JPH0397918A - Production of modified cross-sectional carbon fiber - Google Patents

Production of modified cross-sectional carbon fiber

Info

Publication number
JPH0397918A
JPH0397918A JP1229580A JP22958089A JPH0397918A JP H0397918 A JPH0397918 A JP H0397918A JP 1229580 A JP1229580 A JP 1229580A JP 22958089 A JP22958089 A JP 22958089A JP H0397918 A JPH0397918 A JP H0397918A
Authority
JP
Japan
Prior art keywords
cross
fibers
carbon fiber
section
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1229580A
Other languages
Japanese (ja)
Inventor
Hideo Saruyama
猿山 秀夫
Akira Okuda
章 奥田
Katsumi Yamazaki
山崎 勝己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP1229580A priority Critical patent/JPH0397918A/en
Publication of JPH0397918A publication Critical patent/JPH0397918A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Inorganic Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:To produce the subject fiber suitable as a reinforcing fiber by spinning a spinning raw solution comprising an acrylonitrile based polymer through a spinneret having a specific shape, coagulating in a specific coagulating solution bath and further subjecting to water washing, drawing and baking processes. CONSTITUTION:A spinning raw solution comprising an acrylonitrile based polymer containing >=95mol% of acrylonitrile and a solvent such as dimethyl sulfoxide is spun once in air or an inert atmosphere through a spinneret comprising non-circular, slit type or point contact type extrusion holes. The spun fibers are coagulated in a coagulating solution bath comprising the solvent and a coagulating agent and set in a skin layer formation-impossible concentration range, further washed with water, drawn and baked to provide the objective non-circular carbon fibers each having a cross section having a rotation symmetical angle theta of 3609 degree/n (n is 2-20).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は,異形断面炭素繊維の製造法に関し,詳しくは
優れた特性を有する複合材料0)補強相として好適な異
形断面炭素繊維の製造法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for producing carbon fibers with a modified cross section, and more specifically, a method for producing carbon fibers with a modified cross section suitable as a composite material as a reinforcing phase. Regarding.

(従来技術) 従来,炭素繊維はその優れた機械的性質,特に,比強度
および比弾性率を利用した複合材料の補強用繊維として
工業的に広く生産されているが,これらの複合材料の用
途,特にスポーツ用途や航空宇宙用途においては,炭素
繊維の高性能化に刻する要望がますます高くなっている
(Prior Art) Conventionally, carbon fibers have been widely produced industrially as reinforcing fibers for composite materials, taking advantage of their excellent mechanical properties, especially their specific strength and specific modulus. There is an increasing demand for improved performance of carbon fiber, especially in sports and aerospace applications.

このような高性能化に対する要望に応して,これまで数
多くの改善がなされ,炭素繊維を補強材とした複合材科
の用途が拡大されてきている。しかし炭素繊維自体の特
性,たとえば樹脂含浸ストランド強度や弾性率は長足の
進歩がなされているが,実際に活用ざれる複合材料の特
性としては満足のいく特性が得られていないのが現状で
ある。
In response to this demand for higher performance, numerous improvements have been made to date, and the applications of composite materials using carbon fiber as a reinforcing material have been expanded. However, although significant progress has been made in the properties of carbon fiber itself, such as the strength and elastic modulus of resin-impregnated strands, the current situation is that satisfactory properties have not been obtained for composite materials that are actually used. .

すなわち複合材科での強度利用率,rF!i間剪断強度
(ILSS),圧縮強度,■強度などの基本特性が向上
しないという問題があった。
In other words, the strength utilization factor in composite materials, rF! There was a problem that basic properties such as i-interval shear strength (ILSS), compressive strength, and strength did not improve.

これらの問題に対しては,炭素繊維の表面特性を電解表
面処理によって改善する方法,適用するマトリックス樹
脂の特性を改善する方法,複合材料を構成する炭素繊維
の配列を工夫する方法など,数多くの手段が開示されて
きたが,複合材科を構成する炭素i!iIそのものの特
性を革新的に向上させて基本特性を改善するものではな
かった。
Many methods have been proposed to address these problems, including methods to improve the surface properties of carbon fibers through electrolytic surface treatment, methods to improve the properties of the applied matrix resin, and methods to improve the arrangement of carbon fibers that make up composite materials. Although the means have been disclosed, carbon i! which constitutes the composite material family! This did not involve innovatively improving the characteristics of iI itself to improve its basic characteristics.

(発明が解決しようとする課a) 本発明の課題は,複合H科での強度利用率,眉間剪断強
度(ILSS),圧縮強度,曲強度などの基本特性が極
めて優れ,卓越した補強効果を示す炭素繊維の製造法を
提供することにある。
(Problem to be solved by the invention a) The problem of the present invention is to have extremely excellent basic properties such as strength utilization rate, inter-glabellar shear strength (ILSS), compressive strength, and bending strength in composite H class, and to achieve an outstanding reinforcing effect. The object of the present invention is to provide a method for manufacturing carbon fiber shown in the figure.

(i!題を解決するための手段) 上記本発明の課題は,少なくとも95モル%のアクリロ
ニトリルを含有するアクリ口ニトリル系重合体と,該重
合体の溶媒からなる紡糸原液を非円形,あるいはスリッ
ト形秋,あるいは点接触型の吐出孔からなる紡糸口金か
ら一旦空気または不活性雰囲気中に紡出した後,スキン
層形成不能濃度範囲に設定された該溶媒と凝固剤からな
る凝固浴中で凝固させた後,水洗,延伸して得られる,
繊維の横断面が θ=360° /n (nは2から20までの整数) なる回転対称角度θ(゜)を有する非円形形状である原
糸を焼成することを特徴とする異形断面炭素m維の製造
法,によって解決することができる。
(Means for Solving Problem i!) The above-mentioned problem of the present invention is to spin a spinning dope consisting of an acrylonitrile polymer containing at least 95 mol% of acrylonitrile and a solvent for the polymer into a non-circular or slit spinning solution. After being spun into air or an inert atmosphere from a spinneret with a type-type or point-contact discharge hole, it is coagulated in a coagulation bath consisting of the solvent and a coagulant whose concentration is set at a concentration range that does not allow the formation of a skin layer. After washing with water and stretching,
An irregular cross-section carbon m characterized by firing a raw yarn in which the fiber cross section has a non-circular shape with a rotational symmetry angle θ (°) of θ = 360° /n (n is an integer from 2 to 20). The problem can be solved by changing the fiber manufacturing method.

本発明の製造法によって得られる炭素繊itsは■繊維
の横断面の形状が非円形であり,■繊維の横断面にはラ
メラ構造が存在せず,実質的に均一な結晶構造を有し,
および■ai碓の表面には微小な凹凸構造が存在する,
という三点に最大の特徴がある。
The carbon fibers obtained by the production method of the present invention: ■ have a non-circular cross-sectional shape, ■ have no lamellar structure in the cross-section of the fiber, and have a substantially uniform crystal structure;
and ■ there is a minute uneven structure on the surface of ai Usui,
There are three main characteristics.

非円形すなわち異形断面炭素繊維はこれまで,特にピッ
チ系の炭素繊維において多数の技術が開示されてきてい
る。これらピッチ系の炭素IIKにおいては,弾性率や
強度等の基本特性を保持するために原料としてのピッチ
に多大の工夫が払われ,メソフエーズピッチが使用され
ることが一般的となっている。これらのメソフェーズピ
ッチを原料とすると,原糸(ブリカーサ)の製造におけ
る紡出の際の,剪断応力により原糸の内部に不均一な結
晶構造が生成し,これが焼成後の炭素繊維の内部にラメ
ラ構造として観察される不均一な結晶構造として残存し
てしまい,強度や弾性率の低下をもたらすことになる。
Many techniques have been disclosed so far for non-circular or irregular cross-section carbon fibers, particularly pitch-based carbon fibers. In these pitch-based carbon IIKs, great efforts have been made to the pitch as a raw material in order to maintain basic properties such as elastic modulus and strength, and mesophase pitch is commonly used. . When these mesophase pitches are used as raw materials, shear stress during spinning during the production of raw fibers (bricasa) generates a non-uniform crystal structure inside the raw fibers, and this creates lamellae inside the carbon fibers after firing. It remains as a non-uniform crystal structure observed as a structure, resulting in a decrease in strength and elastic modulus.

このような原科の基本特性に起因する欠点を改良するこ
とを目的として異形断面化が工夫されているのである。
The creation of irregular cross-sections has been devised with the aim of improving these defects caused by the basic characteristics of the original family.

例えば特開昭61−0313号公報,特開昭(32−1
17821号公報,特開昭62−231024号公報,
特開昭62−131034号公報などである。しかしな
がらこれらの開示技術においては依然として上記の不均
一な結晶構造が存在しており特に圧縮強度の向上が望め
ないものであった。
For example, JP-A No. 61-0313, JP-A No. 32-1
No. 17821, JP-A-62-231024,
For example, Japanese Patent Application Laid-Open No. 131034/1983. However, in these disclosed techniques, the above-mentioned non-uniform crystal structure still exists and no improvement in compressive strength can be expected.

これらの異形断面炭素繊維にはその繊維の横断面の非円
形形状に沿ってリーフ状(葉状)のラメラ構造が観察さ
れるのである。
A leaf-like lamellar structure is observed in these irregular cross-section carbon fibers along the non-circular cross-section of the fibers.

このリーフ状ラメラ構造の有無は,例えば特開昭61−
6313号公報,や特開昭62−117821号公報に
記載されている如く,炭素繊維の横断面(破断面)を走
査型電子顕微鏡(SEM)を用いて観察したときに,破
断面の中心から外側に向かって,放羽状に伸びた破壊組
織として容易に観察できるものである。第1図に破断面
に出現するリーフ状ラメラ構造の模式図を示す。
The presence or absence of this leaf-like lamellar structure can be determined, for example, by
As described in Japanese Patent Application Laid-open No. 6313 and Japanese Patent Application Laid-open No. 117821/1982, when a cross section (fractured surface) of carbon fiber is observed using a scanning electron microscope (SEM), it is found that from the center of the fractured surface, It can be easily observed as a fractured tissue that extends outward in a feathered manner. Figure 1 shows a schematic diagram of the leaf-like lamellar structure that appears on the fracture surface.

本発明の製造法によって得られる異形断面炭素′a維に
は上記のリーフ状ラメラ構造にj=J応ずる不均一な結
晶構造は認められず実質的に均一な内部構造を示すもの
である。このような均一な内部構造の異形断面炭素繊維
については例えば, 20thInternation
al SAMPE Technical Confer
ence (1988)講演予稿集P414〜422に
ポリアクリロニトリル(PAN)の溶融紡糸法によって
得られる原糸を焼成することにより製造できることが記
載されており,断面写真が掲載されている。しかしなが
ら該予稿集には円形断面の疾素繊紺の特性の記載はある
ものの,異形断面炭素繊維の具体的特性は記載されてお
らず,はたしていかなる特性や特徴が発現するものか全
く判からないものであった。
The irregular cross-section carbon fibers obtained by the production method of the present invention do not have a nonuniform crystal structure corresponding to j=J in the leaf-like lamellar structure described above, and exhibit a substantially uniform internal structure. Regarding such irregular cross-section carbon fibers with a uniform internal structure, for example, 20th International
al SAMPE Technical Conference
ence (1988) Lecture Proceedings P414-422 describes that polyacrylonitrile (PAN) can be produced by firing a raw yarn obtained by a melt spinning method, and a cross-sectional photograph is published. However, although the proceedings describe the characteristics of the circular cross-section carbon fiber, it does not describe the specific characteristics of the irregular cross-section carbon fiber, and it is not at all clear what kind of characteristics or characteristics it will exhibit. It was something.

本発明の製造法によって得られる異形断面炭素繊維は上
記の■,■およU■の特性を同時に溝足するものであり
,さらに重要な基本特性としての強度や弾性率は,後述
するストランド形態での測定において,強度は300k
g / mm2以上であり,好ましくは320kg /
 mm2以上である。また同様に弾性率は20t/mm
2以上であり,好ましくは22t/mm2以上である。
The irregular cross-section carbon fiber obtained by the production method of the present invention simultaneously satisfies the above-mentioned properties (1), (2), and (3), and the more important basic properties such as strength and elastic modulus are determined by the strand form described later. In the measurement, the strength was 300k
g/mm2 or more, preferably 320kg/mm2 or more
It is not less than mm2. Similarly, the elastic modulus is 20t/mm
2 or more, preferably 22t/mm2 or more.

強度,弾性率いずれもこの値に到達しないと複合材料の
補強材としての利点を発揮できない。
Unless both the strength and elastic modulus reach these values, the composite material cannot demonstrate its advantages as a reinforcing material.

このように本発明の異形断面炭素繊維は複合材料の実用
用途に適した全く新規な炭素繊維である。
As described above, the irregular cross-section carbon fiber of the present invention is a completely new carbon fiber suitable for practical use in composite materials.

特に本発明の炭素繊維は,断面が非円形であるために複
合材科の重要な特性である層間剪断強度(ILSS)や
圧縮強度,および聞強度などの基本特性が極めて優れた
ものである。
In particular, since the carbon fiber of the present invention has a non-circular cross section, it has extremely excellent basic properties such as interlaminar shear strength (ILSS), compressive strength, and tensile strength, which are important properties for composite materials.

本発明の製造法では,従来の円形の吐出孔から紡出して
得られる原糸を焼成して製造される炭素繊維におけるそ
らまめ型や繭型などとは異なる断面形状の演素繊維が得
られる。θ=360゜/n(nは2から20までの整数
)なる回転対称角度θ(゜)を有する非円形形状である
本発明の原糸の断面形状としては,例えば,三角形や四
角形等の多角形,三葉や四葉等の多葉形,およびH等の
アルファベット形状をあげることができる。参考のため
にこれらの多角(多葉)形とnおよびθとの関係を下記
する。
In the manufacturing method of the present invention, elemental fibers having a cross-sectional shape different from the bean-shaped or cocoon-shaped carbon fibers produced by firing raw yarn spun from a conventional circular discharge hole can be obtained. The cross-sectional shape of the yarn of the present invention, which is a non-circular shape having a rotational symmetry angle θ (°) of θ = 360°/n (n is an integer from 2 to 20), may be, for example, a polygonal shape such as a triangle or a square. Examples include rectangular shapes, multi-lobed shapes such as trifoliate and quatrefoil shapes, and alphabetic shapes such as H. For reference, the relationships between these polygonal (multilobal) shapes and n and θ are shown below.

n  θ(゜) 三角  3l2〇 四角  490 第2図に紡糸口金の吐出孔の形状と得られる炭素繊維の
横断面の形状の例を示す。
n θ (°) Triangle 3l2〇Square 490 FIG. 2 shows an example of the shape of the discharge hole of the spinneret and the shape of the cross section of the carbon fiber obtained.

これらの断面形状のなかで,多角形や多葉形が好ましい
。また,特に多葉形の場合のように葉部の比率が多すぎ
たり,また長すぎることは得られる特性や製造における
工程通過性の面から適切に設定することが重要である。
Among these cross-sectional shapes, polygonal and multilobal shapes are preferred. In addition, it is important to appropriately set the proportion of leaves that are too large or too long, especially in the case of multi-lobed products, from the viewpoint of the properties obtained and the ease of passing through the manufacturing process.

このような観点から断面の外接円と内接円の直径(それ
ぞれRおよびrとする)の比率(R/r)が適正な範囲
にあることが好ましい。第3図に一例としてY断面にお
ける,Rとrの関係を示す。R/rは1.1〜7.0が
好ましく,より好ましくは1.2〜6.O,さらに奸ま
しくは1.3〜5.0である。
From this point of view, it is preferable that the ratio (R/r) of the diameters of the circumscribed circle and the inscribed circle (r and R, respectively) of the cross section is within an appropriate range. FIG. 3 shows, as an example, the relationship between R and r in the Y cross section. R/r is preferably 1.1 to 7.0, more preferably 1.2 to 6. O, more preferably 1.3 to 5.0.

本発明の製造法から得られる異形断面炭素繊維の横断面
は実質的に均一で,リーフ状のラメラ構造が存在せず,
これは性能の高い炭素繊維を得るうえで極めて有利な点
である。
The cross section of the irregular cross-section carbon fiber obtained by the production method of the present invention is substantially uniform, and there is no leaf-like lamellar structure.
This is an extremely advantageous point in obtaining carbon fibers with high performance.

このようなラメラ構造のない均質な構造はポリアクリロ
ニトリル系の重合体から構成ざれる原糸を焼成すれば容
易に得られるのである。
Such a homogeneous structure without a lamellar structure can be easily obtained by firing a raw yarn made of a polyacrylonitrile polymer.

本発明の異形断面炭素繊維の側面には微小な凹凸が存在
するが,この特徴は本発明の製造法における繊維の形成
機構と密接に関連しており,横断面にリーフ状のラメラ
構造が存在せず,均一な結晶構造を有することと共に,
この点がピッチ系の異形断面炭素繊維と明白に異なる所
である。この表面の微細な凹凸は複合材科を形成した際
に,マトリックス樹脂との接着性を向上させるのに極め
て有効に機能するのである。
There are minute irregularities on the side surfaces of the irregular cross-section carbon fiber of the present invention, but this feature is closely related to the fiber formation mechanism in the manufacturing method of the present invention, and a leaf-like lamellar structure is present in the cross section. In addition to having a uniform crystal structure without
This point is clearly different from pitch-based irregular cross-section carbon fibers. These fine irregularities on the surface function extremely effectively in improving the adhesion with the matrix resin when forming a composite material.

本発明で用いるアクリル系繊II (7)製造にはアク
リロニトリル(以下ANと称する)を主成分として含有
し,95モル%以上,好ましくは,98モル%以上のA
Nと,好ましくは5モル%以下,特に好ましくは,2モ
ル%以下の該A.Nと共重合性があって,耐炎化反応を
促進するビニル基含有化合物(以下ビニル系モノマとい
う)との共重合体が用いられる。
Acrylic fiber II (7) used in the present invention contains acrylonitrile (hereinafter referred to as AN) as a main component, and contains A of 95 mol% or more, preferably 98 mol% or more.
N and preferably 5 mol% or less, particularly preferably 2 mol% or less of the A.N. A copolymer with a vinyl group-containing compound (hereinafter referred to as a vinyl monomer) that is copolymerizable with N and promotes a flame-retardant reaction is used.

劇炎化を促進する作用を有するビニル系モノマとしては
,例えばアクリル酸,メタアクリル酸,イタコン酸,お
よびそれらのアルカリ金属塩,アンモニウム塩,α(1
−ヒドロキシルエチル)アクリ口ニトリル,アクリル酸
ヒドロキシルエステル等を挙げることができる。またこ
れらの耐炎化促進能を有するビニル系モノマ以外にAN
系重合体の紡糸性または,!!糸性等を向上させるため
に,前記アクリル酸やメタクリル酸の低級アルキルエス
テル類,アリルスルホン酸,メタリルスルホン酸,スチ
レンスルホン酸およびそれらのアルカリ金属塩,酢酸ビ
ニルや塩化ビニル等の第3By.分を共重合成分の総量
が5モル%以下,好ましくは2モル%以下となる範囲で
共重合させてもよい。
Examples of vinyl monomers that promote severe inflammation include acrylic acid, methacrylic acid, itaconic acid, and their alkali metal salts, ammonium salts, α(1
-hydroxylethyl)acrylic nitrile, acrylic acid hydroxyl ester, and the like. In addition to these vinyl monomers that have the ability to promote flame resistance, AN
Spinnability of polymers or,! ! In order to improve thread properties and the like, lower alkyl esters of acrylic acid and methacrylic acid, allylsulfonic acid, methallylsulfonic acid, styrenesulfonic acid and their alkali metal salts, 3rd By. The total amount of copolymerized components may be 5 mol% or less, preferably 2 mol% or less.

このようなAN系の共重合体(PAN)は乳化懸濁,塊
状,va液等の重合法を用いて重合することができる。
Such AN-based copolymers (PAN) can be polymerized using emulsion suspension, bulk polymerization, VA liquid polymerization methods, and the like.

溶媒にPANを溶解した紡糸原液からアクリル系繊維を
製造するのであるが,PANの溶媒としては例えば,ジ
メチルホルムアミドやジメチルスルホオキサイド,硝酸
,ロダンソーダ水溶液,および塩化亜鉛水溶液等があげ
られる。
Acrylic fibers are produced from a spinning stock solution in which PAN is dissolved in a solvent, and examples of solvents for PAN include dimethylformamide, dimethyl sulfoxide, nitric acid, rhodan soda aqueous solution, and zinc chloride aqueous solution.

本発明の異形断面炭素繊紺の製造法における紡糸方法は
原糸の断面形状に擬した非円形,あるいはスリット形状
,あるいは点接触型の吐出孔からなる紡糸口金から一旦
空気または不活性雰囲気中に紡出した後,スキン層形成
不能な濃度範囲に設定されたPANの溶媒と凝固剤から
なる凝固市中で凝固させる。このようにして得られる凝
固糸は,表層のスキン層が存在しないか,あるいは存在
したとしても極めて薄いために,後続の水洗や延伸工程
で糸の表面に微細な凹凸構造を発現さぜることかできる
のである。
The spinning method used in the method for producing the irregular cross-section carbon fiber navy blue of the present invention is to use a spinning nozzle with a non-circular, slit-shaped, or point-contact type discharge hole that mimics the cross-sectional shape of the raw yarn, and then place the fiber in air or an inert atmosphere. After spinning, it is coagulated in a coagulation chamber consisting of a PAN solvent and a coagulant whose concentration is set in a range that makes it impossible to form a skin layer. The coagulated thread obtained in this way does not have a surface skin layer, or even if it does exist, it is extremely thin, so the subsequent water washing and drawing processes may cause the development of a fine uneven structure on the surface of the thread. It is possible.

本発明では紡糸方法として特に上記の乾湿式紡糸を用い
るが,これは凝固過程で発生する張力を口金と凝固浴の
開に存在する空間部で緩和させることができ,欠陥の少
ないまた均質性に優れた原糸を得ることができるためて
ある。
In the present invention, the above-mentioned dry-wet spinning method is particularly used as the spinning method, which can relieve the tension generated during the coagulation process in the space between the spinneret and the coagulation bath, resulting in less defects and uniformity. This is because it is possible to obtain excellent yarn.

凝固浴の組成は上記のPANの溶媒と凝固剤からなるが
,凝固剤の例としては,水,メタノール,エタノール,
アセトン等があげられるが,安全性や回収の面から水が
適している。
The composition of the coagulation bath consists of the above-mentioned PAN solvent and coagulant. Examples of the coagulant include water, methanol, ethanol,
Examples include acetone, but water is suitable from the standpoint of safety and recovery.

スキン層形成不能な濃度の範囲はPANの紹成,即ち分
子量や共重合成分および添加剤,また溶媒や凝固剤の紐
み合わせ,および紡糸原液温度や凝固浴の温度等によっ
て異なるが,たとえば特開昭61−119707号公報
(PIO〜11)に記載されている方法によって設定で
きる。凝固剤が水の場合は,ジメチルアセトアミド,ジ
メチルスルフォオキサイド,ジメチルホルムアミドなど
の有機系溶媒では60〜90重量%,硝酸では40〜5
0重量%,塩化亜釦,ロダン酸塩では20〜40重量%
である。
The concentration range at which skin layer formation is not possible varies depending on the PAN composition, that is, the molecular weight, copolymer components and additives, the combination of solvent and coagulant, and the temperature of the spinning dope and coagulation bath. It can be set by the method described in JP-A-61-119707 (PIO-11). When the coagulant is water, it is 60-90% by weight for organic solvents such as dimethylacetamide, dimethylsulfoxide, and dimethylformamide, and 40-5% for nitric acid.
0% by weight, 20-40% by weight for subchloride and rhodanate.
It is.

得られた凝固糸は水洗の後,温水のなかで延伸し,次に
工程油剤を,乾燥繊維重量あたり0.2〜1.5重量%
付与する。油剤の成分としては,特に焼成中の単繊維同
士の融着を防止するのに効果的な,シリコン系化合物あ
るいは変性シリコン系化合物を付与することが好ましい
The obtained coagulated fibers were washed with water and then stretched in warm water, and then a process oil was applied in an amount of 0.2 to 1.5% by weight based on the weight of the dry fibers.
Give. As a component of the oil agent, it is preferable to add a silicone-based compound or a modified silicone-based compound, which is particularly effective in preventing the fusion of single fibers during firing.

工程油剤を付与した後に,乾燥緻密化処理を行ない,繍
密化繊維を得る。つぎに必要に応して例えばスチーム中
で二次延伸を行う。
After applying the process oil, drying and densification treatment is performed to obtain densified fibers. Next, if necessary, secondary stretching is performed, for example, in steam.

ところで原糸の単糸織度は得られる異形断面炭素m維の
特性を規定する上で極めて重要な因子である。本発明で
は0.1〜2.5デニールが好ましいが,より好ましく
は0.2〜2.0デニール,さらに好ましくは0.3〜
1.5デニールである。0.1デニールよりも小さいと
単糸切れが発生しやすくなり,一方2.5デニールを越
えると単糸の内外層の均一な焼成が困難となり特性の優
れた炭素wc碓を得ることが困雅となる。このように均
一にfA成ずるためには繊度を2.6デニール以下とす
ることが好ましいわけてあるが,このような炭素繊維製
造用の細繊度の異形断面糸はこれまで開示去れていない
のである。
Incidentally, the single filament weave of the raw yarn is an extremely important factor in determining the characteristics of the obtained irregular cross-section carbon m-fiber. In the present invention, the denier is preferably 0.1 to 2.5 denier, more preferably 0.2 to 2.0 denier, and even more preferably 0.3 to 2.0 denier.
It is 1.5 denier. If the denier is less than 0.1 denier, single yarn breakage will easily occur, while if the denier exceeds 2.5 denier, it will be difficult to uniformly fire the inner and outer layers of the single yarn, making it difficult to obtain carbon wc with excellent properties. becomes. In order to achieve a uniform fA as described above, it is preferable that the fineness is 2.6 denier or less, but such a fine-grained irregular cross-section yarn for manufacturing carbon fibers has not been disclosed so far. be.

このようにして製造された,アクリル系線紺(以下ブレ
カーサと称する)を焼成して炭素繊維に変換する。該ブ
レカーサの焼成,すなわち酸化(耐炎化),および炭化
条件としては特に限定されるものではないが,!I!維
の内部にボイドなどの構造的欠陥が発生しにくい条件を
設定するのが好ましい。例えば,窒素等の不活性雰囲気
中での炭化の条1牛としては,300〜700℃ならび
に1000〜1200℃の温度領域における昇温速度を
IO00℃/分以下,好ましくは500℃/分以下とす
るのが好ましいのである。またさらに例えば1400℃
〜3000℃の不活性雰囲気で焼成して黒鉛化糸を得る
ことも可能である。
The thus produced acrylic line navy blue (hereinafter referred to as breaker) is fired to convert it into carbon fiber. The firing, oxidation (flame-proofing), and carbonization conditions of the breaker are not particularly limited, but! I! It is preferable to set conditions in which structural defects such as voids are unlikely to occur inside the fibers. For example, for a single cow carbonized in an inert atmosphere such as nitrogen, the temperature increase rate in the temperature range of 300 to 700°C and 1000 to 1200°C should be IO00°C/min or less, preferably 500°C/min or less. It is preferable to do so. Furthermore, for example, 1400℃
It is also possible to obtain graphitized threads by firing in an inert atmosphere at ~3000°C.

(実施例) 以下実施例により本発明をさらに具体的に説明する。(Example) The present invention will be explained in more detail with reference to Examples below.

なお,本文中および実施例中に用いた物性値は以下の方
法により測定したものである。
Note that the physical property values used in the text and examples were measured by the following method.

(A)樹脂含浸ストランド強度の測定法JIS R−7
601に規定されている樹脂含浸ストランド試験法に準
して測定し九〇・ “ベークライト” ERL−422
1    100部・3−フッ化硼素モノエチルアミン (BF3MEA)     3部 ・アセトン            4部硬化条件:1
30℃×30分 (B)複合材料(コンボジット)での特性値a6引張強
度,曲強度,N間剪断強度(ILSS)金粋に巻取った
炭素繊維を,炭素繊維の体積含有率(Vf)が60%と
なるように金型に入れ,樹脂を流し入れた後,加熱して
真空脱泡する。
(A) Resin-impregnated strand strength measurement method JIS R-7
90. “Bakelite” ERL-422
1 100 parts 3-boron fluoride monoethylamine (BF3MEA) 3 parts acetone 4 parts Curing conditions: 1
30°C x 30 minutes (B) Characteristic values for composite material (composite) a6 Tensile strength, bending strength, N shear strength (ILSS) ) is 60%, and after pouring the resin, it is heated and degassed under vacuum.

脱泡後,プレス機で加圧しながら加熱して樹脂を硬化さ
せ,試験片を作成する。インストロン試験機を用いて測
定し,Vf=60%に換算する。
After defoaming, heat the resin while applying pressure with a press to harden it and create a test piece. Measured using an Instron testing machine and converted to Vf = 60%.

本樹脂: ELM434[住友化学(株)]35部Ep
828[ペトロケミカルズ(株)]35部エピクロン1
52 [大日本インキ(株)]30部 4,4′−ジアミノジフエニルスルフォン[住友化学(
株)]32部 3フッ化ホウ素モノエチルアミン0.5部(溶媒:メチ
ルエチルケ1・ン,jtA脂濃度=55%)*成型条件 脱泡:真空(10n+mllg以下)下, 70℃×2
時間成型:プレス圧力= 50kg/ cm2,170
℃×1時間 ポストキュア:金型から試験片を取り出した後,170
℃×2時間 成型:引張試験:幅6rnm ,厚みl.6mm曲強度
,ILSS;幅(3mm ,厚み2.5mm本測定 引張強度:試験片の長さを150mmとし,両端に長さ
4 5mmのアルミ製のタブを接着する。
Main resin: ELM434 [Sumitomo Chemical Co., Ltd.] 35 parts Ep
828 [Petrochemicals Co., Ltd.] 35 parts Epicron 1
52 [Dainippon Ink Co., Ltd.] 30 parts 4,4'-diaminodiphenylsulfone [Sumitomo Chemical (
Co., Ltd.] 32 parts 3 Boron fluoride monoethylamine 0.5 parts (solvent: methyl ethyl chloride, jtA fat concentration = 55%) *Molding conditions Defoaming: under vacuum (10n+mlg or less), 70°C x 2
Time molding: Press pressure = 50kg/cm2,170
℃ × 1 hour post cure: After taking out the test piece from the mold, 170℃
℃×2 hours Molding: Tensile test: Width 6rnm, thickness 1. 6mm bending strength, ILSS; Width (3mm, thickness 2.5mm) Actual measurement Tensile strength: The length of the test piece is 150mm, and aluminum tabs with a length of 45mm are glued to both ends.

試験片の中央部の厚み方向に,両側から75mm Rの
R加工を行い,測定に供する。
A radius of 75 mm is machined from both sides in the thickness direction of the center of the test piece, and the test piece is used for measurement.

R加工部の最も厚みの少ない部分の厚さと幅を測定して
断面積を求める。
The cross-sectional area is determined by measuring the thickness and width of the thinnest part of the rounded part.

曲強度:試験片の長さを150mmとし,3点曲試験治
具を用いて測定する。
Bending strength: The length of the test piece is 150 mm, and it is measured using a 3-point bending test jig.

ILSS:試験片の長さを18mmとし,3点曲試験治
具を用い,支持スパンを試験片の厚みの4倍として測定
する。
ILSS: The length of the test piece is 18 mm, and a three-point bending test jig is used to measure the support span as four times the thickness of the test piece.

b.圧縮強度 東レ(株)!!l$3620樹脂をシリコン樹脂塗布ベ
ーバーにコーティングした樹脂フィルムの上に,炭素繊
維を一方向に配列し,さらにその上に前記樹脂フィルム
を再度重ね,加圧ロールで樹脂を炭素繊維内に含浸せし
めてブリプレグシートを作成する。このシートをm維軸
を揃えて積層し,オートクレープを用いて温度180℃
,圧力6kg/cm”で2時間処理して樹脂を硬化させ
て,厚さ約1mmの平板を作成する。この平板をダイヤ
モンドカッターを用いて切断し,繊維軸方曲に長さ80
mm ,繊維軸の直角方向に幅12mmからなる試験片
を作成する。試験片の中央部5mmを残して,両端の両
側に炭素i&紺とエボキシ樹脂からなる厚さ約1mmの
コンボジット製のタブを接着して,圧縮強度測定用のシ
(験片とする。
b. Compressive strength Toray Industries, Inc.! ! 1$3620 Carbon fibers are arranged in one direction on a resin film coated with silicone resin-coated barber, and the resin film is layered on top of that again, and the resin is impregnated into the carbon fibers using a pressure roll. Create a Bripreg sheet. These sheets were stacked with their fiber axes aligned and heated to 180°C using an autoclave.
, a pressure of 6 kg/cm'' for 2 hours to harden the resin and create a flat plate with a thickness of about 1 mm. This flat plate is cut using a diamond cutter and cut into a length of 80 mm along the fiber axis.
A test piece with a width of 12 mm in the direction perpendicular to the fiber axis is prepared. Leave 5 mm in the center of the test piece, and glue composite tabs made of carbon i, navy blue, and epoxy resin with a thickness of about 1 mm to both ends to form a test piece for compressive strength measurement.

(C)走査型電子顕微鏡(SEM)による破断面観察 測定する炭素繊維の単糸を引張試験機を用いて,破断の
衝撃で破断面が複雑に乱れることを防止するために,以
下の条件で水中で破断させる。
(C) Observation of the fracture surface using a scanning electron microscope (SEM) The carbon fiber single yarn to be measured was measured using a tensile tester under the following conditions to prevent the fracture surface from being complicatedly disturbed by the impact of the fracture. break in water.

チャック間隔: 5cm 引張速度  : 0.5mm/分[1%歪/分]サンプ
ル長さ:l5cm 得られたサンプルに金を蒸着させて,加速電圧15 〜
25kv (25kv),倍率5000 〜15000
倍(10000倍)で,SEM観察あるいは撮影する。
Chuck interval: 5 cm Tensile speed: 0.5 mm/min [1% strain/min] Sample length: 15 cm Gold was deposited on the obtained sample, and the acceleration voltage was 15 ~
25kv (25kv), magnification 5000 ~ 15000
Observe or photograph with SEM at magnification (10,000x).

(  )値は本実施例での測定条件である。The values in ( ) are the measurement conditions in this example.

実施例−1 アクリロニトリル(以下ANと称する) 99.5モル
%,イタコン酸0.5モル%からなる,固有粘度[η]
が1.80のAN共重合体のジメチルスルホオキシド(
DMSO)溶液にアンモニアを吹きこみ,該共重合体の
カルボキシル末端基をアンモニウム基で置換してボリマ
を変性し,この変性ボリマσ〕濃度が20重量%である
DMSO溶液を作成し,紡糸原液とした。
Example-1 Intrinsic viscosity [η] consisting of 99.5 mol% acrylonitrile (hereinafter referred to as AN) and 0.5 mol% itaconic acid
Dimethyl sulfoxide (
DMSO) solution was blown with ammonia and the carboxyl end groups of the copolymer were replaced with ammonium groups to modify the polymer. A DMSO solution with a concentration of 20% by weight of the modified polymer σ was prepared and mixed with the spinning stock solution. did.

この紡糸原液を50℃にて,スリット幅0.03mmの
Y孔,十孔,H孔であり,孔nl500ホールの紡糸口
金を通して一旦空気中に紡出した後,10℃の75%D
MSO水溶液中に導入して,凝固糸とした。
This spinning stock solution was once spun into the air at 50°C through a spinneret with Y, 10, and H holes with a slit width of 0.03 mm and 500 holes, and then spun into the air at 10°C using 75% D
It was introduced into an MSO aqueous solution to form a coagulated thread.

比較のために直径が0.12mmの円形の吐出孔を有す
る従来の口金を用いて同様に凝固糸を得た。
For comparison, a coagulated thread was similarly obtained using a conventional die having a circular discharge hole with a diameter of 0.12 mm.

凝固糸条を水洗した後,温水中で4段の延伸を行ない,
浴延伸糸を得た。延伸ia率は全体で3.5倍であった
。次に,この沼延伸糸に変性シリコン系化合物を主成分
とする油剤を付与した後,130℃の加熱ロールを用い
て乾燥,および緻密化を行った。さらに引続いて,加圧
スチーム中で2 . 5 1p,に延伸して,単糸織度
が1.0デニール,トータル繊度が1500デニールの
アクリル系繊維糸条を得た。
After washing the coagulated yarn with water, it was drawn in four stages in warm water.
A bath-drawn yarn was obtained. The overall stretching ia ratio was 3.5 times. Next, an oil agent containing a modified silicone compound as a main component was applied to the swamp-drawn yarn, followed by drying and densification using a heated roll at 130°C. Furthermore, 2. 51p, to obtain an acrylic fiber yarn having a single yarn weave of 1.0 denier and a total fineness of 1500 denier.

このアクリル系繊維糸条な,240〜260℃0空気中
で1605倍に延伸しながら耐炎化処理を行ない,引続
いて,最高温度が1400℃の窒素雰囲気中で,300
〜700℃の温度域における昇温速度を250℃/分,
 1000〜1200℃の温度域における昇温速度を4
00℃/分に設定した炭化炉で処理を行い,炭素繊維に
変換した。さらにここで得られた炭素繊維をl600〜
3000℃のタンマン炉で黒鉛化して種々の弾性率を有
する黒鉛糸を得た。
This acrylic fiber thread was flame-retardant treated while being stretched 1605 times in air at 240-260°C, and then stretched 300 times in a nitrogen atmosphere with a maximum temperature of 1400°C.
The heating rate in the temperature range of ~700℃ is 250℃/min.
The temperature increase rate in the temperature range of 1000 to 1200℃ is 4.
It was processed in a carbonization furnace set at 00°C/min to convert it into carbon fiber. Furthermore, the carbon fiber obtained here is 1600 ~
Graphite threads having various elastic moduli were obtained by graphitization in a Tammann furnace at 3000°C.

なお樹脂との新和性を向上させるために硫酸や硝酸水溶
液中で適宜陽極酸化処理をおこなった。
In order to improve compatibility with the resin, appropriate anodization treatment was performed in a sulfuric acid or nitric acid aqueous solution.

ここで得られた異形断面炭素繊紐の単糸を水中で破断さ
せ,該破断面をSEMで観察したところいずれもリーフ
上のラメラ構造は観察されなかった。また繊維の側面を
同様にSEMで観察したところいずれも微小な凹凸構造
が観察された。
When the single filament of the irregular cross-section carbon fiber string obtained here was broken in water and the broken surface was observed with an SEM, no lamellar structure on the leaf was observed in any of them. Furthermore, when the side surfaces of the fibers were similarly observed using SEM, fine uneven structures were observed in all cases.

第1表にストランド特性およびコンボジッ1・特性を示
す。また第4図に円断面炭素繊維とY断面炭素繊維にお
ける弾性率と圧縮強度との関係を示す。第4図から本発
明の異形断面炭素繊維では円断面の炭素tIIA維より
も優れた圧縮強度を示すことが判る。
Table 1 shows the strand properties and combo properties. Furthermore, FIG. 4 shows the relationship between the elastic modulus and compressive strength of circular cross-section carbon fibers and Y-section carbon fibers. It can be seen from FIG. 4 that the irregular cross-section carbon fiber of the present invention exhibits superior compressive strength than the circular cross-section carbon tIIA fiber.

(発明の効果) 本発明の製造法によって■繊維の横断面の形状が非円形
であり,■繊維の横断面は実質的に均一な結晶構造を有
し,■繊維の表面に微小な凹凸構造が存在する,■強度
が300kg/mm2以上,弾性率が20t/mm2以
上である炭素繊紐が得られる。
(Effects of the Invention) By the manufacturing method of the present invention, ■ the cross-sectional shape of the fiber is non-circular, ■ the cross-section of the fiber has a substantially uniform crystal structure, and ■ the surface of the fiber has a fine uneven structure. (1) A carbon fiber string having a strength of 300 kg/mm2 or more and an elastic modulus of 20 t/mm2 or more is obtained.

これらの特徴を有する異形断面炭素繊維を適用すること
によって,重要な特性である層間qq断強度(ILSS
)や圧縮強度,曲強度などの基本特性が極めて優れた複
合材料を得ることができる。
By applying irregular cross-section carbon fibers with these characteristics, the interlaminar qq shear strength (ILSS), which is an important property, can be improved.
), compressive strength, and bending strength.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はピッチ系の炭素繊維の破断面に出現ずるリーフ
状ラメラ構造の模式図の例を示す。第2図は紡糸口金の
吐山孔の形状と得られる炭素繊維の横断面の形状の例を
示す。第3図はY断面炭素繊維における.Rとrの関係
を示す。第4図は実施例における円断面炭素繊紐とY断
面炭素繊紐における弾性率と圧縮強度との関係を示す。
FIG. 1 shows an example of a schematic diagram of a leaf-like lamellar structure that appears on the fracture surface of a pitch-based carbon fiber. FIG. 2 shows examples of the shape of the spinneret spout and the cross-sectional shape of the carbon fibers obtained. Figure 3 shows Y-section carbon fiber. The relationship between R and r is shown. FIG. 4 shows the relationship between the elastic modulus and compressive strength of the circular cross-section carbon fiber string and the Y-section carbon fiber string in Examples.

Claims (1)

【特許請求の範囲】 少なくとも95モル%のアクリロニトリルを含有するア
クリロニトリル系重合体と、該重合体の溶媒からなる紡
糸原液を非円形、あるいはスリット形状、あるいは点接
触型の吐出孔からなる紡糸口金から一旦空気または不活
性雰囲気中に紡出した後、スキン層形成不能濃度範囲に
設定された該溶媒と凝固剤からなる凝固浴中で凝固させ
た後、水洗、延伸して得られる、繊維の横断面が θ=360゜/n (nは2から20までの整数) なる回転対称角度θ(゜)を有する非円形形状である原
糸を焼成することを特徴とする異形断面炭素繊維の製造
法。
[Claims] A spinning dope consisting of an acrylonitrile polymer containing at least 95 mol% of acrylonitrile and a solvent for the polymer is passed through a spinneret having non-circular, slit-shaped, or point-contact discharge holes. Once spun in air or an inert atmosphere, the fibers are coagulated in a coagulation bath consisting of the solvent and a coagulant whose concentration is set at a concentration range that does not allow the formation of a skin layer, followed by washing with water and stretching. A method for producing irregular cross-section carbon fibers, characterized by firing a raw yarn having a non-circular shape with a rotational symmetry angle θ (°) of θ = 360°/n (n is an integer from 2 to 20). .
JP1229580A 1989-09-05 1989-09-05 Production of modified cross-sectional carbon fiber Pending JPH0397918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1229580A JPH0397918A (en) 1989-09-05 1989-09-05 Production of modified cross-sectional carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1229580A JPH0397918A (en) 1989-09-05 1989-09-05 Production of modified cross-sectional carbon fiber

Publications (1)

Publication Number Publication Date
JPH0397918A true JPH0397918A (en) 1991-04-23

Family

ID=16894410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1229580A Pending JPH0397918A (en) 1989-09-05 1989-09-05 Production of modified cross-sectional carbon fiber

Country Status (1)

Country Link
JP (1) JPH0397918A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03185121A (en) * 1989-09-05 1991-08-13 Toray Ind Inc Carbon fiber with non-circular cross section, its production and carbon fiber composite material therefrom
JP2002308612A (en) * 2001-04-02 2002-10-23 Gogotsi Yury Graphite polycrystalline body and isolation method for the same and application for the same
JP2011122255A (en) * 2009-12-09 2011-06-23 Toray Ind Inc Carbon fiber precursor fiber bundle, carbon fiber bundle, and method for producing them
CN103334180A (en) * 2013-06-26 2013-10-02 中简科技发展有限公司 Triangular-cross-section polyacrylonitrile carbon fiber preparation method
WO2015016199A1 (en) 2013-07-30 2015-02-05 東レ株式会社 Carbon fiber bundle and flameproofed fiber bundle
JP2018508667A (en) * 2015-03-12 2018-03-29 サイテック インダストリーズ インコーポレイテッド Production of intermediate modulus carbon fiber

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742927A (en) * 1980-08-28 1982-03-10 Secr Defence Brit Production of high strength and high elastic ratio reinforcing fiber and composite material containing same
JPS6065108A (en) * 1983-05-09 1985-04-13 Mitsubishi Rayon Co Ltd Acrylonitrile filament yarn and its production
JPS61119707A (en) * 1984-11-13 1986-06-06 Asahi Chem Ind Co Ltd Acrylic fiber having excellent durability and color-developability and production thereof
JPS62117821A (en) * 1985-09-12 1987-05-29 クレムスン・ユニヴア−シテイ Carbon fiber and its production
JPH02160912A (en) * 1988-08-25 1990-06-20 Basf Ag Improvements in manufacture of
JPH02160911A (en) * 1988-08-25 1990-06-20 Basf Ag Improvements in manufacture of melt

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742927A (en) * 1980-08-28 1982-03-10 Secr Defence Brit Production of high strength and high elastic ratio reinforcing fiber and composite material containing same
JPS6065108A (en) * 1983-05-09 1985-04-13 Mitsubishi Rayon Co Ltd Acrylonitrile filament yarn and its production
JPS61119707A (en) * 1984-11-13 1986-06-06 Asahi Chem Ind Co Ltd Acrylic fiber having excellent durability and color-developability and production thereof
JPS62117821A (en) * 1985-09-12 1987-05-29 クレムスン・ユニヴア−シテイ Carbon fiber and its production
JPH02160912A (en) * 1988-08-25 1990-06-20 Basf Ag Improvements in manufacture of
JPH02160911A (en) * 1988-08-25 1990-06-20 Basf Ag Improvements in manufacture of melt

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03185121A (en) * 1989-09-05 1991-08-13 Toray Ind Inc Carbon fiber with non-circular cross section, its production and carbon fiber composite material therefrom
JP2002308612A (en) * 2001-04-02 2002-10-23 Gogotsi Yury Graphite polycrystalline body and isolation method for the same and application for the same
JP2011122255A (en) * 2009-12-09 2011-06-23 Toray Ind Inc Carbon fiber precursor fiber bundle, carbon fiber bundle, and method for producing them
CN103334180A (en) * 2013-06-26 2013-10-02 中简科技发展有限公司 Triangular-cross-section polyacrylonitrile carbon fiber preparation method
WO2015016199A1 (en) 2013-07-30 2015-02-05 東レ株式会社 Carbon fiber bundle and flameproofed fiber bundle
KR20160037164A (en) 2013-07-30 2016-04-05 도레이 카부시키가이샤 Carbon fiber bundle and flameproofed fiber bundle
US11105022B2 (en) 2013-07-30 2021-08-31 Toray Industries, Inc. Carbon fiber bundle and stabilized fiber bundle
JP2018508667A (en) * 2015-03-12 2018-03-29 サイテック インダストリーズ インコーポレイテッド Production of intermediate modulus carbon fiber
JP2021004437A (en) * 2015-03-12 2021-01-14 サイテック インダストリーズ インコーポレイテッド Manufacture of intermediate modulus carbon fiber
US11479881B2 (en) 2015-03-12 2022-10-25 Cytec Industries Inc. Manufacture of intermediate modulus carbon fiber

Similar Documents

Publication Publication Date Title
KR101335140B1 (en) Carbon fiber, process for production of polyacrylonitrile-base precursor fiber for carbon fiber production, and process for production of carbon fiber
JP5691366B2 (en) Carbon fiber manufacturing method
JP4910729B2 (en) Method for producing carbon fiber precursor fiber, carbon fiber and method for producing the same
JPH11241230A (en) Carbon fiber, precursor fiber for carbon fiber, composite material and production of carbon fiber
JP4617940B2 (en) Polyacrylonitrile-based polymer for carbon fiber precursor fiber, carbon fiber precursor fiber, and method for producing carbon fiber
JP2006307407A (en) Carbon fiber and method for producing carbon fiber
JP5434187B2 (en) Polyacrylonitrile-based continuous carbon fiber bundle and method for producing the same
KR0156870B1 (en) Noncircular cross-section carbon fibers, process for producing the same and composite containing them
JPH0397918A (en) Production of modified cross-sectional carbon fiber
JP2892127B2 (en) Non-circular cross-section carbon fiber, method for producing the same, and carbon fiber composite material
JP2010100970A (en) Method for producing carbon fiber
JP2011017100A (en) Method for producing carbon fiber
JP4975217B2 (en) Carbon fiber and method for producing the same, method for producing carbon fiber precursor fiber, and prepreg
JP2009079343A (en) Method for producing precursor fiber for carbon fiber and carbon fiber
JP4983709B2 (en) Carbon fiber precursor fiber and method for producing carbon fiber
WO2020071445A1 (en) Precursor fiber bundle production method, carbon fiber bundle production method, and carbon fiber bundle
JPH0397917A (en) Modified cross-sectional carbon fiber and production thereof
JP2008308777A (en) Carbon fiber and method for producing polyacrylonitrile-based precursor fiber for producing carbon fiber
JP2004060126A (en) Carbon fiber and method for producing the same
JP2007321267A (en) Method for producing polyacrylonitrile-based fiber and carbon fiber
JP2004156161A (en) Polyacrylonitrile-derived carbon fiber and method for producing the same
JP4238436B2 (en) Carbon fiber manufacturing method
JP2595674B2 (en) Carbon fiber production method
JPH1088430A (en) Carbon fiber, precursor for production of carbon fiber and production thereof
JP2003020516A (en) Polyacrylonitrile precursor fiber for carbon fiber and method for producing the same