JPH03141192A - Device and method for gaseous phase growth - Google Patents

Device and method for gaseous phase growth

Info

Publication number
JPH03141192A
JPH03141192A JP1279156A JP27915689A JPH03141192A JP H03141192 A JPH03141192 A JP H03141192A JP 1279156 A JP1279156 A JP 1279156A JP 27915689 A JP27915689 A JP 27915689A JP H03141192 A JPH03141192 A JP H03141192A
Authority
JP
Japan
Prior art keywords
raw material
vapor
pressure
chamber
storage chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1279156A
Other languages
Japanese (ja)
Inventor
Nobuhiro Misawa
信裕 三沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1279156A priority Critical patent/JPH03141192A/en
Publication of JPH03141192A publication Critical patent/JPH03141192A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To prevent the irregularity of the growth rate and composition of a CVD method deposition layer and control the thickness of the layer in high precision by separating the vapor of a raw material from the raw material and control the discharging rate of the vapor in accordance with the pressure of the vapor to reduce the variation of the discharged raw material. CONSTITUTION:A raw material is received in a vapor-generating chamber 1 and heated with a heating means 2 to generate the vapor of the raw material. The vapor is charged into a storage chamber 4 through a connecting piping 3 and the pressure of the vapor is equilibrated with the saturated pressure of the raw material at the above-mentioned temperature, followed by closing a valve 11. The vapor is fed into a reactor while the pressure of the vapor is always measured with a pressure-measuring device 6 and the flow volume of the vapor is controlled with the valves 11 and 14 accordance with the measured values.

Description

【発明の詳細な説明】 〔概 要〕 本発明はCVDによる気相成長装置及び成長方法に関し
、 蒸気圧の低い原料を精密に定速供給することを目的とし
、 本発明の気相成長装置は 常温、常圧の下では固体若しくは液体である原料物質を
収容し、該原料を一定温度に加熱して原料蒸気を発生さ
せる蒸気発生室と、 該蒸気発生室と配管によって連結されると共に反応室と
も配管によって連結された貯蔵室と、該貯蔵室内の圧力
を測定する装置と、 前記2つの連結配管の夫々に、該配管中の気体の移動を
遮断し若しくは移動速度を制御するバルブが設けられて
おり、 前記圧力測定装置の計測値に従って、前記貯蔵室と前記
反応室間の配管に設けられた気体移動速度制御バルブを
作動させるように構成されている。
[Detailed Description of the Invention] [Summary] The present invention relates to a vapor phase growth apparatus and growth method by CVD, and an object of the present invention is to precisely supply a raw material with a low vapor pressure at a constant rate. A steam generation chamber that contains a raw material that is solid or liquid at normal temperature and pressure and heats the raw material to a constant temperature to generate raw material vapor, and a reaction chamber that is connected to the steam generation chamber by piping. A storage chamber connected to the storage chamber by piping, a device for measuring the pressure inside the storage chamber, and each of the two connecting pipings is provided with a valve for blocking the movement of gas in the piping or controlling the movement speed. and is configured to operate a gas transfer rate control valve provided in a pipe between the storage chamber and the reaction chamber according to the measured value of the pressure measurement device.

また、本発明の気相成長方法では 前記蒸気発生室の原料物質を所定温度に加熱し、発生し
た原料蒸気を前記所定温度における飽和蒸気圧に近い圧
力で前記貯蔵室に封入し、更に必要に応じて該貯蔵室に
キャリヤ・ガスを導入して該貯蔵室内の圧力を増加させ
た後、貯蔵室内の原料蒸気の圧力をモニタしながら、単
位時間に送出される原料物質のモル数が一定になるよう
制御して、原料蒸気を反応室に供給することが行われる
Further, in the vapor phase growth method of the present invention, the raw material in the steam generation chamber is heated to a predetermined temperature, the generated raw material vapor is sealed in the storage chamber at a pressure close to the saturated vapor pressure at the predetermined temperature, and After increasing the pressure in the storage chamber by introducing a carrier gas into the storage chamber accordingly, the number of moles of the raw material delivered per unit time is kept constant while monitoring the pressure of the raw material vapor in the storage chamber. The raw material vapor is supplied to the reaction chamber under control such that

本発明により原料供給速度の変動が抑制されるので、成
長速度や成長層の組成が不均一になることがない。
According to the present invention, fluctuations in the raw material supply rate are suppressed, so that the growth rate and the composition of the grown layer do not become non-uniform.

(産業上の利用分野〕 本発明は気相成長装置に関わり、特に蒸気圧の低い固体
或いは液体を原料として化学気相成長(CV D)を実
行するための原料供給装置に関わる。
(Industrial Application Field) The present invention relates to a vapor phase growth apparatus, and particularly to a raw material supply apparatus for performing chemical vapor phase growth (CVD) using a solid or liquid having a low vapor pressure as a raw material.

気相の原料物質を反応室に導入し、化学反応や熱分解に
よって目的とする物質を析出、堆積させるCVD法は、
半導体集積回路の形成などに盛んに利用されているが、
近年、半導体層の堆積形成以外にも金属層の堆積形成な
どに利用されるようになり、更には超伝導材料皮膜の堆
積形成に利用することも考えられている。
The CVD method introduces a gas phase raw material into a reaction chamber and precipitates and deposits the target material through chemical reaction or thermal decomposition.
It is widely used for forming semiconductor integrated circuits, etc.
In recent years, it has come to be used not only for depositing semiconductor layers but also for depositing metal layers, and is even being considered for use in depositing superconducting material films.

金属層或いは金属元素を含む材料層をCVD形成する場
合、その原料として該金属の有機化合物或いは錯体を用
いることが多い、これ等の物質には、常温、常圧の下で
気体のものもあるが、液体或いは固体のものもあり、C
VDの原料として使用するには、これを加熱し、気化さ
せて反応室に供給することが必要な場合がある。
When forming a metal layer or a material layer containing a metal element by CVD, organic compounds or complexes of the metal are often used as raw materials. Some of these substances are gaseous at room temperature and pressure. However, some are liquid or solid, and C
To use it as a raw material for VD, it may be necessary to heat it, vaporize it, and supply it to the reaction chamber.

例えば、超伝導皮膜のCVD形成に於いて銅(Cu)の
原料として用いられるCuのへキサフロロ・アセチル・
アセトン錯体(Cu (HF A)z)は常温、常圧で
固体であり、86℃の蒸気圧は3Torrであって、7
0″C程度に加熱して昇華させた蒸気を反応室に導入し
、熱分解によってCu層或いはCuを含む化合物層を基
板上に堆積形成することが行われる。
For example, hexafluoro-acetyl-
Acetone complex (Cu (HF A)z) is solid at normal temperature and pressure, and the vapor pressure at 86°C is 3 Torr, and 7
Steam heated to about 0''C and sublimated is introduced into a reaction chamber, and a Cu layer or a compound layer containing Cu is deposited on a substrate by thermal decomposition.

この錯体蒸気の輸送はキャリヤ・ガスに混じて行う場合
と、反応室が減圧に保たれることから、圧力差を利用し
て行う場合とがある。
The complex vapor is transported either by mixing it with a carrier gas or by utilizing a pressure difference since the reaction chamber is kept at a reduced pressure.

(従来の技術) このように蒸気圧の低い原料を用いてCVD処理が行わ
れるようになったのは比較的最近のことであり、その原
料供給技術は未だ確立されていない状況にあるが、基本
的には、原料物質を一定温度に加熱し、原料供給室から
反応室までの接続配管をより高温に保って原料蒸気が途
中で沈積することを防ぎ、単位時間当たりの供給量即ち
供給速度を一定とすることが行われている。
(Prior art) It is relatively recent that CVD processing has been performed using raw materials with such low vapor pressure, and the raw material supply technology has not yet been established. Basically, the raw material is heated to a constant temperature, and the connecting piping from the raw material supply chamber to the reaction chamber is kept at a higher temperature to prevent the raw material vapor from depositing on the way. It is being done to keep it constant.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記Cu(HFA)*の場合、粉体の原料を加熱室に収
納して所定温度に加熱することが行われるが、粉体の加
熱は加熱室の壁面からの熱伝導によって行われることか
ら、原料の温度が不均一になることや、極端な場合には
一部が溶融状態になることがあり、加熱温度を精密に制
御するだけでは原料供給速度の変動は十分に制御し得な
い状況となる。
In the case of Cu(HFA)* mentioned above, the powder raw material is stored in a heating chamber and heated to a predetermined temperature, but since the powder is heated by heat conduction from the wall of the heating chamber, The temperature of the raw material may become uneven, or in extreme cases, part of it may become molten, and fluctuations in the raw material supply rate cannot be adequately controlled just by precisely controlling the heating temperature. Become.

原料供給速度の変動は成長速度や成長層の組成変動をも
たらすことになるが、このような状況はCu(HFA)
z以外の固体原料に於いても同様に発生するものであり
、更には、原料が液体の場合にも類偵の状況が生じるこ
とがある。
Fluctuations in the raw material supply rate lead to variations in the growth rate and the composition of the growth layer, but this situation
A similar situation occurs with solid raw materials other than z, and a similar situation may also occur when the raw material is liquid.

本発明の目的は、有効表面積が変化し易いため気化速度
を一定に保つことが困難な原料を用いてCVD処理を行
う場合に、その蒸気を一定速度で反応室に供給する原料
供給装置を提供することであり、それを用いて均一な成
長層を得る気相成長方法を提供することである。
An object of the present invention is to provide a raw material supply device that supplies vapor at a constant rate to a reaction chamber when CVD processing is performed using raw materials for which it is difficult to maintain a constant vaporization rate because the effective surface area easily changes. The object of the present invention is to provide a vapor phase growth method using which a uniform growth layer can be obtained.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明の気相成長装置は 常温、常圧下では固体若しくは液体である原料物質を収
容し、該原料を一定温度に加熱する手段を備えた蒸気発
生室と、 該蒸気発生室と接続配管によって連結されると共に反応
室とも接続配管によって連結されている貯蔵室と、 該貯蔵室内の圧力を測定する装置と、 更に、前記2つの接続配管の・夫々に、該配管中の気体
の移動を遮断し若しくは移動速度を制御するバルブが設
けられており、 前記圧力測定装置の計測値に従って、前記貯蔵室と前記
反応室間の配管に設けられた気体移動速度制御バルブを
作動させるように構成されている。
In order to achieve the above object, the vapor phase growth apparatus of the present invention includes a steam generation chamber containing a raw material that is solid or liquid at normal temperature and pressure, and equipped with means for heating the raw material to a constant temperature; a storage chamber connected to the generation chamber by connecting piping and also connected to the reaction chamber by connecting piping; a device for measuring the pressure within the storage chamber; and a device for measuring the pressure within the storage chamber; A gas movement speed control valve provided in the piping between the storage chamber and the reaction chamber is actuated according to the measurement value of the pressure measuring device. It is configured to allow

また、該気相成長装置を用いる本発明の気相成長方法で
は、 常温、常圧下では固体若しくは液体である原料物質を前
記蒸気発生室に収容し、所定温度に加熱することによっ
て該原料物質の蒸気を発生せしめ、該発生蒸気を真空排
気された前記貯蔵室に導入して、該貯蔵室内の圧力を前
記所定温度に於ける前記原料物質の飽和蒸気圧に略平衡
させた後、前記蒸気発生室/貯蔵室間に設けられたバル
ブを閉鎖し、 以上の処置によって前記貯蔵室に封入された前記原料蒸
気の圧力を前記圧力測定装置によって常時計測し、該計
測値に従い前記移動速度制御バルブを調節して単位時間
に移動する前記原料物質の分子数が一定となるように制
御しながら、前記原料蒸気を前記反応室に供給すること
が行われる。
Further, in the vapor phase growth method of the present invention using the vapor phase growth apparatus, a raw material that is solid or liquid at normal temperature and pressure is stored in the steam generation chamber, and the raw material is heated to a predetermined temperature. After generating steam and introducing the generated steam into the evacuated storage chamber to substantially equilibrate the pressure inside the storage chamber to the saturated vapor pressure of the raw material at the predetermined temperature, the steam generation is performed. A valve provided between the storage chamber and the storage chamber is closed, the pressure of the raw material vapor sealed in the storage chamber is constantly measured by the pressure measuring device, and the movement speed control valve is adjusted according to the measured value. The raw material vapor is supplied to the reaction chamber while being controlled so that the number of molecules of the raw material that moves per unit time is constant.

〔作 用〕[For production]

本発明の装置を用いて気相成長を行う場合、蒸気発生室
に収容された原料粉体は一定温度に加熱され、飽和蒸気
圧に達した蒸気が貯蔵室に送られる。従って、貯蔵室に
於ける原料蒸気の圧力は、原料粉体からの昇華速度には
無関係に、蒸気発生室の雰囲気温度だけで定まる値とな
る。
When performing vapor phase growth using the apparatus of the present invention, the raw material powder stored in the steam generation chamber is heated to a constant temperature, and the steam that has reached a saturated vapor pressure is sent to the storage chamber. Therefore, the pressure of the raw material vapor in the storage chamber has a value determined only by the atmospheric temperature of the steam generation chamber, regardless of the sublimation rate from the raw material powder.

原料蒸気が貯蔵室に取り込まれたのち蒸気発生室との接
続が遮断され、気相成長を行うために、単位時間当たり
一定モル数となる速度で反応室に送られる。この輸送は
貯蔵室と反応室の圧力差を利用して行われるが、貯蔵室
の圧力は常時モニタされ、それに合わせて反応室との間
に設けられた流量!jll!ffバルブを作動させて、
原料供給速度が一定となるように制御される。
After the raw material vapor is taken into the storage chamber, the connection with the steam generation chamber is cut off, and in order to perform vapor phase growth, it is sent to the reaction chamber at a rate of a constant number of moles per unit time. This transport is performed using the pressure difference between the storage chamber and the reaction chamber, but the pressure in the storage chamber is constantly monitored, and the flow rate between the storage chamber and the reaction chamber is adjusted accordingly. jll! Activate the ff valve,
The raw material supply rate is controlled to be constant.

即ち、原料蒸気は一旦貯蔵室に取り込まれると原料粉体
とは切り離されるので、原料粉体の温度不均一や加熱速
度の変化によって原料供給速度が変動することが無くな
る。更に通常の場合と同様、貯蔵室および原料供給室か
ら反応室までの配管を加熱し、原料昇華温度より高温に
保っているので、原料蒸気が輸送途中で固相に戻ること
はなく、原料供給速度を一定に保つことが出来る。原料
が液体の場合も同様である。
That is, once the raw material vapor is taken into the storage chamber, it is separated from the raw material powder, so that the raw material supply rate does not fluctuate due to uneven temperature of the raw material powder or changes in the heating rate. Furthermore, as in normal cases, the piping from the storage room and raw material supply chamber to the reaction chamber is heated and kept at a higher temperature than the raw material sublimation temperature, so the raw material vapor does not return to the solid phase during transportation, and the raw material supply It is possible to keep the speed constant. The same applies when the raw material is liquid.

〔実施例〕〔Example〕

図面は本発明の原料供給装置の構成を示す模式図である
。以下、該図面を参照しながら本発明の装置の機能と本
発明の気相成長方法を説明する。
The drawing is a schematic diagram showing the configuration of the raw material supply device of the present invention. Hereinafter, the functions of the apparatus of the present invention and the vapor phase growth method of the present invention will be explained with reference to the drawings.

蒸気発生室lはヒータ2によって加熱され、雰囲気温度
を一定に保つように制御される0例えばCu (HF 
A)!である粉体の原料物質を該蒸気発生室に収容し、
マ0°Cに加熱する。昇華したCu(HFA)xは接続
配管3を経由して貯蔵室4に送られる。貯蔵室4は真空
パージを行ったのちlOμTorr程度の超高真空に保
たれているので、バルブ11を開くだけでCu (HF
 A)zの蒸気は貯蔵室に充満し、70゛Cに於ける飽
和蒸気圧と略同じ3mTor、rの圧力となる。貯蔵室
はマントルヒータ5によって90゛C程度に加熱されて
おり、接続配管も同様であるから、これ等の部分で固体
のCu(HFA)zが析出することはない。なお、真空
パージについては後で説明する。
The steam generation chamber 1 is heated by a heater 2 and controlled to keep the ambient temperature constant. For example, Cu (HF
A)! A powder raw material is stored in the steam generation chamber,
Heat to 0°C. The sublimated Cu(HFA)x is sent to the storage chamber 4 via the connecting pipe 3. Since the storage chamber 4 is maintained at an ultra-high vacuum of about 10μTorr after vacuum purging, simply opening the valve 11 will remove Cu (HF
A) The vapor of z fills the storage chamber and has a pressure of 3 mTorr, r, which is approximately the same as the saturated vapor pressure at 70°C. The storage chamber is heated to about 90°C by the mantle heater 5, and the same goes for the connecting piping, so solid Cu(HFA) z will not precipitate in these parts. Note that the vacuum purge will be explained later.

貯蔵室内のCu (HF A)2が上記圧力に到達した
ところで、バルブ11を閉鎖し、蒸気発生室との間を絶
縁する。この貯蔵室に封入されたCu−HFAの蒸気の
みがCVD処理に於けるCuの原料として用いられる。
When the Cu (HF A) 2 in the storage chamber reaches the above pressure, the valve 11 is closed to insulate it from the steam generation chamber. Only the Cu-HFA vapor sealed in this storage chamber is used as a Cu raw material in the CVD process.

従って貯蔵室の容積は、Cu(HFA1)zを供給する
速度と時間を勘案して設定することになる。
Therefore, the volume of the storage chamber is set in consideration of the speed and time of supplying Cu(HFA1)z.

CVDに於いては、接続配管7に設けられた流量制御パ
ルプ14を通して、貯蔵室のCu (HF A)z蒸気
が図示されていない反応室に送出されることになるが、
通常の場合CVD進行中の反応室の圧力は数十mTor
r程度であり、圧力差が小であることから、蒸気供給速
度が不安定である。そこで本実施例では、キャリヤ・ガ
スとして高純度水素(H2)をバルブ12を通じて貯蔵
室に導入し、教室の圧力を数十Torr程度に高める。
In CVD, Cu(HF A)z vapor in the storage chamber is sent to a reaction chamber (not shown) through the flow rate control pulp 14 provided in the connecting pipe 7.
Normally, the pressure in the reaction chamber during CVD is several tens of mTorr.
Since the pressure difference is small, the steam supply rate is unstable. Therefore, in this embodiment, high-purity hydrogen (H2) is introduced as a carrier gas into the storage room through the valve 12 to increase the pressure in the classroom to about several tens of Torr.

キャリヤ・ガスはヘリウム(He)でもよい。The carrier gas may be helium (He).

以上の操作により希釈された原料蒸気を貯蔵室に貯えた
後、流量制御バルブ14をmflffして所定の原料供
給速度でCu ()(F A)zの蒸気を反応室に送出
する。反応室側の接続配管7も蒸気発生室側の配管3と
同様に加熱されており、この部分でも固体のCu (H
F A)Zが析出することはない。
After the raw material vapor diluted by the above operation is stored in the storage chamber, the flow rate control valve 14 is turned mflff to send the vapor of Cu()(F A)z to the reaction chamber at a predetermined raw material supply rate. The connecting pipe 7 on the reaction chamber side is also heated in the same way as the pipe 3 on the steam generation chamber side, and solid Cu (H
F A) Z does not precipitate.

貯蔵室には圧力計6が設けられており、該圧力計で貯蔵
室内のCu (HF AL蒸気の圧力を常時制御 モニタし、その計測値に基づいて流量→祭バルブ14の
開き方を調節し、単位時間当たりに送出されるC u 
(HF A)zのモル数が一定になるよう制御すれば、
CVD処理の原料供給速度が高い精度で一定に保たれる
ことになる。
A pressure gauge 6 is provided in the storage chamber, and the pressure gauge constantly controls and monitors the pressure of the Cu(HFAL) steam in the storage chamber, and the flow rate → opening of the valve 14 is adjusted based on the measured value. , C u sent out per unit time
If the number of moles of (HF A)z is controlled to be constant,
The raw material supply rate for CVD processing can be kept constant with high accuracy.

本発明の装置を使用する前に、蒸気発生室、貯蔵室、反
応室の残留気体を高純度窒素ガスでパージする作業が行
われる。これは図示されない経路から高純度窒素ガスを
上記各室に送り込み、反応室の排気側に設けられた真空
排気装置或いはバルブ13を介して接続された真空排気
装置を利用して該窒素ガスを抜く操作であって、真空パ
ージと呼ばれている。これを数回繰り返すことによって
、CVD装置の原料供給系や反応室を清浄にすることが
出来る。
Before using the apparatus of the present invention, residual gases in the steam generation chamber, storage chamber, and reaction chamber are purged with high-purity nitrogen gas. This is done by sending high-purity nitrogen gas into each of the above chambers from a route not shown, and extracting the nitrogen gas using a vacuum exhaust device installed on the exhaust side of the reaction chamber or a vacuum exhaust device connected via valve 13. This operation is called vacuum purge. By repeating this several times, the raw material supply system and reaction chamber of the CVD apparatus can be cleaned.

(発明の効果] 以上説明したように本発明では、CVD処理実行中は金
属の有機錯体のような原料蒸気は固体の原料物質とは分
離されており、蒸気の圧力に従って送出速度が制御され
るため、変動の少ない原料供給が行われることになる。
(Effects of the Invention) As explained above, in the present invention, the raw material vapor such as a metal organic complex is separated from the solid raw material material during execution of the CVD process, and the delivery rate is controlled according to the pressure of the vapor. Therefore, raw materials will be supplied with less fluctuation.

その結果、CVD堆積層の成長速度や組成が不均一にな
ることがなく、高精度の膜厚制御や組成制御が可能とな
る。
As a result, the growth rate and composition of the CVD deposited layer do not become non-uniform, making it possible to control the film thickness and composition with high precision.

図に於いて ■は蒸気発生室、 2はヒータ、 3は接続配管、 4は貯蔵室、 5はマントルヒータ、 6は圧力計、 7は接続配管、 1112.13は遮断バルブ、 14は流量制御バルブ、 である。In the diagram ■ is a steam generation room, 2 is a heater, 3 is connection piping, 4 is a storage room, 5 is a mantle heater, 6 is a pressure gauge, 7 is connection piping, 1112.13 is a shut-off valve; 14 is a flow control valve; It is.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の原料蒸気供給装置の構成を示す模式図であ
って、
The figure is a schematic diagram showing the configuration of the raw material vapor supply device of the present invention,

Claims (2)

【特許請求の範囲】[Claims] (1)常温、常圧下では固体若しくは液体である原料物
質を収容し、該原料を一定温度に加熱する手段(2)を
備える蒸気発生室(1)と、 該蒸気発生室と接続配管(3)によって連結されると共
に反応室とも接続配管(7)によって連結されている蒸
気の貯蔵室(4)と、 該貯蔵室内の圧力を測定する装置(6)と、前記2つの
接続配管の夫々に、該配管中の気体の移動を遮断し若し
くは移動速度を制御するバルブ(11)(14)が設け
られており、 前記圧力測定装置の計測値に従って、前記貯蔵室と前記
反応室間の配管に設けられた気体移動速度制御バルブを
作動させるように構成されて成ることを特徴とする気相
成長装置。
(1) A steam generation chamber (1) containing a raw material that is solid or liquid at normal temperature and normal pressure and equipped with a means (2) for heating the raw material to a constant temperature; and a pipe (3) connecting the steam generation chamber to the steam generation chamber. ) and also connected to the reaction chamber by a connecting pipe (7); a device (6) for measuring the pressure inside the storage room; , valves (11) and (14) are provided for blocking the movement of gas in the piping or controlling the movement speed, and according to the measured value of the pressure measuring device, the piping between the storage chamber and the reaction chamber is 1. A vapor phase growth apparatus, characterized in that the apparatus is configured to operate a gas transfer rate control valve provided therein.
(2)請求項(1)の気相成長装置を用いる気相成長方
法であって、 常温、常圧下では固体若しくは液体である原料物質を前
記蒸気発生室に収容し、所定温度に加熱することによっ
て該原料物質の蒸気を発生せしめ、該発生蒸気を真空排
気された前記貯蔵室に導入して、該貯蔵室内の圧力を前
記所定温度に於ける前記原料物質の飽和蒸気圧に略平衡
させた後、前記蒸気発生室/貯蔵室間に設けられたバル
ブを閉鎖し、 以上の処置によって前記貯蔵室に封入された前記原料蒸
気の圧力を前記圧力測定装置によって常時計測し、該計
測値に従い前記移動速度制御バルブを調節して単位時間
に移動する前記原料物質の分子数が一定となるように制
御しながら、前記原料蒸気を前記反応室に供給すること
を特徴とする気相成長方法。
(2) A vapor phase growth method using the vapor phase growth apparatus according to claim (1), wherein a raw material that is solid or liquid at normal temperature and pressure is housed in the vapor generation chamber and heated to a predetermined temperature. to generate vapor of the raw material, and introduce the generated vapor into the evacuated storage chamber, so that the pressure in the storage chamber was approximately equilibrated to the saturated vapor pressure of the raw material at the predetermined temperature. After that, the valve provided between the steam generation chamber/storage chamber is closed, the pressure of the raw material steam sealed in the storage chamber by the above procedure is constantly measured by the pressure measuring device, and the A vapor phase growth method characterized in that the raw material vapor is supplied to the reaction chamber while controlling the number of molecules of the raw material that moves per unit time to be constant by adjusting a movement speed control valve.
JP1279156A 1989-10-26 1989-10-26 Device and method for gaseous phase growth Pending JPH03141192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1279156A JPH03141192A (en) 1989-10-26 1989-10-26 Device and method for gaseous phase growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1279156A JPH03141192A (en) 1989-10-26 1989-10-26 Device and method for gaseous phase growth

Publications (1)

Publication Number Publication Date
JPH03141192A true JPH03141192A (en) 1991-06-17

Family

ID=17607233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1279156A Pending JPH03141192A (en) 1989-10-26 1989-10-26 Device and method for gaseous phase growth

Country Status (1)

Country Link
JP (1) JPH03141192A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0875595A1 (en) * 1997-05-02 1998-11-04 Tokyo Electron Limited Process-gas supply apparatus
EP0931861A1 (en) * 1998-01-27 1999-07-28 Mitsubishi Materials Silicon Corporation Method and apparatus for feeding a gas for epitaxial growth
JP2017205736A (en) * 2016-05-20 2017-11-24 日本エア・リキード株式会社 Sublimation gas supply system and sublimation gas supply method
WO2018207553A1 (en) * 2017-05-11 2018-11-15 株式会社堀場エステック Liquid material atomization and supply device and control program
WO2023280840A1 (en) 2021-07-09 2023-01-12 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Sublimation gas supply system and sublimation gas supply method with buffer tank

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0875595A1 (en) * 1997-05-02 1998-11-04 Tokyo Electron Limited Process-gas supply apparatus
EP0931861A1 (en) * 1998-01-27 1999-07-28 Mitsubishi Materials Silicon Corporation Method and apparatus for feeding a gas for epitaxial growth
JP2017205736A (en) * 2016-05-20 2017-11-24 日本エア・リキード株式会社 Sublimation gas supply system and sublimation gas supply method
CN109154082A (en) * 2016-05-20 2019-01-04 乔治洛德方法研究和开发液化空气有限公司 Sublimation gases supply system and sublimation gases Supply Method
WO2018207553A1 (en) * 2017-05-11 2018-11-15 株式会社堀場エステック Liquid material atomization and supply device and control program
CN110382103A (en) * 2017-05-11 2019-10-25 株式会社堀场Stec Liquid material gasifying feedway and control program
JPWO2018207553A1 (en) * 2017-05-11 2020-03-12 株式会社堀場エステック Liquid material vaporization supply device and control program
US11066746B1 (en) 2017-05-11 2021-07-20 Horiba Stec, Co., Ltd. Liquid material vaporization and supply device, and control program
WO2023280840A1 (en) 2021-07-09 2023-01-12 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Sublimation gas supply system and sublimation gas supply method with buffer tank
KR20240033242A (en) 2021-07-09 2024-03-12 레르 리키드 쏘시에떼 아노님 뿌르 레뜌드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 Sublimation gas supply system with buffer tank and sublimation gas supply method

Similar Documents

Publication Publication Date Title
US6432205B1 (en) Gas feeding system for chemical vapor deposition reactor and method of controlling the same
EP1649076B1 (en) Apparatus and method for chemical source vapor pressure control
US6592942B1 (en) Method for vapour deposition of a film onto a substrate
US7887873B2 (en) Gasification monitor, method for detecting mist, film forming method and film forming apparatus
US20100266765A1 (en) Method and apparatus for growing a thin film onto a substrate
US20100236480A1 (en) Raw material gas supply system and film forming apparatus
WO2011070945A1 (en) Thin film manufacturing apparatus, thin film manufacturing method, and method for manufacturing semiconductor device
US20060035470A1 (en) Method for manufaturing semiconductor device and substrate processing system
JPH04295089A (en) Apparatus for producing oxide superconducting film
US7462245B2 (en) Single-wafer-processing type CVD apparatus
TW202012685A (en) Apparatus and methods for controlling the flow of process material to a deposition chamber
JP2006222265A (en) Substrate processing apparatus
JPH08269720A (en) Formation of titanium nitride thin film and film forming device used therefor
JPH11168092A (en) Method and equipment for vapor phase growth
JP2005307233A (en) Film deposition apparatus, film deposition method and method for feeding process gas
JPH03141192A (en) Device and method for gaseous phase growth
KR20230045590A (en) Concentration control using a bubbler
TW201915214A (en) Methods and system for the integrated synthesis, delivery, and processing of source chemicals for thin film manufacturing
JP4595356B2 (en) Raw material vaporizer for metalorganic chemical vapor deposition equipment
WO2020179575A1 (en) Film-forming apparatus and material gas feeding method
JPH02307892A (en) Method and device for producing thin film
JP2611008B2 (en) Organic metal compound vaporizer
US20240133033A1 (en) Reactant delivery system and reactor system including same
JP2003268551A (en) Raw material feeding apparatus for cvd system
US20220301829A1 (en) Temperature controlled reaction chamber