JPH0398015A - Optical modulator - Google Patents

Optical modulator

Info

Publication number
JPH0398015A
JPH0398015A JP23654689A JP23654689A JPH0398015A JP H0398015 A JPH0398015 A JP H0398015A JP 23654689 A JP23654689 A JP 23654689A JP 23654689 A JP23654689 A JP 23654689A JP H0398015 A JPH0398015 A JP H0398015A
Authority
JP
Japan
Prior art keywords
layer
ingaas
mqw
inp
optical modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23654689A
Other languages
Japanese (ja)
Other versions
JP2676942B2 (en
Inventor
Akira Ajisawa
味澤 昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1236546A priority Critical patent/JP2676942B2/en
Publication of JPH0398015A publication Critical patent/JPH0398015A/en
Application granted granted Critical
Publication of JP2676942B2 publication Critical patent/JP2676942B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the optical modulator of 1.5mum band wavelength which operates on a low voltage by using a strained superlattice structure for a multiple quantum well (MQW) guide layer. CONSTITUTION:The lattice constant of InGaAs is smaller than the lattice constant of InP and lattice mismatching arises. The compsn. ratio of In in the InAlAs which is a barrier layer is increased and the lattice constant is so set as to be made larger than the lattice constant of InP to insert strains in respectively opposite directions between the well layer 8 and the barrier layer 9 by which the growth to the InP substrate 1 is allowed in the case of the MQW. An arbitrary exciton peak wavelength at an arbitrary well thickness is set by controlling the compsn. of the In of InGaAs and InAlAs if the strained superlattice structure of InGaAs/InAlAs is used. The optical modulator which operates on the sufficiently low voltage even at 1.55mum band is obtd. in this way.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、将来の光通信システムや光情報処理システム
において重要なエレメントとなる半導体光変調器に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor optical modulator that will be an important element in future optical communication systems and optical information processing systems.

(従来技術とその課題) 光スイッチは将来の高速光通信システム、光情報処理シ
ステムのキーエレメントの1つと考えられ、各所で研究
開発が活発化してきている。光スイッチとしてはLiN
b03等の誘電体を用いたものと、GaAsやInPの
半導体を用いたものとが考えられているが、光アンプや
半導体レーザなどの他の光素子やFET等の電子回路と
の集積化が可能で、小型化も容易な半導体光スイッチへ
の期待が近年高まりつつある。この様な半導体光スイッ
チとしてはその適用分野によって主に1人力1出力のレ
ーザ光などの直流光を変調する外部変調器又は光導波路
中の光信号のON−OFFを行なうゲートスイソチと多
入力多出力の光路切換型のスイッチに分類できる。その
中でも高速光通信システムにとって外部変調器は重要な
デバイスのひとつである。
(Prior art and its problems) Optical switches are considered to be one of the key elements of future high-speed optical communication systems and optical information processing systems, and research and development efforts are becoming active in various places. LiN as an optical switch
It is thought that there are two types: one using a dielectric material such as B03, and one using a semiconductor such as GaAs or InP. In recent years, expectations have been increasing for semiconductor optical switches that can be easily miniaturized. Depending on the field of application, these semiconductor optical switches are mainly external modulators that modulate direct current light such as single-power laser beams with one output, gate switches that turn on and off optical signals in optical waveguides, and multi-input multi-output switches. It can be classified as an optical path switching type switch. Among these, external modulators are one of the important devices for high-speed optical communication systems.

多重量子井戸(MQW)構造の吸収端の急峻性やエキシ
トンの電界によるシフトを利用した吸収型の光変調器は
、低電圧で高い消光比が得られ、更に高速動作が可能と
いう特長をもち注目されている。特に波長1.5pm帯
の光変調器は高速光通信システムに重要である。
Absorption-type optical modulators that utilize the steepness of the absorption edge of a multiple quantum well (MQW) structure and the shift of excitons due to electric fields are attracting attention because of their ability to obtain high extinction ratios at low voltages and to operate at high speeds. has been done. In particular, optical modulators in the 1.5 pm wavelength band are important for high-speed optical communication systems.

脇田らはInGaAs/InAlAs MQW(井戸層
厚67A/障壁層厚67人)を用いた変調器を試作し、
波長1.53pm,電圧9■で消光比15dBを得た。
Wakita et al. prototyped a modulator using InGaAs/InAlAs MQW (well layer thickness: 67A/barrier layer thickness: 67mm).
An extinction ratio of 15 dB was obtained at a wavelength of 1.53 pm and a voltage of 9 mm.

これはエレクトロニクスレターズ誌(Electoro
nics Letters)第22巻、907頁、19
86年に記載されている。
This is Electronics Letters magazine (Electro
nics Letters) Volume 22, Page 907, 19
It was written in 1986.

MQW変調器の場合、吸収を生じさせる要因となるエキ
シトンビークの電界によるエネルギーシフト量は電界の
2乗とMQWの井戸厚Lzの4乗に比例するため、低電
圧動作を実現するにはLzが大きい方が望ましい。光通
信システムにとって重要である波長1.55pmで動作
させる場合、エキシトンピークの裾引きなどを考え、無
電界状態での導波損失を少なくするためにはエキシトン
ビーク波長は1.51pm以下が望ましく、その時In
GaAsを井戸層としたMQWの井戸厚Lzは75A以
下が必要となる。上述の従来例では波長及びLzは最適
ではないと思われるが最適化を図ってもLzは75A程
度であるためこれによりエキシトンピークのシフト量が
制限されるため十分な低電圧化は困難である。
In the case of an MQW modulator, the amount of energy shift due to the electric field of the exciton peak, which causes absorption, is proportional to the square of the electric field and the fourth power of the MQW well thickness Lz. Therefore, in order to achieve low voltage operation, Lz must be Larger is preferable. When operating at a wavelength of 1.55 pm, which is important for optical communication systems, it is desirable that the exciton peak wavelength is 1.51 pm or less in order to take into account the skirting of the exciton peak and to reduce waveguide loss in the absence of an electric field. At that time In
The well thickness Lz of an MQW using GaAs as a well layer is required to be 75A or less. In the conventional example described above, it seems that the wavelength and Lz are not optimal, but even if optimization is attempted, Lz is about 75 A, which limits the amount of shift of the exciton peak, making it difficult to lower the voltage sufficiently. .

これを解決するために脇田らはMQWの井戸層にInG
aAIAsの4元材料を使用したMQW光変調器を試作
した。これは1989年電子情報通信学会春季全国大会
講演論文集C−474に記載されている。4元材料の組
成を制御することによりLzの拡大とエキシトンピーク
の短波長化を同時に図ることができ、波長1.55pm
帝で低電圧動作を狙ったものである。
To solve this problem, Wakita et al.
We prototyped an MQW optical modulator using a AIAs quaternary material. This is described in the 1989 Institute of Electronics, Information and Communication Engineers Spring National Conference Proceedings C-474. By controlling the composition of the quaternary material, it is possible to simultaneously expand Lz and shorten the wavelength of the exciton peak, resulting in a wavelength of 1.55 pm.
It was designed to operate at low voltage.

InGaAs井戸層を用いた時に比べてLzを86Aと
大きくし、波長1.554pm,電圧6.5■で18.
5dBの消光比を得ることはできたが、井戸層に4元系
を使用しているためInGaAsの3元系に比ベエキシ
トンピークが不明瞭、エキシトンビークの裾引きが非常
に大きいなどが原因で、挿入損失は30dBと大きな値
で実用上使いにくかった。
Compared to when using an InGaAs well layer, Lz is increased to 86 A, and the wavelength is 1.554 pm and the voltage is 6.5 .mu.m.
Although we were able to obtain an extinction ratio of 5 dB, because a quaternary system was used for the well layer, the exciton peak was unclear compared to the InGaAs ternary system, and the exciton peak had a very large tail. However, the insertion loss was as large as 30 dB, making it difficult to use in practice.

この様に優れた特性が得られる可能性は秘めているもの
の、急峻なエキシトンを使用し、低損失、低電圧で波長
1.55pmで動作するMQW変調器はこれまで得られ
ていなかった。
Although there is a potential to obtain such excellent characteristics, an MQW modulator that uses steep excitons and operates at a wavelength of 1.55 pm with low loss and low voltage has not been obtained so far.

本発明の目的はこれらを改善したMQW光変調器を提供
することにある。
An object of the present invention is to provide an MQW optical modulator that improves these.

(課題を解決するための手段) 本発明による光変調器は、InP基板上に形成されたI
nGaAsを井戸層、InAlAsを障壁層とする多重
量子井戸構造を光導波層とし、前記光導波層に対し垂直
に電界を印加する手段を有する導波型光変調器であって
、前記InGaAs/InAlAs多重量子井戸構造が
、InPに対し小さい格子定数をもっ組成のInGaA
s井戸層とInPに対し大きい格子定数をもっ組成のI
nAlAs障壁層がら成る歪超格子構造を有することを
特徴とするものである。
(Means for Solving the Problems) An optical modulator according to the present invention is an optical modulator formed on an InP substrate.
A waveguide type optical modulator having a multi-quantum well structure including nGaAs as a well layer and InAlAs as a barrier layer as an optical waveguide layer, and having means for applying an electric field perpendicularly to the optical waveguide layer, the InGaAs/InAlAs The multi-quantum well structure is made of InGaA, which has a composition that has a smaller lattice constant than InP.
I with a composition having a large lattice constant with respect to the s-well layer and InP
It is characterized by having a strained superlattice structure consisting of an nAlAs barrier layer.

(作用) 従来例においても述べたが、波長1.55llm帯で低
電圧で動作させるためには井戸層をある程度厚くした状
態でエキシトンピークを任意の波長に設定する必要があ
る。
(Function) As described in the conventional example, in order to operate at a low voltage in the wavelength band of 1.55 llm, it is necessary to set the exciton peak to an arbitrary wavelength while making the well layer thick to some extent.

InP基板上に格子整合したInGaAsのInの組或
比は0.53であり、その時のバンドギャップ波長は1
.67pmである。従って量子井戸構造にし、エキシト
ンビーク波長を1.5μm近傍に設定するには井戸厚を
十分に薄くし量子準位をがなり上げる必要がある。しか
しInGaAs中のInの組成比を格子整合条件に比べ
て小さくすることによっても理論的にはハルクの時のバ
ンドギャソプ波長を短波長化することができるため、こ
れを量子井戸にした場合はある程度の井戸厚(例えばI
OOA程度)を保った状態でも組或制御により量子準位
を任意に決定することができエキシトンビーク波長を1
.5pm近傍に設定することが可能となる。
The In composition ratio of InGaAs lattice-matched on the InP substrate is 0.53, and the bandgap wavelength at that time is 1.
.. It is 67pm. Therefore, in order to form a quantum well structure and set the exciton peak wavelength to around 1.5 μm, it is necessary to make the well thickness sufficiently thin and raise the quantum level. However, it is theoretically possible to shorten the band gap wavelength in the Hulk by reducing the composition ratio of In in InGaAs compared to the lattice matching condition, so if this is used as a quantum well, it will be possible to Well thickness (e.g. I
The quantum level can be arbitrarily determined by composition or control even when the OOA level is maintained, and the exciton peak wavelength can be set to 1.
.. It becomes possible to set it to around 5 pm.

この時のInGaAsの格子定数はInPに比べて小さ
く格子不整合が生じるが、MQWの場合障壁層であるI
nAlAs中のInの組成比を大きくし、InPに比べ
て格子定数が大きくなる様に設定し井戸層と障壁層の間
に各々反対方向の歪を入れることにょりInP基板への
成長が可能となる。
At this time, the lattice constant of InGaAs is smaller than that of InP, causing lattice mismatch, but in the case of MQW, I
By increasing the composition ratio of In in nAlAs, setting the lattice constant to be larger than that of InP, and applying strain in opposite directions between the well layer and the barrier layer, it is possible to grow onto an InP substrate. Become.

この様にInGaAs/InAlAsの歪超格子構造を
用いるとInGaAs、InAlAsのInの組成制御
により任意の井戸厚で任意のエキシトンピーク波長を設
定することができ、1.55pm帯においても十分低電
圧で動作する光変調器が可能となる。
In this way, by using the strained superlattice structure of InGaAs/InAlAs, it is possible to set any exciton peak wavelength at any well thickness by controlling the In composition of InGaAs and InAlAs, and even in the 1.55 pm band, it is possible to set any exciton peak wavelength at a sufficiently low voltage. A working optical modulator becomes possible.

(実施例) 第1図(aXb)は本発明による光変調器の実施例を示
す図で、(a)は斜視図、(b)は光変調器の多重量子
井戸構造の様子を示す図である。まず第1図(aXb)
を用いて本実施例の製作方法について簡単に説明する。
(Example) FIG. 1 (aXb) is a diagram showing an example of the optical modulator according to the present invention, (a) is a perspective view, and (b) is a diagram showing the state of the multiple quantum well structure of the optical modulator. be. First, Figure 1 (aXb)
The manufacturing method of this example will be briefly explained using the following.

n”−InP基板1上にn +−InALAsクラッド
層2を0.811m, i−InGaAs/InAlA
s MQWガイド層3を0.5pm,P +−InAl
Asクラッド層4を0.811m, P+−InGaA
sキャップ層5を0.2pm, MBE法により順次或
長ずる。この時InAlAsクラッド層2,4及びIn
GaAsキャップ層5の組或はInPとの格子整合を行
なうため各々In0.52”0.48As+ InO.
53GaO.47””とする。InGaAs/InAl
As MQWガイド層3については作用の項で述べたよ
うにInGaAs井戸層8に関してはInPとの格子整
合条件に比べてInの組成が小さくつまり格子定数がI
nPに比べて小さくなるようなInAlAs障壁層9に
関しては井戸層とは反対にInPに比べて格子定数が大
きくなるような組成としここではそれぞれ?nO.48
GaO.52As+ In■,53Ga■,42ASと
する。また井戸層厚、障壁層厚に関してはエキシトンピ
ーク波長を1.51pmにすることと井戸層への電子の
閉じ込めを十分に行なうことを考え各々100人とする
An n + -InALAs cladding layer 2 of 0.811 m is formed on an n''-InP substrate 1, and an i-InGaAs/InAlA
s MQW guide layer 3 with a thickness of 0.5 pm, P + -InAl
As cladding layer 4 is 0.811m, P+-InGaA
The s-cap layer 5 is sequentially lengthened by 0.2 pm using the MBE method. At this time, InAlAs cladding layers 2 and 4 and In
A set of GaAs cap layers 5 or In0.52''0.48As+ InO.
53GaO. 47"". InGaAs/InAl
Regarding the As MQW guide layer 3, as mentioned in the function section, the InGaAs well layer 8 has a smaller In composition than the lattice matching condition with InP, that is, the lattice constant is I.
Regarding the InAlAs barrier layer 9, which is smaller than nP, the composition is set so that the lattice constant is larger than that of InP, contrary to the well layer. nO. 48
GaO. 52As+ In■, 53Ga■, 42AS. The thickness of the well layer and the barrier layer are each 100 in consideration of setting the exciton peak wavelength to 1.51 pm and sufficiently confining electrons in the well layer.

次にフォトリソグラフィー法とRIBE法によりP +
−InAlAsクラッド層4とi−InGaAs/In
AlAs MQWガイド層3の界面までエッチングを行
ないリブ型の導波路を形戒する。メサ幅は3pmとした
。最後にp側電極6、n側電極7を蒸着し、へき開によ
って入出射端面を形或する。光導波路方向の長さは30
011mとした。こうして第1図(aXb)の光変調器
が完戒する。
Next, P +
-InAlAs cladding layer 4 and i-InGaAs/In
Etching is performed up to the interface of the AlAs MQW guide layer 3 to form a rib-shaped waveguide. The mesa width was 3 pm. Finally, a p-side electrode 6 and an n-side electrode 7 are deposited and cleaved to form input and output end faces. The length in the optical waveguide direction is 30
011m. In this way, the optical modulator shown in FIG. 1 (aXb) is completed.

次にこの光変調器の動作と得られる効果について説明す
る。光通信用の変調器を前提としているため使用する光
源の波長は1.55pmとする。このMQWのエキシト
ンビーク波長はMQWの井戸層厚、組成より1.51p
mであるため、1.55llmの波長に対しては十分吸
収損失が下がっている。従って電界がOのときは導波損
失は十分に小さく2〜3dB/mmであり、MQWガイ
ド層3への入射光10はそのまま出射光11として出力
される。この時光変調器はON状態になっている。MQ
Wに電界が印加されるとエキシトンピークが長波長側ヘ
シフトし1.5511mにおいて吸収が増加し、入射光
10はMQWガイド層3内で吸収され出射光の光パワー
はほとんど0となり光変調器OFF状態となる。従来例
の項でも述べたがスイッチングを生じさせるエキシトン
ピークシフトのエネルギー量ΔEは電界強度Fの2乗と
MQWの井戸層厚Lzの4乗に比例する。光変調器に求
められる消光比約20dBを得るのにエキシトンピーク
の長波長側へのエネルギーシフト量を11meVとする
と本実施例におけるスイッチではMQWの井戸層厚が1
00人、MQWガイド層全体の厚さが0.5pmである
ことより変調器のスイッチング電圧は約3■となる。
Next, the operation of this optical modulator and the effects obtained will be explained. Since this is a modulator for optical communication, the wavelength of the light source used is 1.55 pm. The exciton peak wavelength of this MQW is 1.51p from the well layer thickness and composition of the MQW.
m, the absorption loss is sufficiently reduced for a wavelength of 1.55 llm. Therefore, when the electric field is O, the waveguide loss is sufficiently small, 2 to 3 dB/mm, and the incident light 10 to the MQW guide layer 3 is outputted as the output light 11 as it is. At this time, the optical modulator is in the ON state. MQ
When an electric field is applied to W, the exciton peak shifts to the longer wavelength side and absorption increases at 1.5511 m, and the incident light 10 is absorbed within the MQW guide layer 3, and the optical power of the output light becomes almost 0, turning the optical modulator OFF. state. As described in the conventional example section, the energy amount ΔE of the exciton peak shift that causes switching is proportional to the square of the electric field strength F and the fourth power of the MQW well layer thickness Lz. In order to obtain an extinction ratio of about 20 dB required for an optical modulator, if the amount of energy shift toward the long wavelength side of the exciton peak is 11 meV, the MQW well layer thickness of the switch in this example is 1.
Since the total thickness of the MQW guide layer is 0.5 pm, the switching voltage of the modulator is approximately 3 .mu.m.

これに対し、従来のように歪のないInGaAs/In
AlAsMQWを考えた場合、実施例と比較のために無
電界の時のエキシトンピーク波長を1.51pmとする
とMQWの井戸層厚は75Aとなる。この場合、MQW
ガイド層の厚さを0.5pmとしてエキシトンピークの
エネルギーシフト量11meVを得るためには5.5V
が必要となる。
In contrast, conventional strain-free InGaAs/In
When considering an AlAs MQW, and for comparison with the example, if the exciton peak wavelength in the absence of an electric field is 1.51 pm, the well layer thickness of the MQW is 75 Å. In this case, MQW
In order to obtain an energy shift amount of 11 meV for the exciton peak when the thickness of the guide layer is 0.5 pm, 5.5 V is required.
Is required.

この様にMQWガイド層を歪超格子により構威すること
で、任意の波長においてもMQWの井戸層厚を大きくす
ることが可能となり、実施例の場合は約1/2に電圧を
低減することができる。また本実施例では結合損失も含
めた挿入損失は15dBで従来例と比べ10dB以上改
善できた。また本実施例によるMQWの井戸層の組成及
び層厚は波長1.55pmの場合の一例であり、これら
2つのパラメータを変えることによりエキシトンビーク
波長を1.5llm帯である程度自由に設定できる。
By constructing the MQW guide layer with a strained superlattice in this way, it is possible to increase the MQW well layer thickness at any wavelength, and in the case of the example, the voltage can be reduced to about 1/2. I can do it. Further, in this example, the insertion loss including coupling loss was 15 dB, which was an improvement of more than 10 dB compared to the conventional example. Further, the composition and layer thickness of the MQW well layer according to this embodiment are an example for a wavelength of 1.55 pm, and by changing these two parameters, the exciton peak wavelength can be set to some degree freely in the 1.5 llm band.

(発明の効果) 以上詳細に説明したように本発明によればMQWガイド
層に歪超格子構造を用いることにより低電圧で動作する
波長1.5pm帯の光変調器が得られる。
(Effects of the Invention) As described above in detail, according to the present invention, by using a strained superlattice structure in the MQW guide layer, it is possible to obtain an optical modulator with a wavelength of 1.5 pm that operates at low voltage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(aXb)はそれぞれ本発明の実施例の光変調器
の全体の斜視図と多重量子井戸構造の様子を示す図であ
る。各図において1はn ”−InP基板、2はn +
−InAlAsクラッド層、3はi−InGaAs/I
nAlAs MQWガイド層、4はP +−InAlA
sクラッド層、5はp + −?nGaAsキャップ層
、6,7は電極、8はIn■,4BGaO,52As井
戸層、9はIn0.5BA1o,42As障壁層、10
は入射光、l1は出射光である。
FIG. 1 (aXb) is a perspective view of the entire optical modulator according to an embodiment of the present invention and a diagram showing the state of the multiple quantum well structure, respectively. In each figure, 1 is an n''-InP substrate, 2 is an n+
-InAlAs cladding layer, 3 is i-InGaAs/I
nAlAs MQW guide layer, 4 is P + -InAlA
s cladding layer, 5 is p + -? nGaAs cap layer, 6 and 7 electrodes, 8 In■, 4BGaO, 52As well layer, 9 In0.5BA1o, 42As barrier layer, 10
is the incident light, and l1 is the output light.

Claims (1)

【特許請求の範囲】[Claims] InP基板上に形成されたInGaAsを井戸層、In
AlAsを障壁層とする多重量子井戸構造を光導波層と
し、前記光導波層に対し垂直に電界を印加する手段を有
する導波型光変調器であって、前記InGaAs/In
AlAs多重量子井戸構造が、InPに対し小さい格子
定数をもつ組成のInGaAs井戸層とInPに対し大
きい格子定数をもつ組成のInAlAs障壁層から成る
歪超格子構造を有することを特徴とする光変調器。
InGaAs formed on an InP substrate is used as a well layer;
A waveguide type optical modulator having a multi-quantum well structure with AlAs as a barrier layer as an optical waveguide layer, and having means for applying an electric field perpendicularly to the optical waveguide layer, the InGaAs/In
An optical modulator characterized in that the AlAs multiple quantum well structure has a strained superlattice structure consisting of an InGaAs well layer with a composition having a smaller lattice constant relative to InP and an InAlAs barrier layer having a composition with a larger lattice constant relative to InP. .
JP1236546A 1989-09-11 1989-09-11 Light modulator Expired - Lifetime JP2676942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1236546A JP2676942B2 (en) 1989-09-11 1989-09-11 Light modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1236546A JP2676942B2 (en) 1989-09-11 1989-09-11 Light modulator

Publications (2)

Publication Number Publication Date
JPH0398015A true JPH0398015A (en) 1991-04-23
JP2676942B2 JP2676942B2 (en) 1997-11-17

Family

ID=17002265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1236546A Expired - Lifetime JP2676942B2 (en) 1989-09-11 1989-09-11 Light modulator

Country Status (1)

Country Link
JP (1) JP2676942B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01204018A (en) * 1988-02-10 1989-08-16 Nec Corp Optical modulator
JPH01248125A (en) * 1988-03-30 1989-10-03 Fujitsu Ltd Semiconductor optical element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01204018A (en) * 1988-02-10 1989-08-16 Nec Corp Optical modulator
JPH01248125A (en) * 1988-03-30 1989-10-03 Fujitsu Ltd Semiconductor optical element

Also Published As

Publication number Publication date
JP2676942B2 (en) 1997-11-17

Similar Documents

Publication Publication Date Title
US5801872A (en) Semiconductor optical modulation device
EP0645858B1 (en) Strained quantum well structure having variable polarization dependence and optical device inducing the strained quantum well structure
JP2606079B2 (en) Optical semiconductor device
US7095542B2 (en) Electroabsorption modulator having a barrier inside a quantum well
JP3145718B2 (en) Semiconductor laser
JPH06125141A (en) Semiconductor quantum well optical element
EP0721241B1 (en) Semiconductor quantum well structure and semiconductor device using the same
JPS60145687A (en) Semiconductor laser
JP3249235B2 (en) Light switch
JP3208418B2 (en) Semiconductor quantum well optical modulator
JPH0398015A (en) Optical modulator
JP2513265B2 (en) Light modulator
JPH07113711B2 (en) Semiconductor waveguide type optical switch
JPH08248363A (en) Waveguide type multiple quantum well optical control element
JPS623221A (en) Optical modulator
WO2005124870A1 (en) Semiconductor quantum well devices
JP3001365B2 (en) Optical semiconductor element and optical communication device
JPH0728104A (en) Light modulation element
JPH0682852A (en) Semiconductor device
JPH0864904A (en) Semiconductor laser type light amplifier device
JP2000305055A (en) Electric field absorption optical modulator
JP2670051B2 (en) Quantum well type optical modulator
JPH01204019A (en) Optical modulator
JPS6297386A (en) Distributed feedback type bistable semiconductor laser
JP4103490B2 (en) Light modulator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070725

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 13