JPH0397692A - Gasifying and supplying device for organic metallic compound - Google Patents

Gasifying and supplying device for organic metallic compound

Info

Publication number
JPH0397692A
JPH0397692A JP23476689A JP23476689A JPH0397692A JP H0397692 A JPH0397692 A JP H0397692A JP 23476689 A JP23476689 A JP 23476689A JP 23476689 A JP23476689 A JP 23476689A JP H0397692 A JPH0397692 A JP H0397692A
Authority
JP
Japan
Prior art keywords
valve
mass flow
raw material
carrier gas
flow controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23476689A
Other languages
Japanese (ja)
Other versions
JP2611008B2 (en
Inventor
Hiroshi Mihira
博 三平
Tetsuo Shimizu
哲夫 清水
Kazuhiro Hirahara
和弘 平原
Toshinobu Ishihara
俊信 石原
Masateru Takaya
高屋 征輝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Stec KK
Original Assignee
Shin Etsu Chemical Co Ltd
Stec KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Stec KK filed Critical Shin Etsu Chemical Co Ltd
Priority to JP1234766A priority Critical patent/JP2611008B2/en
Priority to US07/580,587 priority patent/US5160542A/en
Priority to DE69006809T priority patent/DE69006809T2/en
Priority to EP90117498A priority patent/EP0419939B1/en
Publication of JPH0397692A publication Critical patent/JPH0397692A/en
Application granted granted Critical
Publication of JP2611008B2 publication Critical patent/JP2611008B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To lower dispersion of composition by arranging the route of a gaseous raw material which reaches a crystal growing furnace from a vessel with organic metallic compd. filled thereinto, a mass flow controller for carrier gas and a heat exchanger into a thermostatic chamber. CONSTITUTION:A base plate 13 is fitted to a crystal growing furnace 11 and heated at the prescribed temp. and also the inside of a system is evacuated. Then an air thermostatic chamber 24 is raised at fixed temp. to gasify organic metallic compd. 26. The gasified organic metallic compd. is allowed to flow to a mass flow controller 22 by opening a main valve 21 and supplied to the furnace 11 via a raw material supplying valve 23 and a connecting part 32 after regulating the flow rate. On the other hand, carrier gas such as gaseous H2 is regulated to constant flow rate via a valve 30 and a mass flow controller 28 and heated by a heat exchanger 29. The carrier gas of several hundreds times of the gaseous raw material is continuously supplied from the connecting part. The organic metallic compd. 26 is always supplied at uniform concn. into the furnace 11. The epitaxial thin film of a compd. semiconductor is formed on the base plate 13 in the furnace 11.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、有機金属気相成長法( S!OCVD法)に
より化合物半導体のエビタキシャル薄膜を製造づ−る場
合に,その原料として用いられる有機金属化合物の気化
供給装置に関するものである。
The present invention relates to an apparatus for vaporizing and supplying an organometallic compound used as a raw material when producing an epitaxial thin film of a compound semiconductor by an organometallic chemical vapor deposition method (S!OCVD method).

【従来の技術】[Conventional technology]

近年、化合物半導体の結晶成長法として、有機金属化合
物を用いたMOCVD法が注目を集め、盛んに研究され
ている。MOCVD法とは、例えば(Cl31.Ga、
(CH3)3ALなどの有機金属化合物を原料とし、そ
の熱分解反応を利用して薄膜の結晶成長を行なう方法で
ある。この方法は大面積な薄膜を均一に形成可能で、膜
厚や組成比などの制御性や量産性が優れている。 MOCVD法において、例えばIII − V族化合物
半導体薄膜を成長させる場合、III族原料として(C
Hs)sGaや(CHs)slnなどの有機金属化合物
を用い、V族原料としてAsHaやPH.等の水素化物
を用いる。 有機金属化合物を結晶成長炉内へ供給する方法としては
、有機金属化合物中にH2等のキャリアガスを導入して
発泡(パブリング)によって接触させ、所定の温度にお
ける有機金属化合物の飽和蒸気を結晶成長炉内に導入し
ている。 第4図に、この種のキャリアガスを用いた従来の気化供
給装置を示す。同図においてlはキャリアガス(例えば
H2)の容器、2は減圧弁、3はキャリアガスの質量流
量を制御するマスフローコントローラ、4は有機金属化
合物、5はシリング容器で有機金属化合物4を充填して
ある。6は恒温槽、7は人口用バルブ、8は導入管(デ
ィップチューブ)であり、キャリアガスをシリンダ容器
3内の下方に導入する。9は出口用バルブ、10は二一
ドルバルブで、結晶成長を減圧下で行なう場合に、シリ
ンダ容器5の入口及び出口付近における気体の圧力を1
気圧近傍に保つ。1lは結晶成長を行なう結晶成長炉で
、l2はヒータ、13は基板、14は真空ボンブ.15
は減圧度調整用バルブである。 この装置は以下のように使用する。先ず恒温槽6の温度
を正確に制御して有機金属化合物4の蒸気圧を決める。 次にマスフローコントローラ3で正確に制御したキャリ
アガスをバルブ7を開いてシリンダ容器4内に導入し、
バルブ9を開き所望の濃度の有機金属化合物を含むキャ
リアガスを結晶成長炉ll内に導入する。結晶成長炉1
1内は真空ボンブ14で減圧され、その内部には導入管
l6よりV族の水素化物が予め導入されているため、基
板l3に化合物半導体のエビタキシャル薄膜が形成され
てゆく。
In recent years, the MOCVD method using organometallic compounds has attracted attention as a crystal growth method for compound semiconductors, and has been actively researched. The MOCVD method is, for example, (Cl31.Ga,
This method uses an organometallic compound such as (CH3)3AL as a raw material and uses its thermal decomposition reaction to grow crystals of a thin film. This method can uniformly form a thin film over a large area, and is excellent in controllability of film thickness and composition ratio, as well as in mass production. In the MOCVD method, for example, when growing a III-V compound semiconductor thin film, (C
Using organometallic compounds such as Hs)sGa and (CHs)sln, AsHa and PH. A hydride such as the following is used. As a method of supplying an organometallic compound into a crystal growth furnace, a carrier gas such as H2 is introduced into the organometallic compound and brought into contact with it through bubbling, and the saturated vapor of the organometallic compound at a predetermined temperature is used for crystal growth. It is installed inside the furnace. FIG. 4 shows a conventional vaporization supply device using this type of carrier gas. In the figure, l is a carrier gas (for example, H2) container, 2 is a pressure reducing valve, 3 is a mass flow controller that controls the mass flow rate of the carrier gas, 4 is an organometallic compound, and 5 is a syringe container filled with an organometallic compound 4. There is. 6 is a constant temperature bath, 7 is an artificial valve, and 8 is an introduction pipe (dip tube), through which carrier gas is introduced into the lower part of the cylinder container 3. 9 is an outlet valve, and 10 is a 21 dollar valve, which reduces the pressure of the gas near the inlet and outlet of the cylinder container 5 by 1 when crystal growth is performed under reduced pressure.
Maintain near atmospheric pressure. 1l is a crystal growth furnace for growing crystals, 12 is a heater, 13 is a substrate, 14 is a vacuum bomb. 15
is a valve for adjusting the degree of pressure reduction. This device is used as follows. First, the vapor pressure of the organometallic compound 4 is determined by accurately controlling the temperature of the constant temperature bath 6. Next, the carrier gas precisely controlled by the mass flow controller 3 is introduced into the cylinder container 4 by opening the valve 7.
Valve 9 is opened and a carrier gas containing an organometallic compound at a desired concentration is introduced into crystal growth furnace II. Crystal growth furnace 1
1 is depressurized by a vacuum bomb 14, and a group V hydride has been previously introduced into the interior through an introduction pipe 16, so that an epitaxial thin film of a compound semiconductor is formed on the substrate 13.

【発明が解決しようとする課題】[Problem to be solved by the invention]

上記の装置を用いて化合物半導体のエビタキシャル成長
を行なうと、得られたエビタキシャル膜の組成比が設定
値から外れたり、膜の電気的性質が不均質になるという
問題があった。この場合,その結晶から得られた半導体
は特性がばらついてしまう。 これらの問題には下記の理由が考えられる。 ■エビタキシャル原料である有機金属化合物の供給量制
御をキャリアガス流量と温度という二次関数によりとり
行なっているため、高精度な流量!IH卸が難しい。 ■供給される有機金属化合物の流量を直接計測して制御
する手段がないため、供給量の変動を検知して制御する
ことができない。 ■供給量を設定するうえで重要な指針となる有機金属化
合物の蒸気圧曲線図が、同一物質に対して多数存在する
ことが多く、どれが正確な図であるかわからず,目的と
する供給量を得るのに必要な温度を正確に決めることが
できない。 また、目的とする膜厚や組成を得るためにはガスの供給
、停止を迅速に行なうことが必要である。しかし、この
装置ではそれらを迅速に行なうことができず、結晶界面
の急俊性が得られていない。仮にガスの供給や停止が迅
速に行なえた場合でも、配管の内部に有機金属化合物の
蒸気やそれを含むキャリアガスが滞留し、基板l3上の
結晶がそれらの影響を受けることがある。特に、有機金
属化合物ガスの供給量が微量な場合は影響を受け易い。 さらに、キャリアガスの温度が低い場合,この装置では
混合ガスの温度が下がってしまい有機金属化合物が配管
内に凝縮して好適に輸送されないという問題も生じてい
る。 本発明は前記課題を解決するためになされたちので、有
機金属化合物ガスの流量が極く僅かな場合でち定量的な
供給ができる有機金属化合物の気化供給装置を提供する
ことを目的とする。
When the above-mentioned apparatus is used to perform epitaxial growth of a compound semiconductor, there are problems in that the composition ratio of the obtained epitaxial film deviates from a set value and the electrical properties of the film become non-uniform. In this case, the characteristics of semiconductors obtained from the crystal will vary. The following reasons can be considered for these problems. ■Highly accurate flow rate because the supply amount of the organometallic compound, which is an evitaxial raw material, is controlled by a quadratic function of carrier gas flow rate and temperature! IH wholesale is difficult. ■Since there is no means to directly measure and control the flow rate of the organometallic compound being supplied, it is not possible to detect and control fluctuations in the supply amount. ■There are often many vapor pressure curve diagrams for the same substance for organometallic compounds, which are important guidelines for setting the supply amount, and it is difficult to know which one is the correct one, and it is difficult to determine which one is the most accurate. It is not possible to accurately determine the temperature required to obtain the amount. Furthermore, in order to obtain the desired film thickness and composition, it is necessary to quickly supply and stop the gas. However, this apparatus cannot perform these processes quickly, and the sharpness of the crystal interface cannot be obtained. Even if the gas can be supplied or stopped quickly, the vapor of the organometallic compound and the carrier gas containing it may remain inside the pipe, and the crystals on the substrate 13 may be affected by them. This is particularly likely to be affected when the amount of organometallic compound gas supplied is minute. Furthermore, when the temperature of the carrier gas is low, the temperature of the mixed gas in this device decreases, causing the problem that the organometallic compound condenses in the piping and is not transported properly. The present invention has been made in order to solve the above-mentioned problems, and therefore, it is an object of the present invention to provide an apparatus for vaporizing and supplying an organometallic compound that can quantitatively supply the organometallic compound gas even when the flow rate of the organometallic compound gas is extremely small.

【課題を解決するための手段】[Means to solve the problem]

前記の課題を解決するための本発明の有機金属化合物の
気化供給装置を、その実施例に対応する図面を用いて説
明する。 本発明の第1発明の有機金属化合物の気化供給装置は、
第1図に示すように有機金属化合物26を充填した容器
20からメインバルブ21を経て原料ガス用マスフロー
コントローラ22へ接続され、原料ガス用マスフローコ
ントローラ22から原料ガス供給バルブ23を経て加熱
減圧下の結晶成長炉11に接続された有機金属化合物ガ
スの経路と、キャリアガス源からキャリアガス用マスフ
ローコントローラ28および熱交換器29を経て原料ガ
ス供給バルブ23の排出側の接続部32に接続するキャ
リアガス経路とを有し、容器20、その容器20から結
晶成長炉11へ至る有機金属化合物ガスの経路,キャリ
アガス用マスフローコントローラ28および熱交換器2
9が単一の恒温槽24の内部に配置されている。 第2発明の有機金属化合物の気化供給装置は、第1発明
の原料ガス用マスフローコントローラ22の排出側に位
置する原料ガス供給バルブ23と、熱交換器29の排出
側に位置するキャリアガスバルブ3lとが一体化された
ブロックバルブ35であり、そのブロックバルブ35が
原料ガス用マスフローコントローラ22の排出側に直結
されている(第2図参照)。 第3発明の有機金属化合物の気化供給装置は、第3図に
示すように、第l発明および第2発明の熱交換器29に
加熱手段37が付設してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An apparatus for vaporizing and supplying organometallic compounds according to the present invention for solving the above problems will be described with reference to drawings corresponding to embodiments thereof. The organometallic compound vaporization supply device according to the first aspect of the present invention includes:
As shown in FIG. 1, a container 20 filled with an organometallic compound 26 is connected via a main valve 21 to a mass flow controller 22 for raw material gas, and from the mass flow controller 22 for raw material gas via a raw material gas supply valve 23, it is heated under reduced pressure. The organometallic compound gas path connected to the crystal growth furnace 11 and the carrier gas connected from the carrier gas source to the discharge side connection 32 of the raw material gas supply valve 23 via the carrier gas mass flow controller 28 and heat exchanger 29 A container 20, a path for organometallic compound gas from the container 20 to the crystal growth furnace 11, a carrier gas mass flow controller 28, and a heat exchanger 2.
9 are placed inside a single constant temperature bath 24. The organometallic compound vaporization supply device of the second invention includes a raw material gas supply valve 23 located on the discharge side of the raw material gas mass flow controller 22 of the first invention, and a carrier gas valve 3l located on the discharge side of the heat exchanger 29. is an integrated block valve 35, and the block valve 35 is directly connected to the discharge side of the raw material gas mass flow controller 22 (see FIG. 2). In the organometallic compound vaporization supply apparatus of the third invention, as shown in FIG. 3, a heating means 37 is attached to the heat exchanger 29 of the first invention and the second invention.

【実施例】【Example】

以下、本発明の実施例を図面により詳細に説明する。 第1図は本発明を適用する有機金属化合物の気化供給装
置の概略図である。同図に示すように,有機金属化合物
26を入れたシリンダ容器20は空気作動式バルブ21
を介してマスフローコントローラ22に接続される。マ
スフローコントローラ22は、空気作動式の原料ガス供
給バルブ23を介して結晶成長炉1lに接続される。結
晶成長炉11には減圧度調整用バルブl5を介して真空
ボンブ14が接続されている。結晶成長炉1. 1はヒ
ータ12で加熱される構造であるとともに、V族ガスな
どを導入する導入管l6が設けてある。 熱分解促進用のキャリアガス、例えば水素ガスは、バル
プ30、キャリアガス用マスフローコントローラ28、
熱交換器29およびキャリアガスバルブ3lを順に経て
バルブ23の排出側の接続部分32において接続されて
いる。上記の各接続は導管によりなされ、密閉系を形成
している。 シリンダ容器20をはじめ5マスフローコントローラ2
2・28、熱交換器29、バルブ21・23・30・3
lおよび接続部分32は空気恒温槽24に収容してある
。マスフローコントローラ22は、微小流量を検知して
流量調節用バルブの応答速度が速いもので、できるだけ
低差圧で作動するちのを使用する。 この装置は以下のように動作させる。 先ず、結晶成長炉l1に基板13を装着し、ヒータl2
により所定の温度に加熱するとともに真空ボンブl4で
系内を減圧する。バルブ30および3lを開弁して所定
量のキャリアガスを流し、減圧度調整用バルブ15を調
整して結晶成長炉ll内の減圧度を一定にしておく。キ
ャリアガスの流量は、配管内における有機金属化合物ガ
スの滞留時間を最少にするためにできるだけ大量に流す
べきであるが、一般的にはlO〜300mg/分程度で
ある。 空気恒温槽24を一定温度に昇温するとシリンダ容器2
0内の有機金属化合物26の蒸気圧が上界して気化をは
じめる。恒温槽24の設定温度は、マスフローコントロ
ーラ22・28やバルプ類の耐熱性および有機金属化合
物の蒸気圧特性や熱分解特性等により一義的には決めら
れないが、蒸気圧を可能な限り高くすることができ、有
機金属化合物に十分な気化熱を絶えず供給できる温度で
ある50〜80℃に設定する。 ここで不図示の動作源から空気作動式のメインバルブ2
1および原料供給バルブ23に送気して開弁ずる。する
と気体化した有機金属化合物26は、バルブ2lを経て
マスフローコントローラ22に導入され、質量流量が直
接計量されて一定値に調整された後、バルブ23を経て
結晶成長炉ll内に供給される。一方、キャリアガスバ
ルブ31からは、キャリアガス用マスフローコントロー
ラ28により定量され、熱交換器29によって十分加熱
されたキャリアガスが絶えず供給される。その量は有機
金属化合物26のガス量に対して数百倍であるため、有
機金属化合物26は遅延時間なく一定濃度のまま結晶成
長炉1lに供給される。キャリアガスは、キャリアガス
用マスフローコントローラ28を含むガスの経路が空気
恒温槽24に収容してあるため、極めて効率良く加熱さ
れている。 このようにして結晶成長炉ll内の基板l3に化合物半
導体のエビタキシャル薄膜が形成されてゆく。所定の膜
厚が得られたら、空気作動式供給停止バルブ23に送気
して閉弁し、有機金属化合物ガスの供給を停止する。 有機金属化合物26の流量が極く微量の場合、マスフロ
ーコントローラ22からバルブ23を経て接続部32に
至る配管の容積に比べ有機金属化合物ガスの量が少ない
ため、ガスが配管内に不均一に拡散すると結晶成長炉1
1への供給量が変動しやすくなる。その場合には、第2
図に示すようにバルブ23と31を一体化したブロック
パルブ40を用い、かつそれをマスフローコントローラ
22の出口側に直結すれば良い。配管の容積が小さくな
り、通過時間が短縮されて供給量が安定する。 熱交換器29は、恒温槽24内の空気を熱源とし、キャ
リアガスに対して十分な熱量を与えることができるが、
より高温に加熱する場合には、第3図に示すように電熱
ヒータ37などを設けて個別に加熱しても良い。 なお、本発明の装置に用いるバルプ類は、耐熱性、耐高
真空性を備えた空気作動式あるいは手動式のものを使用
する。シリンダ容器20および配管類の材質は、有機金
属化合物を安全に保存,輸送するという観点から全ステ
ンレス製のものが良い。接ガス面には電解研磨処理を施
してあることが望ましい。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic diagram of an apparatus for vaporizing and supplying organometallic compounds to which the present invention is applied. As shown in the figure, a cylinder container 20 containing an organometallic compound 26 is connected to a pneumatically operated valve 21.
It is connected to the mass flow controller 22 via. The mass flow controller 22 is connected to the crystal growth furnace 1l via an air-operated source gas supply valve 23. A vacuum bomb 14 is connected to the crystal growth furnace 11 via a pressure reduction degree adjusting valve l5. Crystal growth furnace 1. 1 has a structure that is heated by a heater 12, and is provided with an introduction pipe 16 for introducing V group gas or the like. A carrier gas for promoting thermal decomposition, such as hydrogen gas, is supplied through a valve 30, a carrier gas mass flow controller 28,
It is connected at the connection part 32 on the discharge side of the valve 23 via the heat exchanger 29 and the carrier gas valve 3l in this order. Each of the above connections is made by a conduit, forming a closed system. 5 mass flow controllers 2 including cylinder container 20
2, 28, heat exchanger 29, valve 21, 23, 30, 3
1 and the connecting portion 32 are housed in an air constant temperature bath 24. The mass flow controller 22 is one that detects a minute flow rate and has a fast response speed of a flow rate adjustment valve, and is operated at as low a differential pressure as possible. This device operates as follows. First, the substrate 13 is installed in the crystal growth furnace l1, and the heater l2 is turned on.
The system is heated to a predetermined temperature and the pressure inside the system is reduced using a vacuum bomb 14. The valves 30 and 3l are opened to allow a predetermined amount of carrier gas to flow, and the pressure reduction degree adjusting valve 15 is adjusted to keep the pressure reduction degree in the crystal growth furnace 1 constant. The flow rate of the carrier gas should be as large as possible in order to minimize the residence time of the organometallic compound gas in the piping, and is generally about 10 to 300 mg/min. When the air constant temperature bath 24 is heated to a constant temperature, the cylinder container 2
The vapor pressure of the organometallic compound 26 in 0 rises and begins to vaporize. The set temperature of the constant temperature bath 24 cannot be determined uniquely depending on the heat resistance of the mass flow controllers 22 and 28 and valves, the vapor pressure characteristics and thermal decomposition characteristics of the organometallic compound, etc., but the vapor pressure should be made as high as possible. The temperature is set at 50 to 80°C, which is a temperature that can constantly supply sufficient heat of vaporization to the organometallic compound. Here, an air-operated main valve 2 is operated from an operation source (not shown).
1 and the raw material supply valve 23 to open them. Then, the gasified organometallic compound 26 is introduced into the mass flow controller 22 through the valve 2l, and after the mass flow rate is directly measured and adjusted to a constant value, it is supplied into the crystal growth furnace 11 through the valve 23. On the other hand, carrier gas, which is quantified by the carrier gas mass flow controller 28 and sufficiently heated by the heat exchanger 29, is constantly supplied from the carrier gas valve 31. Since the amount thereof is several hundred times as large as the gas amount of the organometallic compound 26, the organometallic compound 26 is supplied to the crystal growth furnace 1l at a constant concentration without any delay time. The carrier gas is heated extremely efficiently because the gas path including the carrier gas mass flow controller 28 is accommodated in the air constant temperature chamber 24. In this way, an epitaxial thin film of a compound semiconductor is formed on the substrate l3 in the crystal growth furnace l. When a predetermined film thickness is obtained, air is supplied to the air-operated supply stop valve 23 and the valve is closed, thereby stopping the supply of the organometallic compound gas. When the flow rate of the organometallic compound 26 is extremely small, the amount of the organometallic compound gas is small compared to the volume of the pipe from the mass flow controller 22 to the connection part 32 via the valve 23, so the gas diffuses unevenly within the pipe. Then, crystal growth furnace 1
The amount supplied to 1 becomes more likely to fluctuate. In that case, the second
As shown in the figure, a block valve 40 in which the valves 23 and 31 are integrated may be used, and it may be directly connected to the outlet side of the mass flow controller 22. The volume of the piping is reduced, the passage time is shortened, and the supply amount is stabilized. The heat exchanger 29 uses the air in the thermostatic chamber 24 as a heat source, and can provide a sufficient amount of heat to the carrier gas.
In the case of heating to a higher temperature, an electric heater 37 or the like may be provided as shown in FIG. 3, and heating may be performed individually. The valves used in the apparatus of the present invention are air-operated or manual valves that are heat resistant and high vacuum resistant. The cylinder container 20 and the piping are preferably made entirely of stainless steel from the viewpoint of safely storing and transporting the organometallic compound. It is desirable that the gas-contact surfaces be subjected to electrolytic polishing treatment.

【発明の作用、効果】[Action and effect of the invention]

以上詳細に説明したように本発明の有機金属化合物の気
化供給装置は、マスフローコントローラを含む有機金属
化合物ガスの経路およびキャリアガス経路が単一の恒滝
槽に収容され、小型化されている。 配管の容積が小さく、有機金属化合物ガスやそれを含む
キャリアガスの滞留が少ないため、原料の供給、停止を
迅速に行なえ、得られる結晶界面の急峻性が高い。また
、ガスの温度制御が容易で、配管内における原料の凝縮
が皆無である。 そのため、有機金属化合物の供給量にかかわらず、常に
一定した有機金属化合物の蒸気量制御が可能になり、圧
膜から超薄膜まで、組成ばらつきが極めて小さい半導体
結晶の薄膜を製造することができる。 これらの結果、その成長結晶から得られるデバイスのコ
ストも大幅に低減することが可能となる。
As described above in detail, the organometallic compound vaporization supply apparatus of the present invention is miniaturized because the organometallic compound gas route including the mass flow controller and the carrier gas route are accommodated in a single constant-water tank. Since the volume of the piping is small and the retention of organometallic compound gas and carrier gas containing it is small, raw materials can be quickly supplied and stopped, and the resulting crystal interface is highly steep. Furthermore, the temperature of the gas can be easily controlled, and there is no condensation of raw materials in the piping. Therefore, regardless of the amount of organometallic compound supplied, it is possible to always control the amount of vapor of the organometallic compound, and it is possible to manufacture thin films of semiconductor crystals with extremely small compositional variations, from thin films to ultra-thin films. As a result, it becomes possible to significantly reduce the cost of devices obtained from the grown crystal.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用する有機金属化合物の気化供給装
置の実施例を示す概略構成図5第2図および第3図は各
々本発明を適用する有機金属化合物の気化供給装置の実
施例の要部を示す概略構成図、第4図は従来の気化供給
装置の概略構成図である。 1・・・キャリアガス容器 2・・・減圧弁3・22・
28・・・マスフローコントローラ4・26・・・有機
金属化合物 5・20・・・シリンダ容器 6・・・恒温槽7・9・
2l・23・30・3l・・・バルブ8・・・導入管 
     lO・・・二一ドルバルブ11・・・結晶成
長炉    l2・・・ヒータ13・・・基板    
   l4・・・真空ボンブl5・・・減圧度調整用バ
ルブ
FIG. 1 is a schematic diagram showing an embodiment of an organometallic compound vaporization supply apparatus to which the present invention is applied. FIGS. 2 and 3 each show an embodiment of an organometallic compound vaporization supply apparatus to which the present invention is applied. FIG. 4 is a schematic diagram showing the main parts of a conventional vaporization supply device. 1... Carrier gas container 2... Pressure reducing valve 3.22.
28... Mass flow controller 4, 26... Organometallic compound 5, 20... Cylinder container 6... Constant temperature chamber 7, 9.
2l/23/30/3l...Valve 8...Introduction pipe
lO...21 dollar valve 11...Crystal growth furnace l2...Heater 13...Substrate
l4...Vacuum bomb l5...Valve for adjusting the degree of reduced pressure

Claims (1)

【特許請求の範囲】 1、有機金属化合物を充填した容器からメインバルブを
経て原料ガス用マスフローコントローラへ接続され、前
記原料ガス用マスフローコントローラから原料ガス供給
バルブを経て加熱減圧下の結晶成長炉に接続された有機
金属化合物ガスの経路と、キャリアガス源からキャリア
ガス用マスフローコントローラおよび熱交換器を経て前
記原料ガス供給バルブの排出側に接続するキャリアガス
経路とを有し、 前記容器、その容器から結晶成長炉へ至る有機金属化合
物ガスの経路、キャリアガス用マスフローコントローラ
および熱交換器が恒温槽内に配置されていることを特徴
とする有機金属化合物の気化供給装置。 2、請求項第1項記載の原料ガス用マスフローコントロ
ーラの排出側に位置する原料ガス供給バルブと、熱交換
器の排出側に位置するキャリアガスバルブとが一体化さ
れたブロックバルブであり、該ブロックバルブが前記原
料ガス用マスフローコントローラの排出側に直結されて
いることを特徴とする有機金属化合物の気化供給装置。 3、請求項第1項または第2項記載の熱交換器に加熱手
段が付設してあることを特徴とする有機金属化合物の気
化供給装置。
[Scope of Claims] 1. A container filled with an organometallic compound is connected via a main valve to a mass flow controller for raw material gas, and from the mass flow controller for raw material gas is passed through a raw material gas supply valve to a crystal growth furnace under heating and reduced pressure. a carrier gas route connected from a carrier gas source to the discharge side of the raw material gas supply valve via a carrier gas mass flow controller and a heat exchanger; 1. A vaporization supply device for an organometallic compound, characterized in that a path for an organometallic compound gas from a to a crystal growth furnace, a carrier gas mass flow controller, and a heat exchanger are arranged in a thermostatic chamber. 2. A block valve in which a raw material gas supply valve located on the discharge side of the mass flow controller for raw material gas according to claim 1 and a carrier gas valve located on the discharge side of the heat exchanger are integrated, and the block 1. A vaporization supply device for an organometallic compound, characterized in that a valve is directly connected to the discharge side of the mass flow controller for raw material gas. 3. An apparatus for vaporizing and supplying organometallic compounds, characterized in that the heat exchanger according to claim 1 or 2 is provided with heating means.
JP1234766A 1989-09-12 1989-09-12 Organic metal compound vaporizer Expired - Fee Related JP2611008B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1234766A JP2611008B2 (en) 1989-09-12 1989-09-12 Organic metal compound vaporizer
US07/580,587 US5160542A (en) 1989-09-12 1990-09-11 Apparatus for vaporizing and supplying organometal compounds
DE69006809T DE69006809T2 (en) 1989-09-12 1990-09-11 Device for the evaporation and provision of organometallic compounds.
EP90117498A EP0419939B1 (en) 1989-09-12 1990-09-11 Apparatus for vaporizing and supplying organometal compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1234766A JP2611008B2 (en) 1989-09-12 1989-09-12 Organic metal compound vaporizer

Publications (2)

Publication Number Publication Date
JPH0397692A true JPH0397692A (en) 1991-04-23
JP2611008B2 JP2611008B2 (en) 1997-05-21

Family

ID=16976027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1234766A Expired - Fee Related JP2611008B2 (en) 1989-09-12 1989-09-12 Organic metal compound vaporizer

Country Status (1)

Country Link
JP (1) JP2611008B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001483A1 (en) * 2006-06-27 2008-01-03 Fujikin Incorporated Vaporizer/supplier of material and automatic pressure regulator for use therein
JP2015173273A (en) * 2015-04-15 2015-10-01 株式会社サイオクス Semiconductor wafer manufacturing method and semiconductor device manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60102251U (en) * 1983-12-14 1985-07-12 日本電気株式会社 Vapor phase growth equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60102251U (en) * 1983-12-14 1985-07-12 日本電気株式会社 Vapor phase growth equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001483A1 (en) * 2006-06-27 2008-01-03 Fujikin Incorporated Vaporizer/supplier of material and automatic pressure regulator for use therein
JP2008010510A (en) * 2006-06-27 2008-01-17 Fujikin Inc Material vaporization supply apparatus and automatic pressure regulator used therefor
JP4605790B2 (en) * 2006-06-27 2011-01-05 株式会社フジキン Raw material vaporization supply device and pressure automatic adjustment device used therefor.
US8047510B2 (en) 2006-06-27 2011-11-01 Fujikin Incorporated Evaporation supply apparatus for raw material and automatic pressure regulating device used therewith
JP2015173273A (en) * 2015-04-15 2015-10-01 株式会社サイオクス Semiconductor wafer manufacturing method and semiconductor device manufacturing method

Also Published As

Publication number Publication date
JP2611008B2 (en) 1997-05-21

Similar Documents

Publication Publication Date Title
US5160542A (en) Apparatus for vaporizing and supplying organometal compounds
US4517220A (en) Deposition and diffusion source control means and method
US7485189B2 (en) Thin film deposition device using an FTIR gas analyzer for mixed gas supply
US6432205B1 (en) Gas feeding system for chemical vapor deposition reactor and method of controlling the same
WO2008001483A1 (en) Vaporizer/supplier of material and automatic pressure regulator for use therein
EP0409603A1 (en) Process and apparatus for chemical vapour deposition
TWI300097B (en) Source gas delivery
JPH02255595A (en) Method and device for vaporizing and supplying organometallic compound
US20060035470A1 (en) Method for manufaturing semiconductor device and substrate processing system
GB2273391A (en) Apparatus for growing compound semiconductor layers
KR20120028305A (en) Method and apparatus for growing a thin film onto a substrate
US20190284684A1 (en) Sublimated gas supply system and sublimated gas supply method
US20040011292A1 (en) Single-wafer-processing type CVD apparatus
CN110965050A (en) Semiconductor device and gas supply system thereof
JPS60245218A (en) Method and apparatus for producing semiconductor element
JP2668687B2 (en) CVD device
US20110000554A1 (en) Raw material supply device
JPH0397692A (en) Gasifying and supplying device for organic metallic compound
EP0196170A2 (en) Organic metallic compound pyrolysis vapor growth apparatus
US11946136B2 (en) Semiconductor processing device
WO2020179575A1 (en) Film-forming apparatus and material gas feeding method
JPH0397693A (en) Casifying and supplying device for organic metallic compound
JPH03141192A (en) Device and method for gaseous phase growth
KR940012531A (en) Method for manufacturing dielectric thin film having high dielectric constant and apparatus therefor
JPS63317674A (en) Gas supplying device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees