予測線を求め、実際の
部材表面あるいは内部の傷の長さの検出値aから傷の成
長予測線を求め、面子測線の交点を寿命限界値として余
寿命を診断することで、達成される。
The first purpose is to detect the physical quantities of the member to determine the progression prediction line of the critical damage length acr of the member, and to detect the growth of the flaw from the detected value a of the actual length of the flaw on the surface or inside of the member. This is achieved by finding a predicted line and diagnosing the remaining life using the intersection of the face measurement lines as the life limit value.

上記第2の目的は、限界損傷長さacrと、傷の実際に
検出した長さaとを、時間軸を共通にしたグラフ画面上
に過去のデータと共に表示することで、達成される。
The second objective is achieved by displaying the critical damage length acr and the actually detected length a of the flaw together with past data on a graph screen that shares a common time axis.

上記第2の目的は、また、上記進行予測線と成長予測線
を時間軸を共通にしたグラフ画面上に表示することで、
達成される。
The second purpose is to display the progress prediction line and the growth prediction line on a graph screen with a common time axis.
achieved.

[作用] 部材の内部または表面で成長する傷がある程度の長さに
なると、その部材はその傷により使用不能となり、部材
の寿命が尽きることになる。従って、傷の成長を予測す
ることで、その部材の余寿命を診断することができる。
[Operation] When the scratches that grow inside or on the surface of a member reach a certain length, the member becomes unusable due to the scratches, and the life of the member comes to an end. Therefore, by predicting the growth of scratches, the remaining life of the component can be diagnosed.

しかし、傷の長さの予測だけで、的確な診断はできない
。つまり、その部材の材質が何の劣化も受けなければ、
傷の長さの予測だけで、十分な余寿命の診断も可能であ
るが、材質自体が劣化していくと、予測より短い傷の長
さでその部材は使用不能となる。つまり、材質の劣化の
程度によりその部材の限界損傷長さは短くなる。そこで
、本発明では、材質の劣化の程度と傷の長さの両方を勘
案して診断するので、的確な余寿命の診断が可能となる
However, it is not possible to make an accurate diagnosis just by predicting the length of the wound. In other words, if the material of the component does not undergo any deterioration,
It is possible to fully diagnose the remaining life just by predicting the length of the scratch, but as the material itself deteriorates, the length of the scratch becomes shorter than predicted and the component becomes unusable. In other words, the critical damage length of a member becomes shorter depending on the degree of deterioration of the material. Therefore, in the present invention, diagnosis is performed taking into consideration both the degree of deterioration of the material and the length of the flaw, so it is possible to accurately diagnose the remaining life.

また、余寿命診断装置による診断結果を表示するに当た
り、限界損傷長さと実際に検出した傷の長さを画面上に
共通時間軸を用いて表示することで、−目で劣化の進行
及び傷の成長が分かり、非熟練者でも容易に判定するこ
とが可能となる。
In addition, when displaying the diagnosis results from the remaining life diagnosis device, by displaying the limit damage length and the length of the actually detected scratches on the screen using a common time axis, it is possible to visually determine the progress of deterioration and the extent of scratches. Growth can be seen and even non-experts can easily judge.

[実施例] 以下、本発明の一実施例を図面を参照して説明する。[Example] Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は、本発明の一実施例における余寿命診断装置の
ブロック構成図である。本実施例LQおける余寿命診断
装置は、部材表面の傷を検出する損傷度検出システム1
と、部材の劣化程度を検出する劣化度検出システム2と
、両システム1.2の検出値の相関関係から余寿命を診
断する余寿命診断器3と、該余寿命診断器3の診断結果
を表示する表示装置4からなる。
FIG. 1 is a block diagram of a remaining life diagnosis device in an embodiment of the present invention. The remaining life diagnosis device in this embodiment LQ is a damage level detection system 1 that detects scratches on the surface of a member.
, a deterioration degree detection system 2 that detects the degree of deterioration of the component, a remaining life diagnostic device 3 that diagnoses the remaining life from the correlation between the detected values of both systems 1.2, and a diagnostic result of the remaining life diagnostic device 3. It consists of a display device 4 for displaying images.

損傷度検出システム1として1本実施例では、後述する
ように光学的に部材表面の傷を直接検出するが、これに
限定されるものではなく、例えば超音波探傷装置で部材
内部の傷を検出するものでもよいことはいうまでもない
。また、劣化度検出システム2として、本実施例では、
部材の磁気特性を検出するが、これに限定されるもので
はなく、例えば、部材の電気抵抗や硬度等劣化に従って
変化する物理量を検出するものであればよい。更に。
As a damage level detection system 1 In this embodiment, flaws on the surface of a member are directly detected as described later, but the present invention is not limited to this, and for example, flaws inside the member may be detected using an ultrasonic flaw detector. It goes without saying that anything you do is fine. In addition, in this embodiment, as the deterioration degree detection system 2,
Although the magnetic properties of the member are detected, the present invention is not limited to this, and any physical quantity that changes as the member deteriorates, such as the electrical resistance or hardness of the member, may be detected. Furthermore.

この実施例では、熱による部材の余寿命を診断するが、
熱疲労によるものに限るものではなく、例えば、中性子
線等の放射線を浴びて損傷、劣化を受ける部材や、他の
運転サイクルを繰り返すことで損傷、劣化を受ける部材
の余寿命診断にも適用できることは当然である。
In this example, the remaining life of a member due to heat is diagnosed.
It is not limited to thermal fatigue, but can also be applied to remaining life diagnosis of components that are damaged or deteriorated by exposure to radiation such as neutron beams, or components that are damaged or deteriorated by repeated operation cycles. Of course.

本実施例に係る損傷度検出システム1は、光学的損傷検
出器である表面微視損傷検出器5と、該検出器5で撮ら
れた損傷画像の倍率や焦点等を調節する撮像制御装置6
と、検出対象とする部材表面の傷の位置となるように検
出器5の位置制御を行う位置制御装置7と、損傷画像を
画像処理してディジタル化し損傷の長さを検出する画像
処理装置8と、検出した傷の夫々の長さの統計処理を行
い部材の損傷度を演算する損傷度演算装置9からなる。
The damage level detection system 1 according to the present embodiment includes a surface microscopic damage detector 5 that is an optical damage detector, and an imaging control device 6 that adjusts the magnification, focus, etc. of the damage image taken by the detector 5.
, a position control device 7 that controls the position of the detector 5 so as to be at the position of the flaw on the surface of the member to be detected, and an image processing device 8 that processes and digitizes the damage image to detect the length of the damage. and a damage degree calculation device 9 that performs statistical processing on the length of each detected flaw to calculate the degree of damage to the member.

実際に、部材の損傷度を検出する場合に問題となるのは
、検出器5が寸法1mm以下の損傷を制度良く検出する
ことができるか否かである。損傷の主たる形態である金
属材料中に含まれる非金属介在物等の微細欠陥や腐食孔
から発生する亀裂(寿命初期に発生する亀裂)は数十μ
mオーダー(結晶粒−グレイン−と同程度)であり、こ
れは微視的領域の問題である。この微視的損傷の成長と
該部材の寿命とは、例えば特開昭61−139743号
公報記載の様に、部材に加わる負荷状態や材質にかかわ
らず一意的な関係がある。このため、損傷の長さを微視
的損傷の時から精度良く検出することが重要となる。し
かし、従来は係る微視的損傷をあまり問題としておらず
、このため、検出器も高精度のものを使用していなかっ
た。しかし、本発明では、微視的損傷の時から問題とな
るため、検出器5として、高精度のものを使用している
In fact, when detecting the degree of damage to a member, the problem is whether the detector 5 can accurately detect damage with a size of 1 mm or less. The main form of damage is micro defects such as non-metallic inclusions contained in metal materials, and cracks that occur from corrosion holes (cracks that occur early in life), which are several tens of microns deep.
It is on the order of m (same size as a crystal grain), and this is a problem in the microscopic region. There is a unique relationship between the growth of microscopic damage and the life of the member, regardless of the load applied to the member or the material, as described in, for example, Japanese Unexamined Patent Publication No. 61-139743. Therefore, it is important to accurately detect the length of damage from the time of microscopic damage. However, in the past, such microscopic damage was not considered much of a problem, and for this reason, highly accurate detectors were not used. However, in the present invention, since microscopic damage becomes a problem, a highly accurate detector 5 is used.

第2図は、表面微視損傷検出器5の詳細構成図である。FIG. 2 is a detailed configuration diagram of the surface microscopic damage detector 5. As shown in FIG.

この検出器5は、被観察物(余寿命診断対象部材)20
の表面の画像を検出器内に取り込むプリズム21と、プ
リズム21により取り込まれた画像を拡大するレンズ系
22と、拡大された像の倍率を調整するズームレンズ2
3と、これらの光学系で得た画像を電気信号に変換する
COD等の固体撮像素子でなる光電変換装置(TVカメ
ラ)24と、ズームレンズの撮像調節を行うサーボモー
タ26と、光電変換装置I24と第1図に示す撮像制御
装置6とを接続するケーブル25とからなる。尚、サー
ボモータ26は、ケーブル25を介して撮像制御装置6
から送出されてくる制御信号で制御される。斯かる構成
により、数十μmの微細な損傷でも拡大して検出するこ
とが可能となる。
This detector 5 is connected to an object to be observed (member to be diagnosed with remaining life) 20
a prism 21 that captures an image of the surface of
3, a photoelectric conversion device (TV camera) 24 made of a solid-state imaging device such as a COD that converts images obtained by these optical systems into electrical signals, a servo motor 26 that adjusts the imaging of the zoom lens, and a photoelectric conversion device It consists of a cable 25 that connects I24 and the imaging control device 6 shown in FIG. Note that the servo motor 26 is connected to the imaging control device 6 via the cable 25.
It is controlled by control signals sent from. Such a configuration makes it possible to magnify and detect even minute damage of several tens of micrometers.

第1図の劣化度検出システム2は、検査対象部材が熱疲
労でどの程度脆化しているかを検出するものである0本
実施例では、どの程度脆化している否かを、その部材の
磁気ヒステリシスループの面積から判断する。そのため
、本実施例における劣化検出システム2は、詳細は後述
する磁気劣化検出装置10と、該検出装置10の励磁や
磁気検出の制御を行う磁化制御装置11と、検査対象位
置の制御を行う位置制御装置12と、検出装置10によ
る検出データを劣化パラメータとして処理するデータ処
理装置13と、データ処理した劣化パラメータをその部
材材料のデータベースの格納データに基づいて評価する
劣化度演算装置14から成る。
The deterioration degree detection system 2 shown in FIG. Judging from the area of the hysteresis loop. Therefore, the deterioration detection system 2 in this embodiment includes a magnetic deterioration detection device 10 (details of which will be described later), a magnetization control device 11 that controls excitation and magnetic detection of the detection device 10, and a position that controls the inspection target position. It consists of a control device 12, a data processing device 13 that processes detection data from the detection device 10 as deterioration parameters, and a deterioration degree calculation device 14 that evaluates the data-processed deterioration parameters based on data stored in a database of the member and material.

第3図は、磁気劣化検出装置10の詳細構成図である。FIG. 3 is a detailed configuration diagram of the magnetic deterioration detection device 10.

この検出装置は、磁化制御装置11からの制御信号を受
けて波形が制御される波形制御型発振器31と1発振出
力を増幅するアンプ32と、アンプ32から出力される
電流が流れることで励磁される励磁コイル33と、該励
磁コイル33と被測定対象部材20との間に設けられる
磁気センサ34と、該センサ34の出力を変換する変換
器35とから成る。
This detection device includes a waveform controlled oscillator 31 whose waveform is controlled in response to a control signal from the magnetization control device 11, an amplifier 32 that amplifies one oscillation output, and is excited by the flow of the current output from the amplifier 32. It consists of an excitation coil 33, a magnetic sensor 34 provided between the excitation coil 33 and the member to be measured 20, and a converter 35 that converts the output of the sensor 34.

次に、上述した構成の余寿命診断装置による診断原理に
ついて説明する。
Next, the principle of diagnosis by the remaining life diagnosis apparatus having the above-described configuration will be explained.

多くの高温機器に用いられる低合金鋼は、高温で長時間
使用すると脆化することが知られている。
It is known that low-alloy steel used in many high-temperature devices becomes brittle when used at high temperatures for long periods of time.

そこで、材料を長時間高温に晒しその磁気特性の変化を
調べた結果が第4図に示す特性グラフである。このグラ
フは、横軸が、温度Tと時間tのパラメータPであり、
縦軸が、磁化特性として磁気ヒステリシスループの面積
Aである。パラメータPに対して、検出したヒステリシ
スループ面積Aをプロットしていくと、第4図に示す関
係があることが分かる。つまり、ヒステリシスループ面
積Aは、パラメータPつまり温度Tと時間tの関数であ
ることが分かる。
Therefore, the characteristics graph shown in FIG. 4 is the result of exposing the material to high temperatures for a long time and examining the changes in its magnetic properties. In this graph, the horizontal axis is the parameter P of temperature T and time t,
The vertical axis is the area A of the magnetic hysteresis loop as the magnetization characteristic. When the detected hysteresis loop area A is plotted against the parameter P, it can be seen that the relationship shown in FIG. 4 exists. In other words, it can be seen that the hysteresis loop area A is a function of the parameter P, that is, the temperature T and the time t.

\ 一方、材料の脆化(劣化)を定量的に表示するシャルピ
ー衝撃値(CVN)と磁化ヒステリシスループ面積Aと
は、第5図に示す様に、相関関係を有することが実験に
より判明している。つまり、部材が高温に晒された場合
、その温度Tと高温下に置かれた時間tに応じてヒステ
リシスループ面積Aが変化し、この面積Aはシャルピー
衝撃値と相関関係を持つので、ヒステリシスループ面積
Aからその部材の劣化度を評価することができる。
\ On the other hand, it has been found through experiments that there is a correlation between the Charpy impact value (CVN), which quantitatively indicates the embrittlement (deterioration) of a material, and the magnetization hysteresis loop area A, as shown in Figure 5. There is. In other words, when a component is exposed to high temperature, the hysteresis loop area A changes depending on the temperature T and the time t it is exposed to high temperature, and this area A has a correlation with the Charpy impact value, so the hysteresis loop The degree of deterioration of the member can be evaluated from the area A.

本発明では、この劣化度の進行程度と、損傷の進行程度
の両方から、部材の余寿命を診断するのである。そこで
、次に、非破壊的に検出した損傷度(本実施例では部材
表面の傷の長さa)と同じく非破壊的に検出した劣化度
(本実施例では磁化ヒステリシスループ面積a)とを使
用して、余寿命を診断する原理について説明する。
In the present invention, the remaining life of the member is diagnosed based on both the degree of deterioration and the degree of damage. Therefore, next, the degree of damage detected non-destructively (in this example, the length a of the scratch on the member surface) and the degree of deterioration detected non-destructively (in this example, the magnetization hysteresis loop area a) are This section explains the principle of using this method to diagnose remaining life.

第7図は、第1図に示す余寿命診断器で実行される余寿
命診断手順を示すフローチャートである。
FIG. 7 is a flowchart showing the remaining life diagnosis procedure executed by the remaining life diagnosis device shown in FIG.

先ず、損傷度を検出器5で検出する。本実施例では、傷
の長さaを検出する。尚、この長さaは。
First, the degree of damage is detected by the detector 5. In this embodiment, the length a of the scratch is detected. Furthermore, this length a is.

検出した長さaそのままでもよいし、また、特開昭61
−139743号公報記載の技術の様にこの長さaに補
正を施した値でもよい。本実施例では、多数の傷の長さ
を夫々検出してその統計的処理により代表的な長さaを
算出している(ステップ1)。次に、ステップ2では、
その算出した長さaから次回例えば6ケ月後の損傷長さ
aiを推定する0例えば、Δaだけ成長すると推定され
る場合には、 ai=a +Δ a とする、Δaの推定は、例えば前回の検出・算出aとの
差から推定してもよいが、本実施例では、現時点の傷の
長さの検出値あるいは算出値から直接次式から求める。
The detected length a may be left as it is, or
This length a may be corrected as in the technique described in Japanese Patent No. 139743. In this embodiment, the lengths of a large number of scratches are detected and a representative length a is calculated through statistical processing (step 1). Next, in step 2,
From the calculated length a, estimate the damage length ai next time, for example, after 6 months. For example, if it is estimated that it will grow by Δa, set ai=a + Δ a. The estimation of Δa is, for example, the previous damage length ai. Although it may be estimated from the difference from the detected/calculated length a, in this embodiment, it is determined directly from the detected value or calculated value of the current flaw length using the following equation.

1og a=C(t/l r) ここで、Cは実験的に定めたり、グレインサイズで定め
ることのできる定数であり、その値としては例えばro
、2J程度である。trは、破断寿命でありこの値は不
明である。しかし、その部材の高温下での経過時間tと
の比(t/lr)とaとの関係は分かっているので、こ
の式から損傷の成長の程度が分かる。
1og a=C(t/l r) Here, C is a constant that can be determined experimentally or based on the grain size, and its value is, for example, ro
, about 2J. tr is the rupture life, and this value is unknown. However, since the relationship between a and the ratio (t/lr) to the elapsed time t of the member under high temperature is known, the extent of damage growth can be determined from this equation.

一方、劣化検出装置1oでヒステリシスループ面積Aを
検出し、この面積Aからその部材における限界損傷長さ
acrを算出する(ステップ3)。
On the other hand, the deterioration detection device 1o detects the hysteresis loop area A, and calculates the critical damage length acr in the member from this area A (step 3).

この算出原理を説明する。限界損傷長さacrは、その
部材の靭性に係わるものである。このため、限界損傷長
さacrは、その部材の破壊抵抗を示す破壊靭性値KI
Cから次式により求めることができる。
The principle of this calculation will be explained. The critical damage length acr is related to the toughness of the member. Therefore, the critical damage length acr is the fracture toughness value KI that indicates the fracture resistance of the member.
It can be determined from C using the following equation.

KIC=f ・ σ・l]=7ττ丁 f:部材の形状パラメータ σ:応力 また、この破壊靭性値KICは、前述したシャルピー衝
撃値CVNと次の関係があるので、シャルピー衝撃値C
vNから求めることができる。
KIC=f・σ・l]=7ττcf: Shape parameter of the member σ: Stress Also, since this fracture toughness value KIC has the following relationship with the Charpy impact value CVN mentioned above, the Charpy impact value C
It can be obtained from vN.

(KIC/ a ys)” = 5 ((CVN/ a
 ys) −0,05)σys:材料の降伏点 一方、前述したように、シャルピー衝撃値CVNと、ヒ
ステリシスループ面積Aとは、第5図に示す関係がある
。つまり、 1ogCVN=A なる関係がある。従って、限界損傷長さacrは、ヒス
テリシスループ面積Aから求めることができる。
(KIC/a ys)” = 5 ((CVN/a
ys) -0,05) σys: Yield point of material Meanwhile, as described above, the Charpy impact value CVN and the hysteresis loop area A have the relationship shown in FIG. In other words, the relationship is 1ogCVN=A. Therefore, the critical damage length acr can be determined from the hysteresis loop area A.

次のステップ4では、この限界損傷長さacrの進行を
予測して、例えば6ケ月後の限界損傷予測長さa cr
iを予測する。この予測つまり、限界損傷予測長さがど
の程度の割合で減少していくかのΔa′ を予測し a cri= a cr−Δa′ として求める。Δa′は、今回求めた限界損傷長さと前
回求めた限界予測長さから求めることでもよいが、本実
施例では、今回求めた限界損傷長さだけからこのΔa′
っまりa criを予測する。限界損傷長さacrは、
前述したように、シャルピー衝撃値CVNと相関関係を
有するヒステリシスループ面積Aから求まり、この面積
AがパラメータP(温度Tと時間tの関数)の関数であ
ることから、限界損傷長さacrはシャルピー衝撃値と
パラメータPの関数となる。従って、限界損傷長さac
rから限界損傷予測長さa criが求まる。
In the next step 4, the progression of this critical damage length acr is predicted, and the predicted critical damage length a cr after 6 months, for example, is calculated.
Predict i. This prediction, that is, the rate at which the predicted critical damage length will decrease, Δa', is predicted and determined as acri=acr-Δa'. Δa′ may be calculated from the currently determined critical damage length and the previously determined critical predicted length, but in this example, Δa′ is determined from only the currently determined critical damage length.
Predict the exact acri. The critical damage length acr is
As mentioned above, the critical damage length acr is found from the hysteresis loop area A, which has a correlation with the Charpy impact value CVN, and since this area A is a function of the parameter P (a function of temperature T and time t), the critical damage length acr is determined by the Charpy impact value CVN. It is a function of the impact value and the parameter P. Therefore, the critical damage length ac
The critical damage prediction length acri is determined from r.

次のステップ5では、ステップ2で求めた長さaiと、
ステップ4で求めた長さa criの大小比較を行い、
予測損傷長さaiが限界損傷予測長さaeriに達して
ない場合には、予測期間後において、つまり、前記例で
は6ケ月後にも未だ寿命は尽きないので、その部材の余
寿命の診断を行い(ステップ6)、ステップ1,3に戻
る。余寿命の診断は、詳細は後述するように、予測損傷
長さaiの延長線と限界損傷予測値a criの延長線
との交点を寿命100%として、それに達するまでの時
間として求める。
In the next step 5, the length ai obtained in step 2 and
Compare the length acri obtained in step 4,
If the predicted damage length ai has not reached the limit predicted damage length aeri, the remaining life of the component is diagnosed because the life is still not over after the prediction period, that is, after 6 months in the above example. (Step 6), return to Steps 1 and 3. As will be described in detail later, the diagnosis of the remaining life is determined as the time required to reach 100% life, which is the intersection of the extension line of the predicted damage length ai and the extension line of the critical damage prediction value acri.

ステップ5での判定で、予測損傷長さaiが限界損傷予
測長さa cri以上になる場合、予測期間後には必ず
寿命が尽きるので、ステップ7にてその部材の補修や交
換を行う。
If it is determined in step 5 that the predicted damage length ai is equal to or greater than the critical predicted damage length acri, the member will necessarily reach the end of its life after the prediction period, so in step 7 the member is repaired or replaced.

第7図のステップ6における余寿命診断において、本実
施例では、表示装置に第6図に示すグラフを表示して、
非熟練者でも容易且つ迅速に余寿命を診断できるように
する。
In the remaining life diagnosis in step 6 of FIG. 7, in this embodiment, the graph shown in FIG. 6 is displayed on the display device,
To enable even an unskilled person to easily and quickly diagnose remaining life.

第6図に示す様に、余寿命診断器3は過去の検出・算出
データを格納しており、今回検出しあるいは算出した損
傷長さaiと限界損傷長さaerを画面上にプロットす
る。このとき、画面の横軸を共通にして(例えばt/l
 rとする。)プロットし、損傷長さaの成長と、限界
損傷長さの短くなる傾向とが一目瞭然となるようにする
。これにより、非熟練者でも部材の劣化傾向と傷の成長
の程度並びに両者の相関関係が容易に把握できる。
As shown in FIG. 6, the remaining life diagnostic device 3 stores past detection and calculation data, and plots the currently detected or calculated damage length ai and limit damage length aer on the screen. At this time, set the horizontal axis of the screen to be common (for example, t/l
Let it be r. ) so that the growth of the damage length a and the tendency for the critical damage length to become shorter can be seen at a glance. Thereby, even an unskilled person can easily grasp the deterioration tendency of the member, the degree of flaw growth, and the correlation between the two.

また、この表示画面において、各プロット点の延長線(
予測線)を例えば最小二乗法で求めて表”示させること
で、その傾向がより明確になる。更に、過去の予測線と
今回の予測線の変化程度が分かる様に、今回の予測線と
過去の予測線とを色分けして表示するようにしてもよい
。本実施例では、最小二乗法で予測線を求めるのではな
く、今回の検出値だけから予測線を求めるので、この予
測線も最小二乗法で求めた予測線と同時に色分は表示す
ることで、その診断精度を高めることが可能となる。
In addition, on this display screen, the extension line of each plot point (
For example, by calculating and displaying the predicted line (predicted line) using the least squares method, the trend becomes clearer.Furthermore, in order to understand the degree of change between the past predicted line and the current predicted line, The predicted line may be displayed in different colors from the past predicted line.In this embodiment, the predicted line is not determined by the least squares method, but is determined from only the current detected value, so this predicted line is also used. By displaying the color components at the same time as the predicted line obtained using the least squares method, it is possible to improve the diagnostic accuracy.

尚、部材の余寿命は、その部材の形状9位置等が異なる
と、場所によって異なってくるのが普通である。従って
、表示装置に部材全体を表示し併せて各部の余寿命に対
応させてこの表示画面上で濃淡表示したり色分は表示し
、どの部分の余寿命が短くどの部分の余寿命が長いかも
分かる様にすると、その傾向も一目瞭然となる。
Note that the remaining life of a member usually varies depending on the location if the shape, position, etc. of the member differ. Therefore, the entire part is displayed on the display device, and the remaining life of each part is displayed in shading or color on this display screen to indicate which part has a short remaining life and which part has a long remaining life. If you make it easy to understand, the trends will become obvious at a glance.

以上が本実施例における余寿命診断装置の説明であるが
、本実施例において、好適に部材の磁気特性を検出でき
る検出装置の一例を第8図に示す。
The above is a description of the remaining life diagnosis device in this embodiment. FIG. 8 shows an example of a detection device that can suitably detect the magnetic characteristics of a member in this embodiment.

この検出装置は、超伝導量子干渉素子(SQUID)を
磁気センサとして使用する。第8図において、81が5
QUIDである。この検出装置では、非磁性材料で形成
した容器87内に、超伝導材料で形成した励磁コイル8
3と液体ヘリウム等の冷却材88とを入れ、この励磁コ
イル83に電流を流し、発生させた強力な磁場で測定対
象部材20を励磁する。そして、励磁コイル38の測定
対象部材対向面以外を磁気シールド84で覆い、励磁コ
イルの中央に配置したピックアップコイル82の検出信
号を、磁気シールド84外に配置した5QUID81に
導き、5QUID81の検出信号89を磁化制御装置を
介してデータ処理装置に送るようにする。尚、86は冷
却材88の冷却装置であり、85はパイプであり、これ
らにより、冷却材88は再循環され冷却される。
This detection device uses a superconducting quantum interference device (SQUID) as a magnetic sensor. In Figure 8, 81 is 5
It is QUID. In this detection device, an excitation coil 8 made of a superconducting material is placed inside a container 87 made of a non-magnetic material.
3 and a coolant 88 such as liquid helium, a current is passed through the excitation coil 83, and the member to be measured 20 is excited by the generated strong magnetic field. Then, the excitation coil 38 is covered with a magnetic shield 84 other than the surface facing the object to be measured, and the detection signal of the pickup coil 82 placed in the center of the excitation coil is guided to the 5QUID 81 placed outside the magnetic shield 84, and the detection signal 89 of the 5QUID 81 is is sent to the data processing device via the magnetization control device. Note that 86 is a cooling device for the coolant 88, and 85 is a pipe, through which the coolant 88 is recirculated and cooled.

斯かる超伝導量子干渉素子を使用する構成とすることで
、磁場の検出を高感度にでき、材料劣化の検出精度が飛
躍的に向上する。
By using a configuration using such a superconducting quantum interference element, magnetic field detection can be made highly sensitive, and the accuracy of detecting material deterioration can be dramatically improved.

光学的表面微視損傷検出器としてレーザ顕微鏡や超音波
顕微鏡を使用すると、更に表面の損傷の検出精度が向上
する。
Using a laser microscope or an ultrasonic microscope as an optical surface microscopic damage detector further improves the accuracy of surface damage detection.

[発明の効果] 本発明によれば、部材の的確な余寿命を、非熟練者でも
、容易且つ迅速に診断でき、これにより、該部材を使用
する装置の信頼性・安全性を向上させることができ、ま
た、保守管理を容易にすることができる。
[Effects of the Invention] According to the present invention, even an unskilled person can easily and quickly diagnose the accurate remaining life of a member, thereby improving the reliability and safety of a device that uses the member. This also makes maintenance management easier.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る余寿命診断装置の構成
図、第2図は第1図に示す表面微視損傷検出器の詳細構
成図、第3図は第1図に示す磁気劣化検出装置の詳細構
成図、第4図は磁気ヒステリシスループ面積とパラメー
タP(温度Tと時間tの関数)との関係を示すグラフ、
第5図はシャルピー衝撃値と磁気ヒステリシスループ面
積との関係を示すグラフ、第6図は本発明の一実施例に
係る表示装置の表示画面例を示す説明図、第7図は第1
図に示す余寿命診断器で実行する診断手順を示すフロー
チャート、第8図は磁気劣化検出装置の別実施例の説明
図である。 1・・・損傷度検出システム、2・・・劣化度検出シス
テム、3・・・余寿命診断器、4・・・表示装置、20
・・・診断対象部材。
FIG. 1 is a block diagram of a remaining life diagnosis device according to an embodiment of the present invention, FIG. 2 is a detailed block diagram of the surface microscopic damage detector shown in FIG. 1, and FIG. A detailed configuration diagram of the deterioration detection device, and FIG. 4 is a graph showing the relationship between the magnetic hysteresis loop area and the parameter P (a function of temperature T and time t).
FIG. 5 is a graph showing the relationship between Charpy impact value and magnetic hysteresis loop area, FIG. 6 is an explanatory diagram showing an example of a display screen of a display device according to an embodiment of the present invention, and FIG.
A flowchart showing the diagnostic procedure executed by the remaining life diagnostic device shown in the figure, and FIG. 8 is an explanatory diagram of another embodiment of the magnetic deterioration detection device. DESCRIPTION OF SYMBOLS 1... Damage degree detection system, 2... Deterioration degree detection system, 3... Remaining life diagnostic device, 4... Display device, 20
...Parts to be diagnosed.

Claims (1)

【特許請求の範囲】 1、高温に晒される部材の余寿命を診断する方法におい
て、熱疲労により前記部材の表面あるいは内部で成長す
る傷の長さaを測定し、熱時効により劣化する前記部材
の物理量を測定し該測定値から限界損傷長さacrを求
め、両長さa、acrから前記部材の余寿命を診断する
ことを特徴とする余寿命診断方法。 2、高温環境下で使用される部材の余寿命を診断する方
法において、熱を受けて前記部材の表面あるいは内部で
成長する傷の長さaを測定し、該長さaの成長予測線を
求め、熱を受けて劣化する前記部材の物理量を測定し、
該測定値から該部材の破壊抵抗を示す破壊靭性値を求め
、該破壊靭性値から限界損傷長さacrを求め、該限界
損傷長さacrの予測線を求め、該予測線と前記成長予
測線の交点を寿命100%として前記部材の余寿命を診
断することを特徴とする余寿命診断方法。 3、請求項2において、成長予測線は、材料定数をC、
経過時間をt、破断寿命をtrとし、t/tr=log
a/C で求め、材料定数Cは、部材のグレインサイズあるいは
実験値から定めることを特徴とする余寿命診断方法。 4、材料を劣化させる環境下で用いられる部材の余寿命
を診断する方法において、経時的に成長する前記部材表
面あるいは内部の傷の長さを検出し、経時的に劣化が進
む前記部材の物理量を測定し、前記検出による傷の長さ
と前記測定による物理量の値とから前記部材の余寿命を
診断することを特徴とする余寿命診断方法。 5、材料を劣化させる環境下で用いられる部材の余寿命
を診断する方法において、経時的に成長する前記部材表
面あるいは内部の傷の長さを検出し、経時的に劣化が進
む前記部材の物理量を測定し該測定値から限界損傷長さ
を算出し、前記の検出した傷の長さから傷の成長予測線
を求め、前記の算出した限界損傷長さから該限界損傷長
さの進行予測線を求め、前記成長予測線と前記進行予測
線の交点を寿命の限界点として前記部材の余寿命を求め
ることを特徴とする余寿命診断方法。 6、高温環境下で使用される部材の余寿命を診断する余
寿命診断装置において、熱を受けて前記部材の表面ある
いは内部で成長する傷の長さを測定する非破壊損傷検出
手段と、熱を受けて劣化する前記部材の物理量を測定す
る非破壊劣化検出手段と、前記の両検出手段の検出値か
ら前記部材の余寿命を演算する演算手段とを備えること
を特徴とする高温部材の余寿命診断装置。 7、高温環境下で使用される部材の余寿命を診断する余
寿命診断装置において、熱を受けて前記部材の表面ある
いは内部で成長する傷の長さを測定する非破壊損傷検出
手段と、熱を受けて劣化する前記部材の物理量を測定す
る非破壊劣化検出手段と、前記非破壊損傷検出手段の検
出値から傷の長さの成長予測線を算出し前記非破壊劣化
検出手段の検出値から限界損傷長さの進行予測線を算出
し該進行予測線と前記成長予測線の交点を寿命100%
として前記部材の余寿命を算出する演算手段とを備える
ことを特徴とする高温部材の余寿命診断装置。 8、請求項7において、演算手段は、検出した傷の長さ
aを用い、成長予測線を、材料定数をC、経過時間をt
、破断寿命をtrとし、 t/tr=loga/C で求め、材料定数Cは、部材のグレインサイズあるいは
実験値から定めることを特徴とする余寿命診断装置。 9、請求項7または請求項8において、非破壊劣化検出
手段として部材の磁気ヒステリシスループの面積を測定
するものを使用し、演算手段は、温度と時間の関数とな
る前記面積の値からシャルピー衝撃値を求め、該シャル
ピー衝撃値から該部材の破壊靭性値を求め、この破壊靭
性値から該部材の測定時における限界損傷長さを求め、
この限界損傷長さから前記進行予測線を算出することを
特徴とする余寿命診断装置。 10、請求項7または請求項8において、非破壊劣化検
出手段として部材の磁気ヒステリシスループの面積を測
定するものを使用し、演算手段は、温度と時間の関数と
なる前記面積の値からシャルピー衝撃値を求め、該シャ
ルピー衝撃値から該部材の破壊靭性値を求め、この破壊
靭性値から該部材の測定時における限界損傷長さを求め
、求めた限界損傷長さと従前の求めた限界損傷長さから
前記進行予測線を算出することを特徴とする余寿命診断
装置。 11、請求項9または請求項10において、演算手段が
シャルピー衝撃値CVNから破壊靭性値KICを算出す
る場合、材料の降伏点をσysとし、(KIC/σys
)^2=5((CVN/σys)−0.05)から算出
し、破壊靭性値KICから限界損傷長さacrを求める
場合、部材の形状パラメータをf、応力をσとして KIC=f・σ・√(π・acr) の関係から算出することを特徴とする余寿命診断装置。 12、材料を劣化させる環境下で用いられる部材の余寿
命を診断する装置において、経時的に成長する前記部材
表面あるいは内部の傷の長さを非破壊的に検出する手段
と、経時的に劣化が進む前記部材の物理量を非破壊的に
測定する手段と、該測定値から限界損傷長さを算出し検
出した傷の長さから傷の成長予測線を求め算出した限界
損傷長さから該限界損傷長さの進行予測線を求め成長予
測線と進行予測線の交点を寿命の限界点として前記部材
の余寿命を算出する演算手段とを備えることを特徴とす
る余寿命診断装置。 13、材料を劣化させる環境下で用いられる部材の余寿
命を診断する装置において、経時的に成長する前記部材
表面あるいは内部の傷の長さを非破壊的に検出する手段
と、経時的に劣化が進む前記部材の物理量を非破壊的に
測定する手段と、前記検出による傷の長さと前記測定に
よる物理量の値とから前記部材の余寿命を演算する演算
手段とを備えることを特徴とする余寿命診断装置。 14、請求項6乃至請求項13のいずれかに記載の余寿
命診断装置による診断結果を表示する余寿命表示方法に
おいて、部材表面あるいは内部の傷の長さの検出値と測
定した物理量の測定値とを時間軸を共通にしたグラフ画
面上に過去のデータと共に表示することを特徴とする余
寿命表示方法。 15、請求項7乃至請求項12のいずれかに記載の余寿
命診断装置による診断結果を表示する余寿命表示方法に
おいて、求めた成長予測線と進行予測線とを時間軸を共
通にしてグラフ画面上に表示することを特徴とする余寿
命表示方法。 16、請求項15において、過去のデータによる成長予
測線と進行予測線も表示することを特徴とする余寿命表
示方法。 17、請求項6乃至請求項13のいずれかに記載の余寿
命診断装置による診断結果を表示する余寿命表示装置に
おいて、部材表面あるいは内部の傷の長さの検出値と測
定した物理量の測定値とを時間軸を共通にしたグラフ画
面上に過去のデータと共に表示することを特徴とする余
寿命表示装置。 18、請求項7乃至請求項12のいずれかに記載の余寿
命診断装置による診断結果を表示する余寿命表示装置に
おいて、求めた成長予測線と進行予測線とを時間軸を共
通にしてグラフ画面上に表示することを特徴とする余寿
命表示装置。 19、請求項18において、過去のデータによる成長予
測線と進行予測線も表示することを特徴とする余寿命表
示装置。
[Claims] 1. In a method for diagnosing the remaining life of a member exposed to high temperatures, the length a of a flaw that grows on the surface or inside of the member due to thermal fatigue is measured, and the length a of the damage caused by thermal aging is determined. A method for diagnosing the remaining life of the member, comprising: measuring a physical quantity, determining a critical damage length acr from the measured value, and diagnosing the remaining life of the member from both lengths a and acr. 2. In a method for diagnosing the remaining life of a component used in a high-temperature environment, the length a of a flaw that grows on the surface or inside of the component due to heat is measured, and a growth prediction line of the length a is determined. and measure the physical quantity of the member that deteriorates due to heat,
A fracture toughness value indicating the fracture resistance of the member is determined from the measured value, a critical damage length acr is determined from the fracture toughness value, a predicted line of the critical damage length acr is determined, and the predicted line and the growth predicted line are determined. A method for diagnosing the remaining life of the member, with the intersection of the two being 100% of the life. 3. In claim 2, the growth prediction line has a material constant of C,
The elapsed time is t, the rupture life is tr, and t/tr=log
A method for diagnosing remaining life, characterized in that the material constant C is determined from the grain size of the member or an experimental value. 4. In a method for diagnosing the remaining life of a member used in an environment that deteriorates the material, the length of the scratch on the surface or inside of the member that grows over time is detected, and the physical quantity of the member that deteriorates over time is determined. A method for diagnosing remaining life of the member, comprising measuring the length of the flaw detected by the detection and the value of the physical quantity obtained by the measurement. 5. In a method for diagnosing the remaining life of a component used in an environment that degrades the material, the length of the scratch on the surface or inside of the component that grows over time is detected, and the physical quantity of the component that deteriorates over time is determined. is measured, a critical damage length is calculated from the measured value, a flaw growth prediction line is determined from the detected flaw length, and a progression prediction line of the critical damage length is determined from the calculated critical damage length. , and the remaining life of the member is determined by using the intersection of the predicted growth line and the predicted progress line as the life limit point. 6. A remaining life diagnosis device for diagnosing the remaining life of a component used in a high-temperature environment, including a non-destructive damage detection means for measuring the length of a flaw that grows on the surface or inside of the component in response to heat; The remaining life of a high-temperature member is characterized by comprising: a non-destructive deterioration detection means for measuring a physical quantity of the member that deteriorates due to the heat applied thereto; and a calculation means for calculating the remaining life of the member from the detected values of both the detection means. Lifespan diagnosis device. 7. A remaining life diagnosis device for diagnosing the remaining life of a component used in a high-temperature environment, including a non-destructive damage detection means for measuring the length of a flaw that grows on the surface or inside of the component in response to heat; non-destructive deterioration detection means for measuring the physical quantity of the member that deteriorates due to the damage; Calculate the progression prediction line of the critical damage length, and set the intersection of the progression prediction line and the growth prediction line to 100% of the lifespan.
and a calculation means for calculating the remaining life of the member. 8. In claim 7, the calculation means uses the detected flaw length a, the growth prediction line, the material constant C, and the elapsed time t.
, where tr is the rupture life, calculated as t/tr=loga/C, and the material constant C is determined from the grain size of the member or an experimental value. 9. In claim 7 or claim 8, the non-destructive deterioration detection means is one that measures the area of the magnetic hysteresis loop of the member, and the calculation means calculates the Charpy impact from the value of the area which is a function of temperature and time. determine the fracture toughness value of the member from the Charpy impact value, determine the critical damage length at the time of measurement of the member from this fracture toughness value,
A remaining life diagnosing device characterized in that the progression prediction line is calculated from this critical damage length. 10. In claim 7 or 8, the non-destructive deterioration detection means is one that measures the area of the magnetic hysteresis loop of the member, and the calculation means calculates the Charpy impact from the value of the area which is a function of temperature and time. Determine the fracture toughness value of the member from the Charpy impact value, determine the critical damage length at the time of measurement of the member from this fracture toughness value, and compare the determined critical damage length with the previously determined critical damage length. A remaining lifespan diagnosis device, characterized in that the progression prediction line is calculated from. 11. In claim 9 or 10, when the calculation means calculates the fracture toughness value KIC from the Charpy impact value CVN, the yield point of the material is σys, and (KIC/σys
) ^2 = 5 ((CVN/σys) - 0.05), and when determining the critical damage length acr from the fracture toughness value KIC, the shape parameter of the member is f, the stress is σ, and KIC = f・σ - A remaining life diagnostic device characterized by calculating from the relationship of √(π・acr). 12. In an apparatus for diagnosing the remaining life of a member used in an environment that deteriorates the material, a means for non-destructively detecting the length of a scratch on the surface or inside of the member that grows over time, and a means for detecting the length of a scratch on the member's surface or inside that grows over time; a means for non-destructively measuring the physical quantity of the member in which the damage progresses; and a means for calculating the critical damage length from the measured value, calculating a flaw growth prediction line from the detected flaw length, and determining the limit from the calculated critical damage length. 1. A remaining lifespan diagnosing device, comprising: calculating means for determining a progression prediction line of damage length and calculating the remaining life of the member by using the intersection of the growth prediction line and the progression prediction line as the limit point of lifespan. 13. In an apparatus for diagnosing the remaining life of a member used in an environment that degrades materials, a means for non-destructively detecting the length of scratches on the surface or inside of the member that grows over time, and and a calculation means for calculating the remaining life of the member from the length of the flaw detected by the detection and the value of the physical quantity determined by the measurement. Lifespan diagnosis device. 14. In the remaining life display method for displaying the diagnosis result by the remaining life diagnosis device according to any one of claims 6 to 13, the detected value of the length of the scratch on the surface or inside the member and the measured value of the measured physical quantity. A method for displaying remaining life, characterized by displaying the data together with past data on a graph screen with a common time axis. 15. In the remaining lifespan display method for displaying the diagnosis result by the remaining lifespan diagnosis device according to any one of claims 7 to 12, the obtained growth prediction line and progression prediction line are displayed on a graph screen with a common time axis. A method for displaying remaining life, characterized by displaying the remaining life on the top. 16. The method for displaying remaining life according to claim 15, characterized in that a predicted growth line and a predicted progression line based on past data are also displayed. 17. In the remaining life display device that displays the diagnosis result by the remaining life diagnosis device according to any one of claims 6 to 13, a detected value of the length of a scratch on the surface or inside of the member and a measured value of the measured physical quantity. A remaining life display device characterized by displaying the information on a graph screen having a common time axis together with past data. 18. In the remaining lifespan display device for displaying the diagnosis result by the remaining lifespan diagnosis device according to any one of claims 7 to 12, a graph screen is provided in which the obtained growth prediction line and progression prediction line are displayed on a common time axis. A remaining life display device characterized by displaying the remaining life on the top. 19. The remaining life display device according to claim 18, characterized in that a growth prediction line and a progress prediction line based on past data are also displayed.
JP1235723A 1989-09-13 1989-09-13 Method for diagnosing remaining life of member, diagnostic device therefor, method for displaying remaining life and display device therefor Expired - Fee Related JP2802114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1235723A JP2802114B2 (en) 1989-09-13 1989-09-13 Method for diagnosing remaining life of member, diagnostic device therefor, method for displaying remaining life and display device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1235723A JP2802114B2 (en) 1989-09-13 1989-09-13 Method for diagnosing remaining life of member, diagnostic device therefor, method for displaying remaining life and display device therefor

Publications (2)

Publication Number Publication Date
JPH0399252A true JPH0399252A (en) 1991-04-24
JP2802114B2 JP2802114B2 (en) 1998-09-24

Family

ID=16990275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1235723A Expired - Fee Related JP2802114B2 (en) 1989-09-13 1989-09-13 Method for diagnosing remaining life of member, diagnostic device therefor, method for displaying remaining life and display device therefor

Country Status (1)

Country Link
JP (1) JP2802114B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06102223A (en) * 1992-09-18 1994-04-15 Hitachi Ltd Predicting method and apparatus for life of sintered ceramic body
JP2017151020A (en) * 2016-02-26 2017-08-31 三菱重工業株式会社 Hydraulic machine diagnostic system, hydraulic machine diagnostic method, hydraulic machine and renewable energy type generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06102223A (en) * 1992-09-18 1994-04-15 Hitachi Ltd Predicting method and apparatus for life of sintered ceramic body
JP2017151020A (en) * 2016-02-26 2017-08-31 三菱重工業株式会社 Hydraulic machine diagnostic system, hydraulic machine diagnostic method, hydraulic machine and renewable energy type generator

Also Published As

Publication number Publication date
JP2802114B2 (en) 1998-09-24

Similar Documents

Publication Publication Date Title
JPH02167463A (en) Method and device for predicting deterioration extent of equipment and deterioration diagnostic system for plant
JP4087312B2 (en) Inspection method and apparatus for deterioration of metal using high sensitivity magnetic sensor
JPH02262026A (en) Method and apparatus for nondestructive inspection
Trimm An overview of nondestructive evaluation methods
JP5347102B2 (en) Predictive diagnosis of irradiation induced stress corrosion cracking of austenitic stainless steel by neutron irradiation
JPS61139743A (en) Method and apparatus fr evaluating residual life of machine structure receiving repeated load
JPH0399252A (en) Method and apparatus for estimating and displaying remaining life of member
JPH05142203A (en) Method for diagnosing environmental stress cracking of high-strength material
JPH03197856A (en) Inspecting device for surface layer defect
Genest et al. Crack detection using induction thermography for thermomechanical fatigue tests
JPH01147360A (en) Method and device for detecting deterioration
JPH06222053A (en) Deterioration diagnostic method for ferrite based heat-resistant steel
JPH11237912A (en) Method and device for maintenance and management of high-temperature structural member
US20050155678A1 (en) Method of nondestructive examination of chromium-containing nickel-based alloy for grain boundary corrosion and examination apparatus
JPH0792139A (en) Method for evaluating fatigue damage of material
JPH01311268A (en) Method of evaluating remaining life of metallic material
JP2001056316A (en) Method for measuring magnetic characteristics of material and method for evaluating degree of creep deterioration of structural member
JPH07128328A (en) Method for predicting deterioration and residual life of metallic material
Gerards-Wünsche et al. A framework for assessing the reliability of crack luminescence: an automated fatigue crack detection system
JP7215076B2 (en) Creep Remaining Life Diagnosis Method and Creep Remaining Life Diagnosis System
Bartels et al. Measurement Uncertainty In Structural Health Monitoring Systems Under Temperature Influence
Zhou Monitoring flow-accelerated corrosion in a bent pipe using vibrational methods
JPH06317500A (en) Method and equipment for evaluating damage on high temperature structural member
JPH01250736A (en) Method for determining corrosion resistance of zirconium alloy for nuclear reactor
Takahashi et al. Inspection of the steam generator heat transfer tubes for FBR Monju restart

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees