JPH0397917A - Modified cross-sectional carbon fiber and production thereof - Google Patents

Modified cross-sectional carbon fiber and production thereof

Info

Publication number
JPH0397917A
JPH0397917A JP1229579A JP22957989A JPH0397917A JP H0397917 A JPH0397917 A JP H0397917A JP 1229579 A JP1229579 A JP 1229579A JP 22957989 A JP22957989 A JP 22957989A JP H0397917 A JPH0397917 A JP H0397917A
Authority
JP
Japan
Prior art keywords
section
cross
fiber
carbon fiber
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1229579A
Other languages
Japanese (ja)
Inventor
Hideo Saruyama
猿山 秀夫
Akira Okuda
章 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP1229579A priority Critical patent/JPH0397917A/en
Publication of JPH0397917A publication Critical patent/JPH0397917A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To produce the subject fiber suitable as a reinforcing material for composite materials having excellent characteristics by spinning a spinning raw solution comprising an acrylonitrile based polymer with a spinneret having a specific shape, followed by coagulating, washing with water, drawing and baking. CONSTITUTION:A spinning raw solution comprising an acrylonitrile based polymer comprising >=95mol% of acrylonitrile and a solvent such as dimethyl sulfoxide is directly spun into a coagulating solution bath comprising the solvent and a coagulating agent such as water or methanol through a spinneret comprising point contact type extrusion holes. The coagulate fibers are washed with water and subsequently drawn in warm water, hot water, etc., and then baked to provide the objective fibers each having a non-circular cross section having a rotation symmetrical angle theta of 360 degree/n (n is 2-20) and having fine uneven structures thereon.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は,異形断面炭素繊維とその製造方法に関し,詳
しくは優れた特性を有する複合材料の補強材として好適
な異形断面炭素wc碓とその製造方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a modified cross-section carbon fiber and a method for producing the same, and more specifically to a modified cross-section carbon fiber suitable as a reinforcing material for composite materials having excellent properties and its production method. Regarding the manufacturing method.

(従来技術) 従来,炭素繊維は,その優れた機械的性質,特に,比強
度および比弾性率を利用して複合材料の補強用m維とし
て工業的に広く生産されているが,これらの複合材料の
用途,特にスポーツ用途や航空宇宙用途においては,炭
素繊維の高性能化に刻する要望がますます高くなってい
る。
(Prior art) Conventionally, carbon fibers have been widely produced industrially as fibers for reinforcing composite materials by taking advantage of their excellent mechanical properties, especially their specific strength and specific modulus. In material applications, particularly in sports and aerospace applications, there is an increasing demand for improved performance of carbon fibers.

このような高性能化に刻する要望に応じて,これまで数
多くの改善がなされ,炭素繊維を補強材とした複合材料
の用途が拡大されてきている。しかし炭素繊維自体の特
性,たとえば樹脂含浸ストランド強度や弾性率は長足の
進歩がなされているが,実際に活用される複合材料の特
性としては十分満足のいく特性が得られていないのが現
状である.すなわち複合材料での強度利用率,眉間剪断
強度(ILSS),圧縮強度,曲強度などの基本特性が
向上しないという問題である。
In response to such demands for higher performance, numerous improvements have been made to date, and the use of composite materials using carbon fiber as a reinforcing material is expanding. However, although great progress has been made in the properties of carbon fiber itself, such as the strength and elastic modulus of resin-impregnated strands, the current situation is that the properties of composite materials that are actually used have not yet been fully satisfactory. be. That is, the problem is that the basic properties of the composite material, such as strength utilization rate, interglalabella shear strength (ILSS), compressive strength, and bending strength, do not improve.

これらの問題に対しては,炭素i維の表面特性を電解表
面処理によって改善する方法,適用するマトリックス樹
脂の特性を改善する方法,複合材料を構成する炭素繊維
の配列を工夫する方法など,数多くの手段が開示されて
きたが,複合材料を構成する炭素繊維そのものの特性を
革新的に向上させて基本特性を改善するものではなかっ
た。
There are many ways to solve these problems, including methods to improve the surface properties of carbon i-fibers by electrolytic surface treatment, methods to improve the properties of the applied matrix resin, and methods to improve the arrangement of carbon fibers that make up composite materials. Although methods for this have been disclosed, they do not innovatively improve the properties of the carbon fibers themselves that make up the composite material to improve the basic properties.

(発明が解決しようとする課題) 本発明の課題は,複合材科での強度利用率,層間剪断強
度(ILSS),圧縮強度,助強度などの基本特性が極
めて優れ,卓越しk補強効果な示す炭素繊維を提供する
とともに,その製造方法を提供することにある。
(Problem to be solved by the invention) The problem of the present invention is to have extremely excellent basic properties such as strength utilization rate, interlaminar shear strength (ILSS), compressive strength, and supporting strength in the composite material category, and to have an outstanding k reinforcement effect. The object of the present invention is to provide a carbon fiber shown in the figure as well as a method for producing the same.

(課題を解決するための手段) 上記本発明の課題は, (1)300kg/mm2以上の強度,および2OL/
mm2のづlit性率を有する炭素繊維において,繊維
の横断面がθ=360” /n (nは2から20までの整数) なる回転対称角度(゜)を有する非円形であり,また′
繊維の横断面にはラメラ構造が存在せず,実質的に均一
な結晶構造を有し,さらに繊維の表面には微小な凹凸構
造が存在することを特徴とする異形断面炭素繊維,およ
び (2)少なくとも95モル%のアクリロニトリルを含有
するアクリロニトリル系重合体と,該重合体の溶媒から
なる紡糸原液を非円形,あるいはスリット形状,あるい
は点接触型の吐出孔からなる紡糸口金から該溶媒と凝固
剤からなる凝固浴中に直接紡出し,凝固,水洗,延伸し
て得られる繊維の横断面が θ=360” /n (nは2から20までの整数) なる回転対称角度(゜)を有する,異形断面を有する原
糸を焼成することを特徴とする炭素繊維の製造方法 によって解決することができる。
(Means for Solving the Problems) The above problems of the present invention are as follows: (1) Strength of 300 kg/mm2 or more and 2OL/mm2 or more
In the case of carbon fibers having a slit modulus of mm2, the cross section of the fibers is non-circular with a rotational symmetry angle (°) of θ = 360''/n (n is an integer from 2 to 20), and '
A carbon fiber with an irregular cross section, which has no lamellar structure in the cross section of the fiber, has a substantially uniform crystal structure, and has a fine uneven structure on the surface of the fiber, and (2) ) A spinning dope consisting of an acrylonitrile polymer containing at least 95 mol % of acrylonitrile and a solvent for the polymer is passed through a spinneret having non-circular, slit-shaped, or point-contact discharge holes and the solvent and coagulant. The cross section of the fiber obtained by direct spinning into a coagulation bath, coagulation, water washing, and stretching has a rotational symmetry angle (°) of θ=360”/n (n is an integer from 2 to 20). This problem can be solved by a method for producing carbon fiber, which is characterized by firing a yarn having an irregular cross section.

本発明の炭素繊維は■繊維の横断面の形状が非円形であ
り,■IIIの横断面にはラメラ構造が存在せず,実質
的に均一な結晶構造を有し,および■i雑の表面には微
小な凹凸構造が存在する,という三点に最大の特徴があ
る。
The carbon fiber of the present invention ■ has a non-circular cross-sectional shape, ■ has no lamellar structure in the cross-section III and has a substantially uniform crystal structure, and ■ has a rough surface. The three most important features are the presence of a microscopic uneven structure.

非円形すなわち異形断面炭素IIIはこれまで,特にピ
ッチ系の炭素繊維において多数の技術が開示されてきて
いる。これらピッチ系の炭素繊維においては,弾性率や
強度等の基本特性を保持するために原料としてのピッチ
に多大の工夫が払われ,メソフエーズピッチが使用され
ることが一般的となってきている。これらのメソフエー
ズピッチを原料とすると,原糸(ブリカーサ)の製造に
おける紡出の際の,剪断応力により原糸の内部に不均一
な結晶構造が生成し,これが焼成後の炭素繊維の内部に
ラメラ構造として観察される不均一な結晶構造として残
存してしまい,強度や弾性率の低下をもたらすことにな
る。このような原料の基本特性に起因する欠点を改良す
ることを目的として異形断面化が工夫されているのであ
る。例えは特開昭61−6313号公報,特開昭62−
117821号公報,特開昭62−231024号公報
,特開昭f32−131034号公報などである。しか
しながらこれらの開示技術においては依然として上記の
不均一な結晶構造が存在しており特に圧縮強度の向上が
望めないものであった。これらの異形断面炭素繊維には
その繊維の横断面の形状に沿ってリーフ状(葉状)のラ
メラ構造が観察されるのである。
Many techniques have been disclosed so far for carbon III having a non-circular or irregular cross-section, particularly for pitch-based carbon fibers. For these pitch-based carbon fibers, great efforts have been made to the pitch as a raw material in order to maintain basic properties such as elastic modulus and strength, and it has become common to use mesophase pitch. There is. When these mesophase pitches are used as raw materials, shear stress during spinning during production of raw fibers (bricasa) creates a non-uniform crystal structure inside the raw fibers, which causes the internal structure of the carbon fibers after firing. However, it remains as a non-uniform crystal structure observed as a lamellar structure, resulting in a decrease in strength and elastic modulus. In order to improve the defects caused by the basic characteristics of raw materials, the creation of irregular cross-sections has been devised. For example, JP-A-61-6313, JP-A-62-
117821, JP-A-62-231024, JP-A-32-131034, and the like. However, in these disclosed techniques, the above-mentioned non-uniform crystal structure still exists and no improvement in compressive strength can be expected. A leaf-like lamellar structure is observed in these irregular cross-section carbon fibers along the cross-sectional shape of the fibers.

このリーフ状ラメラ構造の有無は,例えば特開昭61−
(i313号公報,や特開昭62−117821号公報
に記載されている如く,炭素繊維の横断面(破断面)を
走査型電子顕微鏡(SEM)を用いて観察したときに,
破断面の中心から外側に向かって,放剖状に伸びた破壊
Mi織として容易に観察できるものである。第1図に破
断面に出現するリーフ状ラメラ構造の模式図を示す。
The presence or absence of this leaf-like lamellar structure can be determined, for example, by
(As described in Publication i313 and Japanese Patent Application Laid-open No. 117821/1982, when the cross section (fractured surface) of carbon fiber is observed using a scanning electron microscope (SEM),
This can be easily observed as a fractured Mi weave extending radially outward from the center of the fracture surface. Figure 1 shows a schematic diagram of the leaf-like lamellar structure that appears on the fracture surface.

本発明の異形断面炭素繊維には上記のリーフ状ラメラ構
造に対応ずる不均一な結晶構造は認められず実質的に均
一な内部構造を示すものである。
The irregular cross-section carbon fiber of the present invention does not have a nonuniform crystal structure corresponding to the leaf-like lamella structure described above, and exhibits a substantially uniform internal structure.

このような均一な内部構造の異形断面炭素繊維について
は例えば, 20tlIInternational 
SAMPETechnical Conference
 (1988)講演予稿集P414〜422にポリアク
リロニトリル(PAN)の溶融紡糸法によって得られる
原糸を焼成することにより製造できることが記載されて
おり,断面写真が掲載されている。しかしながら該予稿
集には円形断面の炭素繊維の特性の記載はあるものの,
異形断面炭素繊維の具体的特性は記載されておらず,は
たしていかなる特性や特徴が発現するものか全く判から
ないものであった。
For such irregular cross-section carbon fibers with uniform internal structure, for example, 20tlII International
SAMPE Technical Conference
(1988) Lecture Proceedings P414-422 describes that polyacrylonitrile (PAN) can be produced by firing raw yarn obtained by melt spinning, and a cross-sectional photograph is published. However, although there is a description of the characteristics of carbon fiber with a circular cross section in the proceedings,
The specific properties of the irregular cross-section carbon fibers were not described, and it was not clear at all what properties and features they would exhibit.

本発明の異形断面炭素繊維は上記の■,■および■の特
性を同時に満足するものであり,さらに重要な基本特性
としての強度は,後述するストランド形態での測定にお
いて,強度として300kg / mm2以上,好まし
くは320kg/mm2以上である。また同様に弾性率
は204/mrn2以上であり,好ましくは22t/B
”以上である。強度弾性率いずれもこの値に到達しない
と複合材科の補強材としての利点を発揮できない。特に
本発明の異形断面炭素111i1Iは断面が非円形であ
るために,複合手A料の重要な特性である層開剪断強度
(ILSS),圧縮強度,曲強度などの基本特性が極め
て優れたものとなる。
The irregular cross-section carbon fiber of the present invention simultaneously satisfies the properties (1), (2), and (2) above, and the strength, which is an important basic property, is 300 kg/mm2 or more when measured in the form of a strand, which will be described later. , preferably 320 kg/mm2 or more. Similarly, the elastic modulus is 204/mrn2 or more, preferably 22t/B
"The above is the above. Unless both the strength and elastic modulus reach this value, the advantages as a reinforcing material for composite materials cannot be exhibited. In particular, since the irregular cross-section carbon 111i1I of the present invention has a non-circular cross section, the composite material A The basic properties such as interlayer shear strength (ILSS), compressive strength, and bending strength, which are important properties of the material, are extremely excellent.

本発明の炭素繊維における断面形状は,従来の円形の吐
出孔から紡出して得られる原糸を焼成して製造される炭
素wi紺におけるそらまめ型や繭型,などとは異なるも
のである。
The cross-sectional shape of the carbon fibers of the present invention is different from the bean-shaped or cocoon-shaped carbon fibers produced by conventional carbon fibers produced by firing raw fibers spun from circular discharge holes.

本発明におけるθ=360” /n (nは2から20
までの整数)なる回転列称角度θ(゜)を有する非円形
形状である炭素wc維や焼成するための原糸の断面形状
としては,例えば,三角や四角等の多角形,三葉や四葉
等の多葉形,およびII等のアルファベット形状を含む
ものである。参考のためにこれらの多角(多葉)形と1
1およびθとの関係を下記する。
θ=360''/n (n is 2 to 20
The cross-sectional shape of the carbon wc fiber, which is a non-circular shape with a rotational index angle θ (°) of up to an integer up to This includes multi-lobed shapes such as , and alphabetic shapes such as II. For reference, these polygonal (multilobal) shapes and 1
The relationship between 1 and θ is shown below.

n   θ (゜) 三角  3l2〇 四角  490 第2図に紡糸口金の吐出孔の形状と得られる炭素繊維の
横断面の形状の例を示す。このなかで製造方法の容易さ
の観点からは多角形や多葉形が好ましい。また特に多葉
形の場合のように葉部の比率が多すぎたり,また長すぎ
ることは得られる特性や製造における工程通過性の面か
ら適切に設定することが重要であり,このような観点か
ら断面の外接円と内接円の直径(それぞれRおよびrと
する)の比率(R/r)が適正な範囲にあることが好ま
しい.第3図に一例としてY断面における,Rとrの関
係を示す。R/rは1.1〜7.0が好ましく,より好
ましくは1.2〜G.0,さらに好ましくは1.3〜5
.0である。
n θ (°) Triangle 3l2〇Square 490 FIG. 2 shows an example of the shape of the discharge hole of the spinneret and the cross-sectional shape of the carbon fiber obtained. Among these, polygonal and multilobal shapes are preferred from the viewpoint of ease of production. In addition, it is important to set the ratio of leaves too high or too long, especially in the case of multi-lobed products, from the viewpoint of the characteristics obtained and the ease of passing through the manufacturing process. It is preferable that the ratio (R/r) of the diameters of the circumscribed circle and the inscribed circle (r and R, respectively) of the cross section is within an appropriate range. FIG. 3 shows, as an example, the relationship between R and r in the Y cross section. R/r is preferably 1.1-7.0, more preferably 1.2-G. 0, more preferably 1.3-5
.. It is 0.

本発明の異形断面炭素繊紐の横断面は実質的に均一な結
晶構造を有し,リーフ状のラメラ構造が存在せず,これ
は性能の高い炭素繊維を得るうえで極めて有利な点であ
る。このようなラメラ構造のない均質な構造はポリアク
リロニトリル系の重合体から構成される原糸を焼成すれ
ば容易に得られるのである。
The cross section of the irregular cross-section carbon fiber string of the present invention has a substantially uniform crystal structure, and there is no leaf-like lamellar structure, which is extremely advantageous in obtaining high-performance carbon fibers. . Such a homogeneous structure without a lamellar structure can be easily obtained by firing a raw yarn made of a polyacrylonitrile polymer.

本発明の異形断面炭素繊維の側面には微小な凹凸が存在
するが,この特徴は本発明の製造方法における!iIl
i維の形成機構と密接に関連しており,横断面にリーフ
状のラメラ構造が存在しないことと共に,この点がピッ
チ系の異形断面炭素繊維と明白に異なる所である。この
表面の微細な凹凸は複合材料を形成した際に,マトリッ
クス樹脂との接着性を向上させるのに極めて有効に機能
するのである。
There are minute irregularities on the side surfaces of the irregular cross-section carbon fiber of the present invention, but this feature is unique to the manufacturing method of the present invention! iIl
It is closely related to the formation mechanism of i-fibers, and this point, along with the absence of a leaf-like lamellar structure in the cross section, is clearly different from pitch-based carbon fibers with irregular cross sections. These fine irregularities on the surface function extremely effectively in improving the adhesion with the matrix resin when a composite material is formed.

本発明で用いるアクリル系i!IIの製造にはアクリロ
ニトリル(以下ANと称する)を主成分として含有し,
95モル%以上,好ましくは,98モル%以上のANと
,好ましくは5モル%以下,特に好ましくは,2モル%
以下の該ANと共重合性があって,ml炎化反応を促進
するビニル基含有化合物(以下ビニル系モノマという)
との共重合体が用いられる。
Acrylic i! used in the present invention! The production of II contains acrylonitrile (hereinafter referred to as AN) as the main component,
95 mol% or more, preferably 98 mol% or more of AN, and preferably 5 mol% or less, particularly preferably 2 mol%
A vinyl group-containing compound (hereinafter referred to as a vinyl monomer) that is copolymerizable with the following AN and promotes the ml flame reaction.
A copolymer with is used.

耐炎化を促進する作用を有するビニル系モノマとしては
,例えばアクリル酸,メタアクリル酸,イタコン酸,お
よびそれらのアルカリ金属塩,アンモニウム塩,α(l
−ヒドロキシルエチル)アクリロニトリル,アクリル酸
ヒドロキシルエステル等を挙げることができる。またこ
れらの嗣炎化促進能を有するビニル系モノマ以外にAN
系重合体の紡糸性または !!糸性等を向上させるため
に,前記アクリル酸やメタクリル酸の低級アルキルエス
テル類,アリルスルホン酸,メタリルスルホン酸,スチ
レンスルホン酸およびそれらのアルカリ金属塩,酢酸ビ
ニルや塩化ビニル等の第3成分を共重合成分の総量が5
モル%以下,好ましくは2モル%以下となる範囲で共重
合させてもよい。
Examples of vinyl monomers that promote flame resistance include acrylic acid, methacrylic acid, itaconic acid, and their alkali metal salts, ammonium salts, and α(l).
-hydroxylethyl) acrylonitrile, acrylic acid hydroxyl ester, and the like. In addition to these vinyl monomers that have the ability to promote inflammation, AN
Spinnability of polymers or! ! In order to improve thread properties etc., a third component such as lower alkyl esters of acrylic acid or methacrylic acid, allylsulfonic acid, methallylsulfonic acid, styrenesulfonic acid and their alkali metal salts, vinyl acetate or vinyl chloride, etc. The total amount of copolymerized components is 5
Copolymerization may be carried out within a range of mol % or less, preferably 2 mol % or less.

このようなAN系の共重合体は乳化懸濁,塊状,溶液等
の重合法を用いて重合することができる。
Such AN-based copolymers can be polymerized using emulsion suspension, bulk, solution, and other polymerization methods.

これらの重合体からアクリル系繊維を製造するにはジメ
チルホルムアミドやジメチルスルホオキサイド,硝酸,
ロダンソーダ水溶液,および塩化亜鉛水溶液等の溶媒か
らなるボリマ溶液を紡糸原液とする。
To produce acrylic fibers from these polymers, dimethylformamide, dimethyl sulfoxide, nitric acid,
A volima solution consisting of a solvent such as a rhodan soda aqueous solution and a zinc chloride aqueous solution is used as a spinning stock solution.

本発明の異形断面炭素繊維の製造方法における紡糸方法
は原糸の断面形状に擬した非円形,あるいはスリット形
状,あるいは点接触型の吐出孔からなる紡糸口金から該
溶媒と凝固剤からなる凝固浴中に直接紡出する湿式紡糸
法である。このようにして得られる凝固糸は,表層のス
キン層が薄くなり後続の延伸工程で糸の表面にフィブリ
ル構造を発現させることができるのである。凝固俗の組
成は上記のPANの溶媒と凝固剤からなるが,凝固剤の
例としては,水,メタノール,エタノール,アセトン等
があげられるが,安全性や回収の面から水が適している
。得られた凝固糸は水洗の後,温水や熱水のなかで延伸
し,次に工程油剤を,乾燥繊維重量あたり0.2〜1.
5重量%付与する。油剤の成分としては,特に焼成中の
単繊維同士の融着な防止するのに効果的な,シリコン系
化合物,あるいは変性シリコン系化合物を付与すること
が好ましい。
The spinning method in the method for producing irregular cross-section carbon fibers of the present invention involves spinning a spinning nozzle with a non-circular, slit-shaped, or point-contact discharge hole imitating the cross-sectional shape of the raw fiber into a coagulation bath consisting of the solvent and a coagulant. This is a wet spinning method that involves spinning directly into the fiber. The coagulated yarn thus obtained has a thin surface skin layer, and a fibril structure can be developed on the surface of the yarn in the subsequent drawing step. The general composition of coagulation consists of the above-mentioned PAN solvent and a coagulant. Examples of the coagulant include water, methanol, ethanol, acetone, etc., but water is suitable from the viewpoint of safety and recovery. The obtained coagulated fibers are washed with water and then stretched in warm water or hot water, and then a process oil is applied at a rate of 0.2 to 1.0% per dry fiber weight.
Add 5% by weight. As a component of the oil agent, it is preferable to add a silicone-based compound or a modified silicone-based compound, which is particularly effective in preventing fusion of single fibers during firing.

工程油剤を付与した後に,乾燥緻密化処理な行ない, 
IIav!化!l維を得る。つぎに必要に応じて例えば
スチーム中で二次延伸を行う。
After applying the process oil, dry densification treatment is performed,
IIav! Transformation! Obtain l fiber. Next, if necessary, secondary stretching is performed, for example, in steam.

ところで原糸の単糸織度は得られる異形断面炭素!il
li!Iの特性を規定する上で極めて這要な因子である
。本発明では0.1〜2.5デニールが好ましいが,よ
り好ましくは0.2〜2.0デニール,さらに好ましく
は0.3〜1.5デニールである。0.1デニールより
も小さいと単糸切れが発生しやすくなり,一方2,5デ
ニールを越えると単糸の内外層の均一な焼成ができなく
なり特性の優れた炭素繊維を得ることが困難となる。
By the way, the single yarn weave of the raw yarn is the obtained irregular cross-section carbon! il
li! This is an extremely important factor in defining the characteristics of I. In the present invention, the denier is preferably 0.1 to 2.5 denier, more preferably 0.2 to 2.0 denier, and still more preferably 0.3 to 1.5 denier. If it is smaller than 0.1 denier, single filament breakage will easily occur, while if it exceeds 2.5 denier, uniform firing of the inner and outer layers of the single filament will not be possible, making it difficult to obtain carbon fiber with excellent properties. .

このようにして製造された,アクリル系′繊維(以下ブ
レカーサと称する)を焼成して炭素繊維に変換する。該
ブレカーサの焼成,すなわち酸化(耐炎化),および炭
化条件としては特に限定されるものではないが,繊維の
内部にボイドなどの構造的欠陥が発生しにくい条件を設
定するのが好ましい。例えば,窒素等の不活性雰囲気中
での炭化の条件としては,300〜700℃ならびに1
000 〜1200℃の温度領域における昇温速度を1
000℃/分以下,好ましくは500℃/分以下とする
のが好ましいのである。またさらに例えば1400℃〜
3000℃の不活性雰囲気で焼成して黒鉛化糸を得るこ
とも可能である。
The acrylic fibers (hereinafter referred to as breaker) produced in this manner are fired and converted into carbon fibers. Although the conditions for firing the breaker, ie, oxidation (flame resistance) and carbonization, are not particularly limited, it is preferable to set conditions that make it difficult for structural defects such as voids to occur inside the fibers. For example, the conditions for carbonization in an inert atmosphere such as nitrogen are 300-700℃ and 1
The temperature increase rate in the temperature range of 000 to 1200℃ is 1
000°C/min or less, preferably 500°C/min or less. Furthermore, for example, 1400℃~
It is also possible to obtain a graphitized yarn by firing in an inert atmosphere at 3000°C.

(実施例) 以下実施例により本発明をさらに具体的に説明する。(Example) The present invention will be explained in more detail with reference to Examples below.

なお,本文中および実施例中に用いた物性値は以下の方
法により測定したものである。
Note that the physical property values used in the text and examples were measured by the following method.

(A)樹脂含浸ストランド強度の測定法JISR−76
01に規定されている樹脂含浸ストランド試験法に準じ
て測定した。
(A) Resin-impregnated strand strength measurement method JISR-76
It was measured according to the resin-impregnated strand test method specified in 01.

・“ベークライト” ERL−4221    100
部・3−フッ化硼素モノエチルアミン ([3F3MEA)     3部 ・アセトン            4部硬化条件:l
30℃×30分 (B)複合材料(コンボジット)での特性値a.引張強
度,曲強度,眉間剪断強度(l.,SS)金枠に巻取っ
た炭素繊維を,炭素繊維の体積含有率(Vf)が60%
どなるように金型に入れ,樹脂を流し入れた後,加熱し
て真空脱泡する。
・“Bakelite” ERL-4221 100
3 parts 3-fluoroboronoethylamine ([3F3MEA) 3 parts acetone 4 parts Curing conditions: l
30°C x 30 minutes (B) Characteristic values for composite material a. Tensile strength, bending strength, glabellar shear strength (l., SS) The carbon fiber wound around the metal frame is 60% carbon fiber volume content (Vf)
After pouring the resin into a mold, it is heated and degassed under vacuum.

脱泡後,プレス機で加圧しながら加熱し゛C樹脂を硬化
させ,試験片を作成する。インストロン試験機を用いて
測定し,Vf=60%に換算する。
After defoaming, heat the C resin while applying pressure with a press to harden it and create a test piece. Measured using an Instron testing machine and converted to Vf = 60%.

本樹脂: ELM434[住友化学(株)]35部Ep
828[ペトロケミカルズ(株)]35部エビクロン+
52 [大日本インキ(株)]30部 4,42−ジアミノジフェニルスルフォン[住友化学(
株)]32部 3フッ化ホウ素モノエチルアミン0.5部(溶媒:メチ
ルエチルケトン,樹脂濃度=55%)本成型条件 脱泡:真空(10mmllg以下)下,70℃×2時間
成型:プレス圧力= 50kg / cm” ,170
℃×1時間 ポストキュア:金型から試験片を取り出した後,170
℃×2時間 成型:引張試験:幅(3mm ,厚みI.GmmdB強
度,ILSS;幅(3mm ,厚み2 . 5mm*測
定 引張強度:試験片の長さを150mmとし,両端に長さ
45問のアルミ製のタブを接着する。
Main resin: ELM434 [Sumitomo Chemical Co., Ltd.] 35 parts Ep
828 [Petrochemicals Co., Ltd.] 35 parts Ebiclone +
52 [Dainippon Ink Co., Ltd.] 30 parts 4,42-diaminodiphenylsulfone [Sumitomo Chemical (
Ltd.] 32 parts 3 boron fluoride monoethylamine 0.5 parts (solvent: methyl ethyl ketone, resin concentration = 55%) Main molding conditions Defoaming: Molding at 70°C for 2 hours under vacuum (10 mmllg or less): Press pressure = 50 kg / cm”, 170
℃ × 1 hour post cure: After taking out the test piece from the mold, 170℃
℃ × 2 hours Molding: Tensile test: Width (3 mm, thickness I.Gmm dB strength, ILSS; Width (3 mm, thickness 2.5 mm * Measurement tensile strength: The length of the test piece was 150 mm, and 45 questions were Glue the aluminum tabs.

試験片の中央部の厚み方向に,両側から75mm Rの
R加工を行い,測定に供する。
A radius of 75 mm is machined from both sides in the thickness direction of the center of the test piece, and the test piece is used for measurement.

R加工部の最も厚みの少ない部分の厚さと幅を測定して
断面積を求める。
The cross-sectional area is determined by measuring the thickness and width of the thinnest part of the rounded part.

西強度:試験片の長さを1 50rnmとし,3点出I
試験治具を用いて測定する。
West strength: The length of the test piece is 150 nm, 3 points I
Measure using a test jig.

ILSS:試験片の長さを18n+mとし,3点助試験
治具を用い,支持スパンを試験片の厚みの4倍として測
定する。
ILSS: The length of the test piece is 18n+m, and the support span is measured as four times the thickness of the test piece using a three-point auxiliary test jig.

b.圧縮強度 東レ(株)製#3620樹脂をシリコン樹脂塗布ペーパ
ーにコーティングした樹脂フィルムの上に,炭素繊維を
一方向に配列し,さらにその上に前記樹脂フィルムを再
度重ね,加圧ロールで樹脂を炭素繊維内に含浸せしめて
ブリプレグシ一トを作成する。このシートを繊維軸を揃
えて積層し,オートクレープを用いて温度180℃,圧
力6kg/crn2で2時間処理して樹脂を硬化させて
,厚さ約1mmの平板を作成する。この平板をダイヤモ
ンドカッターを用いて切断し,繊維軸方向に長さ80m
m ,繊維軸の直角方向に幅1 2n+mからなる試験
片を作成する。試験片の中央部5mmを残して,両端の
両制に炭素繊維とエボキシ樹脂からなる厚さ約1開のコ
ンボジット製のタブを接着して,圧縮強度測定用の試験
片とする. (C)走査型電子顕微鏡(SEM)による破断面観察 測定する炭素繊維の単糸を引張試験機を用いて,破断の
衝撃で破断面が複雑に乱れることを防止するために,以
下の条件で水中で破断させる。
b. Compressive Strength Carbon fibers were arranged in one direction on a resin film made by coating silicone resin-coated paper with #3620 resin manufactured by Toray Industries, Inc., and the resin film was layered on top of it again, and the resin was applied with a pressure roll. It is impregnated into carbon fiber to create a Bripre resin. These sheets are stacked with their fiber axes aligned and treated using an autoclave at a temperature of 180° C. and a pressure of 6 kg/crn2 for 2 hours to harden the resin, thereby creating a flat plate with a thickness of approximately 1 mm. This flat plate was cut using a diamond cutter to a length of 80 m in the fiber axis direction.
A test piece having a width of 12n+m in the direction perpendicular to the fiber axis is prepared. Leave 5 mm in the center of the test piece, and glue composite tabs made of carbon fiber and epoxy resin with a thickness of about 1 inch to both ends to prepare a test piece for compressive strength measurement. (C) Observation of the fracture surface using a scanning electron microscope (SEM) The carbon fiber single yarn to be measured was measured using a tensile tester under the following conditions to prevent the fracture surface from being complicatedly disturbed by the impact of the fracture. break in water.

チャック間隔: 5cm 引張速度  : 0.5mm/分[1%歪/分コサンプ
ル長さ: 15cm 得られたサンプルに金を蒸着させて,加速電圧15 〜
25kv (25kv),倍率5000−S−1500
0倍(10000倍)で,SEM観察あるいは撮影する
。(  )値は本実施例での測定条件である。
Chuck interval: 5 cm Tensile speed: 0.5 mm/min [1% strain/min co-sample length: 15 cm Gold was deposited on the obtained sample, and the accelerating voltage was 15 ~
25kv (25kv), magnification 5000-S-1500
Observe or photograph with SEM at 0x (10000x). The values in parentheses are the measurement conditions in this example.

実施例−1 アクリロニトリル(以下ANと称する) 99.5モル
%,イタコン酸0.5モル%からなる,固有粘度[ηコ
が1.80のAN共重合体のジメチルスルホオキシド(
DMSO)溶液にアンモニアを吹きこみ,該共重合体の
カルボキシル末端基なアンモニ1クム基で置換してボリ
マな変性し,この変性ボリマの濃度が20重量%てある
DMSO溶液を作成し,紡糸原液とした。
Example-1 AN copolymer dimethyl sulfoxide (hereinafter referred to as AN) with an intrinsic viscosity [η of 1.80, consisting of 99.5 mol% acrylonitrile (hereinafter referred to as AN) and 0.5 mol% itaconic acid
Ammonia is blown into the DMSO solution and substituted with an ammonium cum group, which is the carboxyl end group of the copolymer, to modify the polymer into a DMSO solution, and the resulting modified polymer has a concentration of 20% by weight. And so.

この紡糸原液を50℃にて,スリット幅0.03mmの
Y孔,十孔,11孔であり,孔数1500ホールの紡糸
口金を通して,50℃の55%DMSO水溶液中に直接
吐出して,凝固糸とした。比較のために直径が0.06
mmの円形の吐出孔を有する従来の口金を用いて同様に
凝固糸を得た。
This spinning dope was directly discharged at 50°C into a 55% DMSO aqueous solution at 50°C through a spinneret with 1,500 holes (Y hole, 10 holes, and 11 holes with a slit width of 0.03 mm) to solidify. I made it into a thread. For comparison, the diameter is 0.06
A coagulated thread was similarly obtained using a conventional die having a circular discharge hole of mm.

凝固糸条を水洗した後,温水中で3段の延伸を行ない,
浴延伸糸を得た。延仲倍率は全体で3.0倍であり,延
伸沼の最高温度は98゜Cく沸B)であった。次に,こ
の浴延仲糸に変性シリコン系化合物を一成分とする油剤
を付与した後,130℃の加熱ロールを用いて乾燥,お
よび緻密化を行った。さらに引続いて,加圧スチーム中
で3.5倍に延伸して,単糸織度が1.0デニール,ト
ータル繊度が1500デニールのアクリル系繊維糸条を
得た。
After washing the coagulated yarn with water, it was drawn in three stages in warm water.
A bath-drawn yarn was obtained. The stretching ratio was 3.0 times as a whole, and the maximum temperature of the stretching pond was 98°C. Next, an oil agent containing a modified silicone compound as one component was applied to the bath-rolled medium yarn, and then it was dried and densified using a heating roll at 130°C. Subsequently, it was drawn 3.5 times in pressurized steam to obtain an acrylic fiber yarn having a single yarn weave of 1.0 denier and a total fineness of 1500 denier.

このアクリル系繊維糸条な,240〜260℃の空気中
で1.05倍に延伸しながら削炎化処理を行ない,引続
いて,最高温度が1400℃の窒素雰囲気中で,300
〜700℃の温度域における昇温速度を250℃/分,
IO00〜I200℃の温度域における昇温速度を40
0℃/分に設定した炭化炉で処理を行い,疾素繊紺に変
換した。さらにここで得られた炭素繊維を1600〜3
000℃のタンマン炉で黒鉛化して種々の弾性率を有す
る黒鉛糸を得た。
This acrylic fiber thread was subjected to flame reduction treatment while being stretched 1.05 times in air at 240 to 260°C, and then stretched to 300°C in a nitrogen atmosphere with a maximum temperature of 1400°C.
The heating rate in the temperature range of ~700℃ is 250℃/min.
The temperature increase rate in the temperature range of IO00 to I200℃ is set to 40
Processing was carried out in a carbonization furnace set at 0°C/min to convert it into dark blue. Furthermore, the carbon fiber obtained here is 1600~3
Graphite yarns having various elastic moduli were obtained by graphitization in a Tammann furnace at 000°C.

なお樹脂との新和性を向上させるために硫酸や硝酸水溶
液中で適宜陽極酸化処理をおこなった。
In order to improve compatibility with the resin, appropriate anodization treatment was performed in a sulfuric acid or nitric acid aqueous solution.

ここで得られた異形断面炭素繊維の単糸を水中で破断さ
せ,該破断面をSEMで観察したところいずれもリーフ
上のラメラ構造は観察されなかった。また繊維の側面を
同様にSEMで観察したところいずれも微小な凹凸構造
が観察された。
When the monofilament of the irregular cross-section carbon fiber obtained here was broken in water and the broken surface was observed with an SEM, no lamellar structure on the leaf was observed in any of them. Furthermore, when the side surfaces of the fibers were similarly observed using SEM, fine uneven structures were observed in all cases.

第1表にストランド特性およびコンボジット特性を示す
。また第4図に円断面炭素繊維とY断面炭素w4維にお
ける弾性率と圧縮強度との関係を示す。第4図から本発
明の異形断面崩素繊紺では円断面の炭素m維よりも優れ
た圧縮強度を示すことが判る。
Table 1 shows the strand properties and composite properties. Furthermore, FIG. 4 shows the relationship between the elastic modulus and compressive strength of circular cross-section carbon fibers and Y-section carbon W4 fibers. From FIG. 4, it can be seen that the navy blue irregular cross-section collapsible fiber of the present invention exhibits superior compressive strength than the circular cross-section carbon m-fiber.

(発明の効果) 本発明の異形断面炭素繊維は■wA維の横断面り形状が
非円形であり,■繊維の横断面にはラメラ構造が存在せ
ず,実質的に均一な結晶構造を有しており,■繊維の表
面に微小な凹凸構造が存在し,■強度が300kg/ 
mm”以上,弾性率が201/mm2以上保持している
ものである。これらの特徴を有する異形断面炭素I6l
i維は本発明の方法によって製造することができ,重要
な特性である層開剪断強度(ILSS),圧縮強度,t
U+強度などの基本特性が極めて優れた複合材料を得る
ことができる。
(Effects of the Invention) The irregular cross-section carbon fiber of the present invention has: ■ The cross-sectional shape of the wA fiber is non-circular, ■ No lamellar structure exists in the cross-section of the fiber, and it has a substantially uniform crystal structure. ■There is a microscopic uneven structure on the surface of the fiber, and ■The strength is 300 kg/
mm” or more, and has an elastic modulus of 201/mm2 or more.Irregular cross-section carbon I6l having these characteristics
i-fibers can be produced by the method of the present invention, and the important properties are open shear strength (ILSS), compressive strength, t
A composite material with extremely excellent basic properties such as U+ strength can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はピッチ系の炭素繊維の破断面に出現するリーフ
状ラメラ構造の模式図の例を示す。第2図は紡糸口金の
吐出孔の形状と得られる炭素FIAllIの横断面の形
状の例を示す。第3図はY断面炭素繊維における,Rと
rの関係を示す。第4図は実施例における円断面炭素繊
維とY断面炭素繊維における弾性率と圧縮強度との関係
を示す。 第1図 第3図 第2図
FIG. 1 shows an example of a schematic diagram of a leaf-like lamellar structure that appears on the fracture surface of a pitch-based carbon fiber. FIG. 2 shows an example of the shape of the discharge hole of the spinneret and the cross-sectional shape of the obtained carbon FIAllI. Figure 3 shows the relationship between R and r in Y cross-section carbon fiber. FIG. 4 shows the relationship between the elastic modulus and compressive strength of circular cross-section carbon fibers and Y-section carbon fibers in Examples. Figure 1 Figure 3 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)300kg/mm^2以上の強度、および20t
/mm^2の弾性率を有する炭素繊維において、繊維の
横断面がθ=360゜/n (nは2から20までの整数) なる回転対称角度(゜)を有する非円形であり、また繊
維の横断面にはラメラ構造が存在せず、実質的に均一な
結晶構造を有し、さらに繊維の表面には微小な凹凸構造
が存在することを特徴とする異形断面炭素繊維。
(1) Strength of 300kg/mm^2 or more and 20t
In a carbon fiber having an elastic modulus of /mm^2, the cross section of the fiber is non-circular with a rotational symmetry angle (°) of θ = 360°/n (n is an integer from 2 to 20), and the fiber An irregular cross-section carbon fiber characterized by having no lamellar structure in its cross section, having a substantially uniform crystal structure, and further having a fine uneven structure on the surface of the fiber.
(2)少なくとも95モル%のアクリロニトリルを含有
するアクリロニトリル系重合体と、該重合体の溶媒から
なる紡糸原液を非円形、あるいはスリット形状、あるい
は点接触型の吐出孔からなる紡糸口金から該溶媒と凝固
剤からなる凝固浴中に直接紡出し、凝固、水洗、延伸し
て得られる繊維の横断面が θ=360゜/n (nは2から20までの整数) なる回転対称角度(゜)を有する、異形断面を有する原
糸を焼成することを特徴とする炭素繊維の製造方法。
(2) A spinning dope consisting of an acrylonitrile polymer containing at least 95 mol % of acrylonitrile and a solvent for the polymer is passed through a spinneret having non-circular, slit-shaped, or point-contact discharge holes. The cross section of the fiber obtained by direct spinning into a coagulation bath consisting of a coagulant, coagulation, water washing, and stretching has a rotational symmetry angle (°) of θ = 360°/n (n is an integer from 2 to 20). 1. A method for producing carbon fiber, comprising firing a yarn having an irregular cross section.
JP1229579A 1989-09-05 1989-09-05 Modified cross-sectional carbon fiber and production thereof Pending JPH0397917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1229579A JPH0397917A (en) 1989-09-05 1989-09-05 Modified cross-sectional carbon fiber and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1229579A JPH0397917A (en) 1989-09-05 1989-09-05 Modified cross-sectional carbon fiber and production thereof

Publications (1)

Publication Number Publication Date
JPH0397917A true JPH0397917A (en) 1991-04-23

Family

ID=16894392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1229579A Pending JPH0397917A (en) 1989-09-05 1989-09-05 Modified cross-sectional carbon fiber and production thereof

Country Status (1)

Country Link
JP (1) JPH0397917A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012188766A (en) * 2011-03-09 2012-10-04 Mitsubishi Rayon Co Ltd Carbon fiber precursor fiber bundle and carbon fiber bundle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742927A (en) * 1980-08-28 1982-03-10 Secr Defence Brit Production of high strength and high elastic ratio reinforcing fiber and composite material containing same
JPS62117821A (en) * 1985-09-12 1987-05-29 クレムスン・ユニヴア−シテイ Carbon fiber and its production
JPH02160912A (en) * 1988-08-25 1990-06-20 Basf Ag Improvements in manufacture of
JPH02160911A (en) * 1988-08-25 1990-06-20 Basf Ag Improvements in manufacture of melt

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742927A (en) * 1980-08-28 1982-03-10 Secr Defence Brit Production of high strength and high elastic ratio reinforcing fiber and composite material containing same
JPS62117821A (en) * 1985-09-12 1987-05-29 クレムスン・ユニヴア−シテイ Carbon fiber and its production
JPH02160912A (en) * 1988-08-25 1990-06-20 Basf Ag Improvements in manufacture of
JPH02160911A (en) * 1988-08-25 1990-06-20 Basf Ag Improvements in manufacture of melt

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012188766A (en) * 2011-03-09 2012-10-04 Mitsubishi Rayon Co Ltd Carbon fiber precursor fiber bundle and carbon fiber bundle

Similar Documents

Publication Publication Date Title
JP5100758B2 (en) Carbon fiber strand and method for producing the same
JPH11241230A (en) Carbon fiber, precursor fiber for carbon fiber, composite material and production of carbon fiber
JP4910729B2 (en) Method for producing carbon fiber precursor fiber, carbon fiber and method for producing the same
KR101417217B1 (en) Method for preparing carbon fiber precursor
JP4617940B2 (en) Polyacrylonitrile-based polymer for carbon fiber precursor fiber, carbon fiber precursor fiber, and method for producing carbon fiber
JP5434187B2 (en) Polyacrylonitrile-based continuous carbon fiber bundle and method for producing the same
KR0156870B1 (en) Noncircular cross-section carbon fibers, process for producing the same and composite containing them
JP2892127B2 (en) Non-circular cross-section carbon fiber, method for producing the same, and carbon fiber composite material
JP2009046770A (en) Acrylonitrile-based precursor fiber for carbon fiber
JPH0397918A (en) Production of modified cross-sectional carbon fiber
JPH0397917A (en) Modified cross-sectional carbon fiber and production thereof
JPH01306619A (en) High-strength and high elastic modulus carbon fiber
JP2009079343A (en) Method for producing precursor fiber for carbon fiber and carbon fiber
WO2020071445A1 (en) Precursor fiber bundle production method, carbon fiber bundle production method, and carbon fiber bundle
JP2535448B2 (en) Deformed cross-section carbon fiber and carbon fiber reinforced composite material
JPH10130963A (en) Carbon fiber, precursor for carbon fiber and production thereof
JPH08296124A (en) Non-circular cross section carbon fiber and carbon fiber-reinforced composite material
KR870000534B1 (en) Carbon fiber and it's making method
JPS58220821A (en) Acrylic carbon fiber bundle with high strength and elongation and its production
JP2004060126A (en) Carbon fiber and method for producing the same
JPH1088430A (en) Carbon fiber, precursor for production of carbon fiber and production thereof
JP2007182645A (en) Method for producing acrylic fiber
JP2001131833A (en) Carbon yarn and method for producing the same
JP6729665B2 (en) Acrylonitrile precursor fiber bundle for carbon fiber and method for producing the same
JP2002266159A (en) Precursor fiber bundle for carbon fiber and method for producing the same