JP2535448B2 - Deformed cross-section carbon fiber and carbon fiber reinforced composite material - Google Patents

Deformed cross-section carbon fiber and carbon fiber reinforced composite material

Info

Publication number
JP2535448B2
JP2535448B2 JP2335459A JP33545990A JP2535448B2 JP 2535448 B2 JP2535448 B2 JP 2535448B2 JP 2335459 A JP2335459 A JP 2335459A JP 33545990 A JP33545990 A JP 33545990A JP 2535448 B2 JP2535448 B2 JP 2535448B2
Authority
JP
Japan
Prior art keywords
carbon fiber
fiber
cross
section
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2335459A
Other languages
Japanese (ja)
Other versions
JPH04202815A (en
Inventor
勝己 山崎
祥司 山根
幸男 和泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2335459A priority Critical patent/JP2535448B2/en
Publication of JPH04202815A publication Critical patent/JPH04202815A/en
Application granted granted Critical
Publication of JP2535448B2 publication Critical patent/JP2535448B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Inorganic Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はコンポジット特性に優れた炭素繊維、特に繊
維軸に対して直角方向の特性および繊維軸方向の圧縮特
性に優れた炭素繊維ならびにその炭素繊維を用いた複合
材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to carbon fibers having excellent composite properties, particularly carbon fibers having excellent properties in the direction perpendicular to the fiber axis and compression properties in the fiber axis direction, and carbon thereof. The present invention relates to a composite material using fibers.

[従来技術] 炭素繊維はそのプリカーサであるアクリル系、レーヨ
ン系、ピッチ系、あるいはポリビニルアルコール系繊維
を紡糸し、200〜400℃の空気や酸化窒素などの酸化性雰
囲気中で加熱焼成して、酸化繊維に転換する耐炎化工程
を通過した後、窒素、アルゴン、ヘリウム等の不活性雰
囲気や真空中でさらに300〜2500℃に加熱して炭化およ
び又は黒鉛化する炭化、黒鉛化工程を経ることによって
製造する方法が工業的に幅広く採用されている。
[Prior Art] Carbon fibers are prepared by spinning acrylic, rayon, pitch, or polyvinyl alcohol fibers, which are their precursors, and heating and firing in an oxidizing atmosphere such as air or nitric oxide at 200 to 400 ° C. After passing through the flameproofing process of converting to oxidized fiber, go through a carbonization and graphitization process of carbonizing and / or graphitizing by further heating to 300-2500 ° C in an inert atmosphere such as nitrogen, argon, helium or vacuum. The method of manufacturing is widely adopted industrially.

このようにして得られた炭素繊維は樹脂や金属などの
いわゆるマトリックス材料と複合体(コンポジット)を
形成することにより、構造材料として広く用いられてい
る。構造材料としての炭素繊維は高度な機械的特性、耐
熱性、電気的性質、耐微生物特性などを有しているの
で、飛行機やロケットなどの航空宇宙構造部材、ゴルフ
クラブ、テニスラケット、つりざおなどのスポーツ用品
の複合材料の補強繊維として広く使用され、生産されて
いる。近年その性能、特に引張強度を一層向上させ、同
時に引張弾性率を高く保持することによって、より高性
能な特性が要求される分野、例えば航空機の一次構造部
材に使用する検討がなされてきており、繊維軸方向の引
張強度が著しく改良されたのに対して、同方向の圧縮強
度、および繊維軸に対して直角方向のいわゆる横方向強
度については大きな改良がなされていないのが実状であ
る。
The carbon fiber thus obtained is widely used as a structural material by forming a composite with a so-called matrix material such as resin or metal. Carbon fiber as a structural material has high mechanical properties, heat resistance, electrical properties, microbial resistance, etc., so aerospace structural members such as airplanes and rockets, golf clubs, tennis rackets, fishing rods, etc. It is widely used and produced as a reinforcing fiber in composite materials for sports equipment. In recent years, its performance, in particular, tensile strength is further improved, and at the same time, by maintaining a high tensile modulus, a field requiring higher performance characteristics, for example, has been studied for use in primary structural members of aircraft, While the tensile strength in the fiber axis direction is remarkably improved, the compressive strength in the same direction and the so-called transverse strength in the direction perpendicular to the fiber axis are not significantly improved.

これらの問題に対して例えば特開昭57−42927号公報
には異形断面の炭素繊維によってその特性が改善される
ことが記載されている。上述公報によれば最大の寸法が
100nm以下の、3つあるいはそれ以上の直線状の辺を有
する多角形であるか或はそれに近い断面形状を有する炭
素繊維が提案されている。
To solve these problems, for example, Japanese Patent Application Laid-Open No. 57-42927 describes that carbon fibers having an irregular cross section improve the characteristics. According to the above publication, the maximum size is
Carbon fibers having a cross-sectional shape of 100 nm or less and having a polygonal shape having three or more linear sides or close thereto have been proposed.

しかしながら、本発明者らが検討したところによれば
単繊維の多角形断面形状の辺が直線状のものは、繊維の
充填密度は高くなるものの、一方では異なる単糸の直線
状の辺同士が接着して焼成工程で発生する分解ガスの飛
散を妨害するため引張強度が高いものが得られにくいこ
とがわかった。
However, according to the studies conducted by the present inventors, when the sides of the polygonal cross-sectional shape of the monofilament are linear, the packing density of the fibers is high, but on the other hand, the straight sides of different monofilaments are different from each other. It has been found that it is difficult to obtain a material having high tensile strength because it obstructs scattering of decomposition gas generated in the baking step due to adhesion.

またポリアクリロニトリル(以下PANと略す)系の溶
融紡糸によって異形断面糸を得る方法も公知である。詳
細なデータは提示されていないものの、この方法でも炭
素繊維の圧縮強度や横方向強度が改善されるとの記載が
ある。
A method of obtaining a modified cross-section yarn by melt spinning of polyacrylonitrile (hereinafter abbreviated as PAN) system is also known. Although no detailed data is presented, it is stated that this method also improves the compressive strength and the transverse strength of the carbon fiber.

[発明が解決しようとする課題] 本発明の目的は、製造工程特にプリカーサの製糸工程
に於て製造が容易であって、従来公知の異形断面糸より
も樹脂との接着力,曲げ強度,圧縮強度などのコンポジ
ット特性の改善効果の大きい炭素繊維を提供することに
ある。
[Problems to be Solved by the Invention] An object of the present invention is to facilitate the production in the production process, particularly in the yarn production process of a precursor, and to improve the adhesive force, bending strength, and compression force with a resin as compared with conventionally known modified cross-section yarns. It is to provide a carbon fiber having a great effect of improving composite properties such as strength.

[課題を解決するための手段] 本発明の上記目的は、 (1) 単繊維の断面形状が3〜5葉の多葉形であり、
それぞれの葉がその付け根から先端に向かって一旦膨ら
みを有し、実質的に複数個の円が接合した形からなり、
かつ繊維断面形状の外接円半径Rと内接円半径rとの比
R/rで定義される異形度が1.5〜3であることを特徴とす
るポリアクリロニトリル系異形断面炭素繊維。
[Means for Solving the Problems] The above objects of the present invention are as follows: (1) A monofilament has a cross-sectional shape of 3 to 5 lobes, and
Each leaf has a bulge from its root toward the tip, and it consists of a shape in which a plurality of circles are joined.
And the ratio of the circumscribed circle radius R of the fiber cross-sectional shape to the inscribed circle radius r
A polyacrylonitrile-based carbon fiber having a modified cross section, characterized in that the deformation degree defined by R / r is 1.5 to 3.

(2) 請求項(1)記載の異形断面炭素繊維を用いて
なる炭素繊維強化複合材料。
(2) A carbon fiber reinforced composite material comprising the modified cross-section carbon fiber according to claim (1).

によって達成することができる。 Can be achieved by

この様な形状を有する炭素繊維がなぜコンポジット特
性の改善効果が大きいかについては明確ではないが以下
のように考えられる。炭素繊維強化複合材料の横方向特
性を支配する要因としては様々なものが想定されている
が、物理的な要因としてその形状および比表面積が重要
な因子である。本発明の炭素繊維は従来提案された異形
断面糸と異なり、多葉形からなり各葉が付け根から先端
に向かって一旦膨らみを有する構造となっているため比
表面積が大きく、又葉と葉の間が一種の錨のように働く
いわゆるアンカー効果を発揮するので樹脂との接着力が
増加するものと考えられる。
Although it is not clear why the carbon fiber having such a shape has a great effect of improving the composite properties, it is considered as follows. Various factors are supposed to control the lateral characteristics of the carbon fiber reinforced composite material, but the physical shape and the specific surface area are important factors as physical factors. The carbon fiber of the present invention has a large specific surface area because the carbon fiber of the present invention has a multi-lobed shape and has a structure in which each leaf has a bulge from the root toward the tip, unlike the conventionally proposed cross-section yarn. It is considered that the adhesive force with the resin increases because the space exerts a so-called anchor effect that works like a kind of anchor.

また同様の形状のため従来の異形断面糸に比べて単繊
維の表面から中心までの距離が短いため中心までの酸素
拡散が容易であり、より均一焼成が可能となって炭素繊
維の強度、弾性率が向上することによって曲げ変形に対
しての抵抗力が増加して、圧縮強度および曲げ強度が増
加するものと考えられる。
In addition, because of the similar shape, the distance from the surface of the single fiber to the center is shorter than in the case of conventional irregularly shaped cross-section yarns, so oxygen diffusion to the center is easy and more uniform firing is possible, resulting in strength and elasticity of the carbon fiber. It is considered that as the modulus increases, the resistance to bending deformation increases, and the compressive strength and bending strength increase.

本発明の異形断面炭素繊維は第1図a〜cに示すよう
に多葉形を有し各々の葉の付け根から先端に向かって一
旦膨らみを有し実質的に複数個の円が接合した形からな
り、かつ繊維断面の異形度が1.5〜3.0の範囲を有する。
繊維断面の異形度が1.5未満では実質的に各々の葉の付
け根から先端に向って一旦膨らみを有しなくなり、また
3.0を越えると葉が焼成プロセス中に破損して毛羽立ち
が多くなり好ましくない。
The modified cross-section carbon fiber of the present invention has a multi-lobed shape as shown in FIGS. 1A to 1C, has a bulge from the root of each leaf toward the tip, and has a shape in which a plurality of circles are substantially joined. And the degree of irregularity of the fiber cross section is in the range of 1.5 to 3.0.
When the degree of irregularity of the fiber cross section is less than 1.5, there is virtually no bulge from the root of each leaf toward the tip.
If it exceeds 3.0, the leaves will be damaged during the firing process, resulting in increased fuzz, which is not preferable.

本発明の炭素繊維を得る方法としては第2図に示す単
繊維とほぼ相似形状の口金孔を用いてPANを溶融紡糸す
る方法、あるいはPANを低速で湿式紡糸する方法があげ
られる。また特に第2図に示す複数個の円孔を一定間隔
で穿孔し組み合わせて使用し、口金から吐出されたポリ
マを接合させて所望の形状のプリカーサを得る方法が口
金精度、紡糸性の面から好ましい。それぞれの円孔の配
置は、中心に1つの孔を有しその外側の同一円周上の回
転対称となる位置に3〜5ケの円孔を有することが好ま
しく、中心に1つの孔を配置させることによって得られ
る繊維の断面の葉は付け根から先端に向って一旦膨らみ
を有する形状が与えられる。中心孔と外周孔との間隔は
得られる繊維の形状から適宜決定する。
Examples of the method for obtaining the carbon fiber of the present invention include a method of melt spinning PAN using a spinneret hole having a shape substantially similar to that of the single fiber shown in FIG. 2, or a method of wet spinning PAN at a low speed. Further, in particular, a method in which a plurality of circular holes shown in FIG. 2 are punched at regular intervals and used in combination and a polymer discharged from a die is joined to obtain a precursor having a desired shape is advantageous in terms of die accuracy and spinnability. preferable. Regarding the arrangement of the circular holes, it is preferable to have one hole at the center and three to five circular holes on the outer circumference thereof at rotationally symmetrical positions on the same circumference. One hole is arranged at the center. The leaves of the cross section of the fiber obtained by the above are given a shape that once bulges from the root toward the tip. The distance between the central hole and the peripheral hole is appropriately determined based on the shape of the obtained fiber.

本発明の炭素繊維はその前駆体(プリカーサ)とし
て、アクリル系を用いるものであり、製糸工程において
単繊維の断面形状が3〜5葉の多葉形であり、それぞれ
の葉がその付け根から先端に向かって一旦膨らみを有す
るように口金形状を整え、得られた繊維を焼成すること
によって所望の炭素繊維を得ることが出来るが、ピッチ
系では、繊維自身の圧縮強度が低いために、それを用い
て炭素繊維強度複合材料としても複合材料の圧縮強度や
曲げ強度を向上せしめることは出来ない。
The carbon fiber of the present invention uses an acrylic type as its precursor (precursor), and the cross-sectional shape of the monofilament is a multileaf shape of 3 to 5 leaves in the yarn making step, and each leaf has its root to its tip. The desired carbon fiber can be obtained by adjusting the die shape so as to have a bulge and firing the obtained fiber, but in the pitch system, the compression strength of the fiber itself is low, so that Even if it is used as a carbon fiber strength composite material, the compressive strength and bending strength of the composite material cannot be improved.

この場合のアクリル系繊維はアクリロニトリル(以下
ANと称する)からなるか、あるいはANを主成分として含
有し、好ましくは90重量%以上,特に好ましくは93重量
%以上のANと、好ましくは10重量%以下,特に好ましく
は0.2〜7重量%の1種あるいは2種以上のビニル基含
有化合物(以下ビニル系モノマという)との共重合体か
らなるものである。
The acrylic fiber in this case is acrylonitrile (hereinafter
AN)) or containing AN as a main component, preferably 90% by weight or more, particularly preferably 93% by weight or more, and preferably 10% by weight or less, particularly preferably 0.2 to 7% by weight. And a copolymer with one or more vinyl group-containing compounds (hereinafter referred to as vinyl-based monomers).

ANと共重合するビニル系モノマの例としては、アリル
アルコール、メタリルアルコール、ヒドロキシアルキル
アクリロニトリル等およびその誘導体、アクリル酸、メ
タクリル酸、イタコン酸およびそれらのアルカリ金属
塩、アンモニウム塩、アルキルエステル類、アクリルア
ミドおよびその誘導体、メタクリロニトリル、アクリル
酸ヒドロキシルエステル、アリルスルホン酸、メタリル
スルホン酸、スチレンスルホン酸およびそれらのアルカ
リ金属塩、酢酸ビニルや塩化ビニル等があげられる。
Examples of vinyl monomers copolymerized with AN include allyl alcohol, methallyl alcohol, hydroxyalkyl acrylonitrile and its derivatives, acrylic acid, methacrylic acid, itaconic acid and their alkali metal salts, ammonium salts, alkyl esters, Examples thereof include acrylamide and its derivatives, methacrylonitrile, acrylic acid hydroxyl ester, allyl sulfonic acid, methallyl sulfonic acid, styrene sulfonic acid and their alkali metal salts, vinyl acetate and vinyl chloride.

これらの共重合体の量が10%を越えるときにはプリカ
ーサの耐熱性が不足するので充分な物性が得られない。
共重合成分として親水性のものを用いることは、緻密性
の良いプリカーサが得られ易いので特に好ましい。この
ようなAN系重合体の製造法としては、特に制限はなく乳
化懸濁、塊状、溶液等の一般的な重合方法によることが
できる。ポリマの重合度は極限粘度で1.3〜5.0、好まし
くは1.5〜3.0の範囲のものが良い。
When the amount of these copolymers exceeds 10%, the heat resistance of the precursor is insufficient and sufficient physical properties cannot be obtained.
It is particularly preferable to use hydrophilic ones as the copolymerization component, since a precursor having good compactness can be easily obtained. The method for producing such an AN polymer is not particularly limited, and a general polymerization method such as emulsion suspension, lump and solution can be used. The degree of polymerization of the polymer has an intrinsic viscosity of 1.3 to 5.0, preferably 1.5 to 3.0.

これらの重合体からアクリル系繊維を製造する方法と
しては、ジメチルホルムアミド、ジメチルアセタミド、
ジメチルスルホキシドなどの有機溶媒、硝酸、塩化亜
鉛、ロダンソーダ水溶液等の無機溶媒のポリマ溶液を紡
糸原液として、通常の湿式紡糸法、乾湿式紡糸法、乾式
紡糸法によって紡糸し、繊維化する方法を挙げることが
できる。
As a method for producing an acrylic fiber from these polymers, dimethylformamide, dimethylacetamide,
Organic solvent such as dimethylsulfoxide, nitric acid, zinc chloride, a polymer solution of an inorganic solvent such as aqueous solution of rhodanesoda is used as a spinning dope, and is spun by an ordinary wet spinning method, a dry wet spinning method, and a dry spinning method to form a fiber. be able to.

これらの紡糸方法の内、乾湿式紡糸法により紡糸を行
う場合には、比較的高速で高引張特性の炭素繊維が得ら
れる外、引き取り速度、口金と凝固液面との距離、凝固
浴温度濃度条件などの調整によって多様な形状の炭素繊
維が得られるので特に好ましい。
Among these spinning methods, when spinning is performed by the dry-wet spinning method, carbon fiber having relatively high speed and high tensile property can be obtained, the take-up speed, the distance between the spinneret and the coagulating liquid surface, and the coagulating bath temperature concentration. It is particularly preferable because carbon fibers having various shapes can be obtained by adjusting the conditions.

この様にして紡糸した凝固繊維は製糸工程における全
延伸倍率が5倍以上、好ましくは7倍以上である、実質
的に3段以上の延伸を最終的には100℃以上の熱媒体の
中で行なうことが好ましい。このような紡糸方法によっ
て得られるプリカーサ繊維のフィラメント数は、通常50
0〜30000の範囲で選ぶことが出来る。また、単繊維繊度
としては、0.1〜5dの範囲で選ぶことが出来るが、得ら
れるプリカーサの単糸繊度が3d以下、好ましくは0.5〜
2.0dのものは本発明の目的に対して特に適している。
The coagulated fiber spun in this manner has a total draw ratio of 5 times or more, preferably 7 times or more in the spinning process, and substantially 3 or more stages of drawing are finally conducted in a heating medium of 100 ° C. or more. It is preferable to carry out. The filament number of the precursor fiber obtained by such a spinning method is usually 50
You can select from 0 to 30,000. The single fiber fineness can be selected in the range of 0.1 to 5d, but the single yarn fineness of the obtained precursor is 3d or less, preferably 0.5 to
Those of 2.0d are particularly suitable for the purposes of the invention.

本プリカーサに使用する油剤はシリコーン系の油剤、
特にその一成分がアミノ基を有する変性基を含むものが
好ましく、繊維重量に対して0.01%〜5.0%付着させる
ことが望ましい。付着量が0.01%未満であると本発明の
目的は達成されず、また5%以上付着させると、加熱工
程におけるタール分が増加するほか、製糸工程での油剤
の脱落や、それに伴う糸条の毛羽発生が無視できなくな
る。
The oil used in this precursor is a silicone-based oil,
In particular, it is preferable that one component thereof contains a modifying group having an amino group, and it is desirable that 0.01% to 5.0% is attached to the fiber weight. If the adhered amount is less than 0.01%, the object of the present invention will not be achieved, and if the adhered amount is 5% or more, the tar content in the heating step will increase, and the oil agent will fall off in the yarn making step and the yarn Fluffing cannot be ignored.

この油剤は通常単独で、或は水または溶剤に溶解、分
散させて膨潤状態の糸条に付与する。水に分散させるた
めの乳化剤の例としては、一般にシリコン成分に対して
30%以下の重量の界面活性剤が用いられる。特にノニオ
ン系の界面活性剤たとえば、ポリオキシエチレンアルキ
ルフェニルエーテル、ポリエチレングリコール(分子量
200〜1000)脂肪酸エステルなどが良い。特にノニル、
またはオクチル、ドデシルフェニルエーテルの誘導体が
好ましい。
This oil agent is usually applied alone or after being dissolved or dispersed in water or a solvent, to the swollen yarn. As an example of an emulsifier for dispersing in water, generally, for a silicon component,
Up to 30% by weight of surfactant is used. In particular, nonionic surfactants such as polyoxyethylene alkyl phenyl ether, polyethylene glycol (molecular weight
200-1000) Fatty acid esters are good. Especially nonyl,
Alternatively, derivatives of octyl and dodecyl phenyl ether are preferable.

[実施例] 以下、実施例により本発明をさらに具体的に説明す
る。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples.

本例中、炭素繊維の性能(強度、弾性率)はJIS R
−7601に準じて測定したエポキシ樹脂を含浸したストラ
ンドの物性であり、測定回数n=10の平均から求めた値
である。
In this example, carbon fiber performance (strength, elastic modulus) is JIS R
It is a physical property of a strand impregnated with an epoxy resin measured according to −7601, and is a value obtained from an average of the number of measurements n = 10.

またILSS、曲げ強度はエピコート828樹脂/BF3・MEA
(3phr)をマトリックス母材として170℃3時間硬化さ
せたコンポジットの値である。
ILSS and bending strength are Epicoat 828 resin / BF3 / MEA
(3 phr) is a composite value obtained by curing at 170 ° C. for 3 hours using a matrix base material.

実施例 アクリロニトリル99.3重量%、イタコン酸0.7重量%
からなるアクリル系共重合体の20%ジメチルスルフォキ
シド溶液(45℃における溶液粘度が600ポイズの重合
体)を第2図a,b,cの口金を用いて一旦空気中に吐出さ
せ3mmの空間を通過した後、静置式の凝固浴でジメチル
スルフォキシド30%、5℃の凝固液を用い凝固させる乾
湿式紡糸を行い、水洗しながら液浴中での延伸を行い、
膨潤繊維を形成した。
Example Acrylonitrile 99.3% by weight, itaconic acid 0.7% by weight
A 20% dimethylsulfoxide solution of acrylic copolymer consisting of (polymer having a solution viscosity of 600 poise at 45 ° C) was once discharged into the air using the mouthpiece shown in Fig. 2 a, b, c. After passing through the space, dry-wet spinning is carried out in a stationary coagulation bath to coagulate using a coagulating liquid of dimethyl sulfoxide 30%, 5 ° C., and drawing in a liquid bath is performed while washing with water.
A swollen fiber was formed.

この膨潤繊維にアミノ変性シリコーン(アミノ含量0.
8%)を付与し、乾燥後連続して延伸を行い、全倍率10
倍で延伸て巻取った。この糸条を250/270℃の温度プロ
フィルを有する空気中で酸化せしめ、のち最高温度1350
℃の炭化炉に導入し窒素雰囲気中で炭化した。このとき
の炭素繊維の断面形状を第1図a,b,cに示す。
Amino-modified silicone (amino content of 0.
8%), and continuously stretched after drying, with a total magnification of 10
The film was stretched at twice and wound up. The yarn is oxidized in air with a temperature profile of 250/270 ° C and then the maximum temperature is 1350.
It was introduced into a carbonization furnace at ℃ and carbonized in a nitrogen atmosphere. The cross-sectional shape of the carbon fiber at this time is shown in FIG. 1 a, b, c.

またこの繊維のコンポジット特性を第1表に示す。 The composite properties of this fiber are shown in Table 1.

本発明の異形断面炭素繊維は製糸焼成工程の操作性が
良好であるとともにコンポジット特性にも優れたもので
あった。一方、比較に用いたeは焼成時の単糸間接着の
ため毛羽が多い繊維となりコンポジット特性も改善され
なかった。
The modified cross-section carbon fiber of the present invention has good operability in the firing process for fiber production and excellent composite properties. On the other hand, e used for comparison was a fiber with a lot of fluff due to the adhesion between single yarns at the time of firing and the composite property was not improved.

[発明の効果] 本発明の炭素繊維は、各々の葉の付け根から先端に向
かって一旦膨らみを有する形状であるため、コンポジッ
トに用いるとマトリックス母材との接着性が良好であ
る。また単糸形状に由来する曲げ抵抗力の増加によって
圧縮強度、曲げ強度に優れたコンポジットを得ることが
できる。
[Advantages of the Invention] The carbon fiber of the present invention has a shape that once bulges from the root of each leaf toward the tip, so that when used in a composite, it has good adhesion to the matrix base material. In addition, a composite having excellent compressive strength and bending strength can be obtained by increasing the bending resistance derived from the single yarn shape.

また本断面形状の炭素繊維はほぼ相似形のプリカーサ
から製造されるが、繊維の中心と表面との距離が従来の
繊維に比べて小さいため酸素の拡散が容易であるので、
短時間で酸化反応が終了する効果がある。またその断面
において実質的に直線部分を有しないため単繊維間の接
触面積が小さく焼成時の融着を生じにくく、発生する分
解ガスも容易に系外に拡散するので、極めて高品質の炭
素繊維となる。
In addition, the carbon fiber of the present cross-sectional shape is manufactured from a precursor of a substantially similar shape, but since the distance between the center of the fiber and the surface is smaller than conventional fibers, it is easy for oxygen to diffuse,
It has the effect of completing the oxidation reaction in a short time. In addition, since the contact area between single fibers is small because it does not have a substantially linear portion in its cross section, fusion during firing hardly occurs, and the generated decomposition gas easily diffuses out of the system. Becomes

【図面の簡単な説明】[Brief description of drawings]

第1図は炭素繊維の断面形状を示し、a,bおよびcは本
発明品の断面形状、dおよびeは比較品の断面形状であ
る。第2図は紡糸口金の孔形状を示し、a,bおよびcは
本発明品に使用する紡糸口金の孔形状、dおよびeは比
較品に使用する紡糸口金の孔形状である。
FIG. 1 shows the cross-sectional shape of carbon fiber, where a, b and c are the cross-sectional shape of the product of the present invention and d and e are the cross-sectional shape of the comparative product. FIG. 2 shows the hole shapes of the spinneret, where a, b and c are the hole shapes of the spinneret used in the product of the present invention, and d and e are the hole shapes of the spinneret used in the comparative product.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】単繊維の断面形状が3〜5葉の多葉形であ
り、それぞれの葉がその付け根から先端に向かって一旦
膨らみを有し、実質的に複数個の円が接合した形からな
り、かつ繊維断面形状の外接円半径Rと内接円半径rと
の比R/rで定義される異形度が1.5〜3であることを特徴
とするポリアクリロニトリル系異形断面炭素繊維。
1. A monofilament has a cross-sectional shape of 3 to 5 leaves, and each leaf has a bulge from its root to its tip, and a shape in which a plurality of circles are substantially joined. A polyacrylonitrile-based carbon fiber having an irregular cross-section, characterized in that the irregularity degree defined by the ratio R / r of the circumscribed circle radius R and the inscribed circle radius r of the fiber cross-sectional shape is 1.5 to 3.
【請求項2】請求項(1)記載の異形断面炭素繊維を用
いてなる炭素繊維強化複合材料。
2. A carbon fiber reinforced composite material comprising the modified cross-section carbon fiber according to claim 1.
JP2335459A 1990-11-29 1990-11-29 Deformed cross-section carbon fiber and carbon fiber reinforced composite material Expired - Fee Related JP2535448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2335459A JP2535448B2 (en) 1990-11-29 1990-11-29 Deformed cross-section carbon fiber and carbon fiber reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2335459A JP2535448B2 (en) 1990-11-29 1990-11-29 Deformed cross-section carbon fiber and carbon fiber reinforced composite material

Publications (2)

Publication Number Publication Date
JPH04202815A JPH04202815A (en) 1992-07-23
JP2535448B2 true JP2535448B2 (en) 1996-09-18

Family

ID=18288796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2335459A Expired - Fee Related JP2535448B2 (en) 1990-11-29 1990-11-29 Deformed cross-section carbon fiber and carbon fiber reinforced composite material

Country Status (1)

Country Link
JP (1) JP2535448B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012050171A1 (en) * 2010-10-13 2012-04-19 三菱レイヨン株式会社 Carbon-fiber-precursor fiber bundle, carbon fiber bundle, and uses thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69632846T2 (en) * 1995-01-09 2005-07-14 Toray Industries, Inc. Prepregs and hydrocarbon fiber reinforced composite material
WO2015016199A1 (en) 2013-07-30 2015-02-05 東レ株式会社 Carbon fiber bundle and flameproofed fiber bundle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59168126A (en) * 1983-03-14 1984-09-21 Toray Ind Inc Production of pitch based carbon fiber
JPS6246645A (en) * 1985-08-26 1987-02-28 出光石油化学株式会社 Manufacture of laminate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012050171A1 (en) * 2010-10-13 2012-04-19 三菱レイヨン株式会社 Carbon-fiber-precursor fiber bundle, carbon fiber bundle, and uses thereof
JP5682570B2 (en) * 2010-10-13 2015-03-11 三菱レイヨン株式会社 Carbon fiber precursor fiber bundle, carbon fiber bundle, and use thereof
KR101518145B1 (en) 2010-10-13 2015-05-06 미쯔비시 레이온 가부시끼가이샤 Carbon-fiber-precursor fiber bundle, carbon fiber bundle, and uses thereof
US9920456B2 (en) 2010-10-13 2018-03-20 Mitsubishi Chemical Corporation Carbon-fiber-precursor fiber bundle, carbon fiber bundle, and uses thereof
US10233569B2 (en) 2010-10-13 2019-03-19 Mitsubishi Chemical Corporation Carbon-fiber-precursor fiber bundle, carbon fiber bundle, and uses thereof

Also Published As

Publication number Publication date
JPH04202815A (en) 1992-07-23

Similar Documents

Publication Publication Date Title
JP5691366B2 (en) Carbon fiber manufacturing method
JP4617940B2 (en) Polyacrylonitrile-based polymer for carbon fiber precursor fiber, carbon fiber precursor fiber, and method for producing carbon fiber
JP5434187B2 (en) Polyacrylonitrile-based continuous carbon fiber bundle and method for producing the same
WO1985001752A1 (en) Carbon fibers with high strength and high modulus, and process for their production
EP0255109B1 (en) Process for producing an acrylic fiber having high fiber characteristics
KR0156870B1 (en) Noncircular cross-section carbon fibers, process for producing the same and composite containing them
JP2007182657A (en) Polymer composition for carbon fiber precursor fiber
KR101708160B1 (en) Carbon fibers, and production method therefor
JP2535448B2 (en) Deformed cross-section carbon fiber and carbon fiber reinforced composite material
JP2009046770A (en) Acrylonitrile-based precursor fiber for carbon fiber
JP2892127B2 (en) Non-circular cross-section carbon fiber, method for producing the same, and carbon fiber composite material
JP2011001653A (en) Method for producing polyacrylonitrile-based fiber
JP2009079343A (en) Method for producing precursor fiber for carbon fiber and carbon fiber
JP4887219B2 (en) Method for producing carbon fiber precursor acrylonitrile fiber
JP4446991B2 (en) Method for producing acrylonitrile-based precursor fiber for carbon fiber
JP5146394B2 (en) Method for producing carbon fiber precursor fiber and method for producing carbon fiber
JP3002614B2 (en) Acrylonitrile fiber and method for producing the same
JP3964011B2 (en) Acrylonitrile-based precursor fiber for carbon fiber and method for producing the same
JP3154595B2 (en) Method for producing acrylonitrile fiber
JPH10130963A (en) Carbon fiber, precursor for carbon fiber and production thereof
JP2007182645A (en) Method for producing acrylic fiber
JP2002266159A (en) Precursor fiber bundle for carbon fiber and method for producing the same
JPH11124743A (en) Carbon fiber and carbon fiber-reinforced composite material
JPH0397917A (en) Modified cross-sectional carbon fiber and production thereof
KR20240071429A (en) Manufacturing method of high modulus graphite fiber

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees