JPH039766B2 - - Google Patents

Info

Publication number
JPH039766B2
JPH039766B2 JP57150338A JP15033882A JPH039766B2 JP H039766 B2 JPH039766 B2 JP H039766B2 JP 57150338 A JP57150338 A JP 57150338A JP 15033882 A JP15033882 A JP 15033882A JP H039766 B2 JPH039766 B2 JP H039766B2
Authority
JP
Japan
Prior art keywords
adsorption
gas
upstream
downstream
regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57150338A
Other languages
Japanese (ja)
Other versions
JPS5939325A (en
Inventor
Akihiko Umekawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Original Assignee
Japan Oxygen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd filed Critical Japan Oxygen Co Ltd
Priority to JP57150338A priority Critical patent/JPS5939325A/en
Publication of JPS5939325A publication Critical patent/JPS5939325A/en
Publication of JPH039766B2 publication Critical patent/JPH039766B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Description

【発明の詳細な説明】 この発明は深冷ガス分離装置に送る前の原料ガ
ス中の不純物をプレツシヤースイング法によつて
除去して精製ガスを得るガス精製法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas purification method for obtaining purified gas by removing impurities in a raw material gas before being sent to a cryogenic gas separation device by a pressure swing method.

例えば、空気を液化分離する方法においては、
原料空気中の水分、二酸化炭素を除去する必要が
あるが、この除去方法としてプレツシヤースイン
グ法によるガス精製法がある。第1図に示す方法
は、従来公知の一例を示したもので、原料空気は
管1より圧縮機2に送られ、ここで加圧された
後、予冷機3、切換弁4aを経て切替使用される
2基の吸着塔5,6の一方の吸着塔5に導入され
る。上記吸着塔5,6には水分(以下、H2Oと
記す)および二酸化炭素(以下、CO2と記す)を
優先的に吸着する吸着剤、例えばNaX型合成ゼ
オライトがそれぞれ充填されており加圧状態で吸
着塔5に導入された原料空気中のH2OおよびCO2
が吸着剤に吸着される。このようにして得られた
精製ガス(精製空気)は、切換弁7a、管8を経
て空気分離装置(深冷ガス分離装置)9に送られ
る(吸着工程)。
For example, in the method of liquefying and separating air,
It is necessary to remove moisture and carbon dioxide from the raw air, and a gas purification method using a pressure swing method is available as a method for this removal. The method shown in Fig. 1 is an example of a conventionally known method, in which raw air is sent from a pipe 1 to a compressor 2, where it is pressurized, and then passed through a precooler 3 and a switching valve 4a for switching use. is introduced into one of the two adsorption towers 5 and 6. The adsorption towers 5 and 6 are each filled with an adsorbent that preferentially adsorbs moisture (hereinafter referred to as H 2 O) and carbon dioxide (hereinafter referred to as CO 2 ), such as NaX type synthetic zeolite. H 2 O and CO 2 in the feed air introduced into the adsorption tower 5 under pressure
is adsorbed by the adsorbent. The purified gas (purified air) thus obtained is sent to the air separation device (cryogenic gas separation device) 9 via the switching valve 7a and the pipe 8 (adsorption step).

次に、上記のようにして空気分離装置9に送ら
れた精製ガスは、該装置9において液化分離され
るが、分離ガスの一部が減圧され再生用ガスとし
て、切換弁12bを経て他方の吸着塔6に送り込
まれる。吸着塔6に導入された再生用ガスは、吸
着筒6内の吸着剤中を通過し、吸着工程において
吸着したH2OおよびCO2を脱着する。このように
してH2O、CO2を脱着して吸着筒6の底部に至つ
た再生用ガスは、切換弁13bを経て排気される
(再生工程)。
Next, the purified gas sent to the air separation device 9 as described above is liquefied and separated in the device 9, but a part of the separated gas is depressurized and used as a regeneration gas through the switching valve 12b. It is fed into the adsorption tower 6. The regeneration gas introduced into the adsorption column 6 passes through the adsorbent in the adsorption column 6, and desorbs H 2 O and CO 2 adsorbed in the adsorption process. The regeneration gas that has desorbed H 2 O and CO 2 and reached the bottom of the adsorption cylinder 6 in this way is exhausted through the switching valve 13b (regeneration step).

上記のように、切換弁4a,7a,12b,1
3bを開の状態に、そして切換弁4b,7b,1
2a,13aを閉の状態にすると吸着塔5内は吸
着操作中、吸着塔6内は脱着(再生)操作中とな
る。この関係を一定時間毎に切換えることによ
り、連続的に精製ガスを得ることができる。
As mentioned above, the switching valves 4a, 7a, 12b, 1
3b in the open state, and the switching valves 4b, 7b, 1
When 2a and 13a are closed, the interior of the adsorption tower 5 is in an adsorption operation, and the interior of the adsorption tower 6 is in a desorption (regeneration) operation. By switching this relationship at regular intervals, purified gas can be obtained continuously.

ところで、上記精製システムにおいて、原料ガ
ス中の特定成分(不純物)を吸着除去する場合、
原料ガス中に共存成分が多くなれば再生工程で上
記特定成分を減圧精製ガスにより減圧パージする
際、再生用の精製ガス中の共存成分の一部が特定
成分の脱着を妨げる傾向がある。このような現象
は、特定成分の低濃度領域で特にその傾向が著し
くなる。例えば、空気中のH2O、CO2ガスを特定
成分として、これを除去する場合、共存成分とし
てのO2、N2が再生時、H2O、CO2の吸着剤から
の脱着を妨げる傾向がある訳である。これを第2
図に従つて説明する。吸着剤としてNaX型合成
ゲオライト単独を使用して、第1図に示した精製
システム空気中の飽和H2O、400ppmCO2を除去
する場合、第2図中直線aに示すように、再生用
ガス量が吸着ガス量の80%の時は、吸着時に吸着
筒出口のCO2は1ppm以下に抑えることができる。
しかし、図中直線bに示すように、再生ガス量が
吸着ガス量の60%の時は、出口CO2は3ppm、さ
らに図中直線Cに示すように、同再生用ガス量が
50%の時は、出口CO2は10ppmにも増えてしま
う。このことから、図に示すように、特に40ppm
以下の低濃度吸着領域では、上記再生ガス量が減
少すると、CO2の脱着が容易でないことがわか
る。
By the way, in the above purification system, when specific components (impurities) in the raw material gas are adsorbed and removed,
If the amount of coexisting components in the raw material gas increases, some of the coexisting components in the purified gas for regeneration tend to hinder the desorption of the specific components when the specific components are purged under reduced pressure with vacuum purified gas in the regeneration step. This phenomenon is particularly noticeable in low concentration areas of specific components. For example, when removing H 2 O and CO 2 gas from the air as specific components, O 2 and N 2 as coexisting components prevent H 2 O and CO 2 from being desorbed from the adsorbent during regeneration. There is a tendency. This is the second
This will be explained according to the diagram. When using NaX type synthetic geolite alone as an adsorbent to remove saturated H 2 O and 400 ppm CO 2 from the purification system air shown in Figure 1, the regeneration gas When the amount is 80% of the amount of adsorbed gas, CO 2 at the outlet of the adsorption column can be suppressed to 1 ppm or less during adsorption.
However, as shown by the straight line b in the figure, when the regeneration gas amount is 60% of the adsorbed gas amount, the outlet CO 2 is 3 ppm, and as shown by the straight line C in the figure, the regeneration gas amount is
At 50%, the output CO2 increases to 10ppm. From this, as shown in the figure, especially 40ppm
It can be seen that in the low concentration adsorption region below, CO 2 is not easily desorbed when the amount of regeneration gas decreases.

一方、一般に空気分離装置(深冷分離装置)で
は、原料空気に対して製品のO2、N2を約40%採
取し、残りの約60%を廃N2として吸着筒の再生
に使用することが可能であるが、製品収率の向上
など空気分離装置の性能向上をはかるためには廃
N2を量を50%以下にしておかなければならない。
On the other hand, in general, air separation equipment (cryogenic separation equipment) extracts about 40% of the product O 2 and N 2 from the raw air, and the remaining 60% is used as waste N 2 to regenerate the adsorption column. However, in order to improve the performance of air separation equipment, such as improving product yield, it is necessary to
The amount of N2 must be kept below 50%.

しかし、上記のように廃N2量を50%以下にし
て空気分離装置の性能を向上させることは、前記
したように、この空気分離システムの前処理(ガ
ス精製システム)において、低濃度吸着領域では
再生用ガス量が減少すると、CO2の脱着が容易で
ないことら実現できないでいるのが現状である。
However, in order to improve the performance of the air separation equipment by reducing the amount of waste N2 to 50% or less, as mentioned above, in the pretreatment (gas purification system) of this air separation system, it is necessary to However, if the amount of regeneration gas decreases, it is not easy to desorb CO 2 , which is currently not possible.

本発明者は、上記事情に鑑み、その改善策につ
き種々検討を重ねた結果前記従来技術の欠点は、
特定除去成分の高低両濃度領域において、同じ切
換時間でプレツシヤースイング法を行なつていた
点にあることを見出した。即ち本来、高濃度領域
では、特定除去成分が吸着剤粒子の細孔の内部に
入つても、脱着時の共存成分の妨害を受けにくい
が、前記したように低濃度領域で特定除去成分の
分圧が低い場合は共存成分による脱着妨害が大き
くなる。また、特定除去成分が吸着剤粒子の細孔
の内部に入りすぎると、脱着されにくくなり、ひ
いては吸着時の特定除去成分の除去率の低下につ
ながる。従つて、低濃度領域では脱着され易く、
かつ脱着が短時間で行なわれる吸着剤を選定し、
それを使用すればよい訳である。このことを特定
除去成分として、前記従来例と同様CO2を例にと
つて調べてみた。吸着剤としてNaX型合成ゼオ
ライトとシリカアルミナ(二酸化ケイ素40〜60
%、酸化アルミニウム60〜40%)を選び、N2
約40ppm含まれるCO2をプレツシヤースイング法
によつて切換時間を10分として除去した。その結
果、第3図に示すように、曲線αで示したNaX
型合成ゼオライト曲線βで示したシリカアルミナ
ともに0〜5分間において脱着CO2濃度のピーク
が形成され、特にNaX型合成ゼオライトより細
孔径の大きなシリカアルミナの方が0〜5分間に
おける脱着率が優れていることを実験的に確かめ
得た。
In view of the above-mentioned circumstances, the present inventor has conducted various studies on improvement measures, and as a result, the drawbacks of the above-mentioned prior art are as follows:
It was discovered that the pressure swing method was performed with the same switching time in both high and low concentration regions of the specific removed component. In other words, in the high concentration region, even if the specific removed component enters the pores of the adsorbent particles, it is less likely to be interfered with by the coexisting components during desorption, but as mentioned above, in the low concentration region, the specific removed component is less likely to be interfered with. When the pressure is low, desorption interference by coexisting components increases. Furthermore, if the specific removal component enters into the pores of the adsorbent particles too much, it becomes difficult to be desorbed, which ultimately leads to a reduction in the removal rate of the specific removal component during adsorption. Therefore, it is easily desorbed in low concentration areas,
Select an adsorbent that also desorbs in a short time.
You can use that. This was investigated using CO 2 as a specific component to be removed, as in the conventional example. NaX type synthetic zeolite and silica alumina (silicon dioxide 40-60
%, aluminum oxide 60-40%), and CO 2 contained in N 2 at about 40 ppm was removed by a pressure swing method with a switching time of 10 minutes. As a result, as shown in Figure 3, the NaX
For both silica-alumina and silica-alumina shown in the curve β of type synthesized zeolite, a peak of desorbed CO 2 concentration is formed in 0 to 5 minutes, and in particular, silica-alumina with a larger pore diameter has a better desorption rate in 0 to 5 minutes than NaX type synthesized zeolite. It was experimentally confirmed that

この発明は上記の如き知見に基づいてなされた
もので、その目的はその再生用ガスの量を大巾に
低減することができ、それによつて精製ガス収率
の向上および再生時の圧力損失の低減を実現で
き、その結果、深冷ガス分離装置の可能を向上さ
せることのできるプレツシヤースイング法による
ガス精製法を提供することにあり水および炭酸ガ
スを含有する原料空気中の、該水および炭酸ガス
を除去するに際し、吸着筒を上流側と下流側とに
2分割して、上流側吸着筒に合成ゼオライトを充
填し、下流側吸着筒にシリカアルミナ系吸着剤を
充填するとともに下流側吸着筒の吸着・脱着のサ
イクル時間を上流側吸着筒の同時間より少なくし
て最も効率的に再生用ガスを消費するようにして
再生用ガスの消費量を低減化したものである。
This invention was made based on the above findings, and its purpose is to significantly reduce the amount of regeneration gas, thereby improving purified gas yield and reducing pressure loss during regeneration. The purpose of the present invention is to provide a gas purification method using a pressure swing method, which can reduce the amount of water in raw air containing water and carbon dioxide, and as a result, improve the performance of cryogenic gas separation equipment. When removing carbon dioxide gas, the adsorption cylinder is divided into two parts, an upstream side and a downstream side, and the upstream adsorption cylinder is filled with synthetic zeolite, the downstream adsorption cylinder is filled with silica-alumina adsorbent, and the downstream side is filled with synthetic zeolite. The amount of regeneration gas consumed is reduced by making the adsorption/desorption cycle time of the adsorption column shorter than the same time of the upstream adsorption column to consume the regeneration gas most efficiently.

以下、この発明の一実施例を第4図を参照して
説明するが、図中第1図と共通する部分には同一
符号を付して説明を簡略化する、第4図より明ら
かなようにこのガス精製装置においては、切換使
用される2元の吸着筒はそれぞれ上流側と下流側
とに2分割されている。一方の上流側吸着筒20
aと下流側吸着筒20bとは切換弁21を介して
連結され、他方の上流側吸着筒22aと下流側吸
着筒22bとは切換弁23を介して連結されてい
る。また、一方の上流側吸着筒20aと他方の下
流側吸着筒22bとは切換弁24を介して連結さ
れ、他方の上流側吸着筒22aと一方の下流側吸
着筒20bとは切換弁25を介して連結されてい
る。そして、各上流側吸着筒20a,22aには
NaX型合成ゼオライトが充填され、各下流側吸
着筒20b,22bにはシリカアルミナが充填さ
れている。この実施例において、下流側吸着筒2
0b,22bの切換時間を上流側吸着筒20a,
22aの切換時間の半分にして効率的な運転を行
なうものである。以下、この作動例を詳しく説明
する。
Hereinafter, an embodiment of the present invention will be described with reference to FIG. 4. In the figure, parts common to those in FIG. In this gas purification apparatus, the two adsorption cylinders that are used selectively are each divided into two parts, an upstream side and a downstream side. One upstream adsorption cylinder 20
a and the downstream adsorption cylinder 20b are connected via a switching valve 21, and the other upstream adsorption cylinder 22a and downstream adsorption cylinder 22b are connected via a switching valve 23. Further, one upstream adsorption cylinder 20a and the other downstream adsorption cylinder 22b are connected via a switching valve 24, and the other upstream adsorption cylinder 22a and one downstream adsorption cylinder 20b are connected via a switching valve 25. are connected. In each upstream adsorption cylinder 20a, 22a,
NaX type synthetic zeolite is filled, and each downstream adsorption column 20b, 22b is filled with silica alumina. In this embodiment, the downstream adsorption cylinder 2
0b, 22b switching time is the upstream adsorption cylinder 20a,
The switching time of 22a is halved for efficient operation. An example of this operation will be explained in detail below.

まず、原料空気は管1より圧縮機2に送られ、
ここで加圧された後、予冷機3、切換弁4aを経
て上流側吸着塔20aに導入される。この上流側
吸着塔20aに加圧状態で導入された原料空気
は、その中のH2O、CO2の大部分がNaX型合成
ゼオライトに吸着除去された後、切換弁21を経
て下流側吸着筒20bに導入される。下流側吸着
筒20bに送り込まれた空気は残りのH2O、CO2
がシリカアルミナに吸着され、このようにして
H2O、CO2の除去された空気(精製ガス)は切換
弁7a、管8を経て空気分離装置9に送られる。
この工程を一定時間、例えば5分間行なつたら、
切換弁21を閉じ、切換弁24を開け、上流側吸
着筒20aを通過してきた空気を下流側吸着筒2
2bへ導入する。この下流側吸着筒22b内のシ
リカアルミナでH2O、CO2を除去された空気は、
切換弁12a、管8を経て空気分離装置9へ送ら
れる。この工程も5分間行なう。従つて、上流側
吸着筒20aは10分間の吸着を行なうのに対し
て、下流側吸着筒20b,22bは半分の5分間
の吸着を行なうことになる。以上が吸着工程であ
る。
First, raw air is sent from pipe 1 to compressor 2,
After being pressurized here, it is introduced into the upstream adsorption tower 20a via the precooler 3 and the switching valve 4a. The raw air introduced under pressure into the upstream adsorption tower 20a has most of its H 2 O and CO 2 adsorbed and removed by the NaX type synthetic zeolite, and then is transferred to the downstream adsorption via the switching valve 21. It is introduced into the tube 20b. The air sent into the downstream adsorption cylinder 20b contains the remaining H 2 O, CO 2
is adsorbed on silica alumina, and in this way
The air (purified gas) from which H 2 O and CO 2 have been removed is sent to the air separation device 9 via the switching valve 7a and the pipe 8.
After performing this process for a certain period of time, say 5 minutes,
The switching valve 21 is closed, the switching valve 24 is opened, and the air passing through the upstream adsorption cylinder 20a is transferred to the downstream adsorption cylinder 2.
2b. The air from which H 2 O and CO 2 have been removed by the silica alumina in the downstream adsorption cylinder 22b is
The air is sent to the air separation device 9 via the switching valve 12a and the pipe 8. This step is also carried out for 5 minutes. Therefore, while the upstream adsorption cylinder 20a performs adsorption for 10 minutes, the downstream adsorption cylinders 20b and 22b perform adsorption for half that time, 5 minutes. The above is the adsorption step.

一方、装置9において液化分離された分離ガス
の一部を減圧し、切換弁12bを経て下流側吸着
筒22bに再生用ガスとして送り込み、引きつづ
き切換弁23を経て上流側吸着筒22aに送り込
む。下流側吸着筒22bおよび上流側吸着筒22
aに送り込まれた再生用ガスは、それぞれ下流側
吸着筒22b内のシリカアルミナおよび上流側吸
着筒22a内のNaX型合成ゼオライト中を通過
し、吸着工程において吸着した吸着H2O、CO2
脱着する。(この時、上流側吸着筒22aおよび
下流側吸着筒22bは吸着工程を行なつている。)
この工程を5分間行なつたら、切換弁12bを閉
じて切換弁7bおよび25を開け、再生用ガスを
下流側吸着筒20bおよび上流側吸着筒22aに
送り込み、下流側吸着筒20b内のシリカアルミ
ナおよび上流側吸着筒22a内のNaX型合成ゼ
オライトに吸着されているH2O、CO2の脱着を行
なう。(この時、上流側吸着筒20aおよび下流
側吸着筒20bは吸着工程を行なつている。)従
つて、上流側吸着筒20aは10分間の脱着を行な
うのに対して、下流側吸着筒20b,22bは半
分の5分間の脱着を行なうことになる。このよう
にして上流側吸着筒20aの底部に至つた再生用
ガスは、切換弁13aを経て排気される。以上が
再生工程である。
On the other hand, a part of the separated gas liquefied and separated in the device 9 is depressurized and sent as a regeneration gas to the downstream adsorption cylinder 22b via the switching valve 12b, and then sent to the upstream adsorption cylinder 22a via the switching valve 23. Downstream adsorption cylinder 22b and upstream adsorption cylinder 22
The regeneration gas sent to a passes through the silica alumina in the downstream adsorption cylinder 22b and the NaX type synthetic zeolite in the upstream adsorption cylinder 22a, and removes the adsorbed H 2 O and CO 2 adsorbed in the adsorption process. Put on and take off. (At this time, the upstream adsorption cylinder 22a and the downstream adsorption cylinder 22b are performing the adsorption process.)
After carrying out this process for 5 minutes, the switching valve 12b is closed and the switching valves 7b and 25 are opened, and the regeneration gas is sent to the downstream adsorption cylinder 20b and the upstream adsorption cylinder 22a, and the silica alumina in the downstream adsorption cylinder 20b is Then, H 2 O and CO 2 adsorbed on the NaX type synthetic zeolite in the upstream adsorption column 22a are desorbed. (At this time, the upstream adsorption column 20a and the downstream adsorption column 20b are performing the adsorption process.) Therefore, while the upstream adsorption column 20a performs desorption for 10 minutes, the downstream adsorption column 20b , 22b will perform half the desorption for 5 minutes. The regeneration gas that has reached the bottom of the upstream adsorption cylinder 20a in this way is exhausted through the switching valve 13a. The above is the regeneration process.

上記のようにして一定時間(10分間)、吸着、
脱着工程を行なつたら、各切換弁を上記の場合と
逆にして上流側吸着筒22a側で吸着工程を行な
い、上流側吸着筒20a側は再生工程を行なう。
このように上流側吸着筒20aと上流側吸着筒2
2aを交互に切換え使用することにより連続的に
精製ガス(空気)を得ることができる。
Adsorb as described above for a certain period of time (10 minutes),
After the desorption process is performed, each switching valve is reversed to the above case, and the adsorption process is performed on the upstream adsorption cylinder 22a side, and the regeneration process is performed on the upstream adsorption cylinder 20a side.
In this way, the upstream adsorption cylinder 20a and the upstream adsorption cylinder 2
Purified gas (air) can be obtained continuously by alternately switching and using 2a.

この発明においては、上記のように上流側吸着
筒20a,22aにNaX型合成ゼオライトを充
填し、下流側吸着筒20b,22bに脱着され易
くかつ脱着時間が短かくて済むシリカアルミナを
充填するとともに下流側吸着筒20b,22bの
切換時間を上流側吸着筒20a,22aの切換時
間の半分にしてガス精製を行なうものなので、少
量の再生用ガスによつて充分な脱着を行なうこと
ができ、吸着時において一定のH2O、CO2の除去
率を維持することができる。従つて、精製ガス収
率の向上および再生時の圧力損失の低減を実現で
き、その結果、深冷ガス分離装置9の性能を向上
させることができる。
In this invention, as described above, the upstream adsorption cylinders 20a, 22a are filled with NaX type synthetic zeolite, and the downstream adsorption cylinders 20b, 22b are filled with silica alumina, which is easily desorbed and requires a short desorption time. Since gas purification is performed by setting the switching time of the downstream adsorption columns 20b, 22b to half the switching time of the upstream adsorption columns 20a, 22a, sufficient desorption can be performed with a small amount of regeneration gas, and the adsorption It is possible to maintain a constant removal rate of H 2 O and CO 2 over time. Therefore, it is possible to improve the purified gas yield and reduce the pressure loss during regeneration, and as a result, the performance of the cryogenic gas separation device 9 can be improved.

なお、上記実施例において、下流側吸着筒20
b,22bの切換時間を上流側吸着筒20a,2
2aの切換時間の半分にしたが、これに限定され
ることなく、その状況により最適な比率を選択す
ればよい。
In addition, in the above embodiment, the downstream adsorption cylinder 20
b, 22b switching time upstream adsorption cylinders 20a, 2
Although the switching time of 2a is set to half, the optimum ratio may be selected depending on the situation without being limited to this.

以上説明したように、この発明は吸着筒を上流
側と下流側とに2分割し、上流側吸着筒に合成ゼ
オライトを充填するとともに下流側吸着筒にシリ
カアルミナ系吸着剤を充填し、下流側吸着筒の吸
着・脱着のサイクル時間を上流側吸着筒のサイク
ル時間より少なくしたので、再生用ガスの量を大
巾に低減することができ、それに伴なつて精製ガ
ス収率の向上および再生時の圧力損失の低減を実
現でき、その結果、深冷ガス分離装置の性能を向
上させることができる。
As explained above, this invention divides the adsorption cylinder into two parts, the upstream side and the downstream side, fills the upstream adsorption cylinder with synthetic zeolite, fills the downstream adsorption cylinder with silica-alumina adsorbent, and Since the adsorption/desorption cycle time of the adsorption cylinder is made shorter than the cycle time of the upstream adsorption cylinder, the amount of regeneration gas can be significantly reduced, and the yield of purified gas can be improved and the regeneration time can be reduced accordingly. It is possible to realize a reduction in pressure loss, and as a result, it is possible to improve the performance of the cryogenic gas separation device.

このようなこの発明の効果を定量的に確認する
ために下記のような実験を行なつた。
In order to quantitatively confirm the effects of this invention, the following experiment was conducted.

実験例 第4図に示したガス精製装置を用いて特定除去
成分として飽和H2Oおよび約400ppmCO2を含む
空気をプレツシヤースイング法による下記3条件
で除去し、出口CO2濃度を比較した。
Experimental example Using the gas purification equipment shown in Figure 4, air containing saturated H 2 O and approximately 400 ppm CO 2 as specific removal components was removed under the following three conditions using the pressure swing method, and the outlet CO 2 concentrations were compared. .

(1) 各吸着筒にはNaX型合成ゼオライトのみを
充填し、吸着・脱着切換時間を10分とし途中で
の下流側吸着筒への切換えは行なわなかつた
(比較例1)。
(1) Each adsorption column was filled with only NaX type synthetic zeolite, and the adsorption/desorption switching time was 10 minutes, without switching to the downstream adsorption column midway through (Comparative Example 1).

(2) 各吸着筒にはNaX型合成ゼオライトのみを
充填し、上流側の吸着・脱着切換時間を10分と
し、下流側の同切換時間を5分とした(比較例
2)。
(2) Each adsorption column was filled with only NaX type synthetic zeolite, and the adsorption/desorption switching time on the upstream side was 10 minutes, and the switching time on the downstream side was 5 minutes (Comparative Example 2).

(3) 上流側吸着筒にはNaX型合成ゼオライトを
充填し、下流側吸着筒にはシリカアルミナを充
填し、上流側の吸着・脱着切換時間を10分と
し、下流側の同切換時間を5分とした(本発
明)。なお、上記(1)(2)(3)とも再生用ガス量は吸
着ガス量の50%とした。
(3) The upstream adsorption column is filled with NaX type synthetic zeolite, the downstream adsorption column is filled with silica alumina, and the adsorption/desorption switching time on the upstream side is 10 minutes, and the switching time on the downstream side is 5 minutes. minutes (this invention). In addition, in the above (1), (2), and (3), the regeneration gas amount was set to 50% of the adsorbed gas amount.

その結果、第5図の直線Cに示すように比較例
1では吸着筒出口CO2濃度は10ppmとなり、同図
直線dに示すように、比較例2では出口CO2濃度
は5ppmとなり、これに対し本発明では同図直線
eに示すように、出口CO2濃度は1ppm以下とな
つた。そして、直線eは前記第2図の直線a(再
生用ガス量80%)と同じ傾きとなつており、本発
明を採用することによつて、再生用ガス量を従来
の90%から50%とすることができ、大巾に再生用
ガス量を減少できることが確認された。
As a result, in Comparative Example 1, the CO 2 concentration at the outlet of the adsorption cylinder was 10 ppm, as shown by straight line C in Figure 5, and in Comparative Example 2, the outlet CO 2 concentration was 5 ppm, as shown by straight line d in the figure. In contrast, in the present invention, the outlet CO 2 concentration was 1 ppm or less, as shown by the straight line e in the figure. The straight line e has the same slope as the straight line a (regeneration gas amount: 80%) in FIG. 2, and by adopting the present invention, the regeneration gas amount can be reduced from the conventional 90% to 50%. It was confirmed that the amount of regeneration gas could be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のプレツシヤースイング法による
ガス精製法に使われていたガス精製装置の構成
図、第2図は第1図の装置によりNaX型合成ゼ
オライトで空気の精製を行なう際、吸着ガス量に
対する再生用ガス量の比率を変えた場合の吸着筒
内のCO2濃度勾配をプロツトしたグラフ、第3図
は脱着時間に対する脱着CO2濃度をNaX型合成
ゼオライトとシリカアルミナとについてプロツト
したグラフ、第4図はこの発明の一実施例を説明
するためのもので、この発明を実施するのに最適
なガス精製装置の構成図、第5図は第4図の装置
を用いて行なわれた空気の精製における吸着筒内
のCO2濃度勾配を本発明と比較例2例についてプ
ロツトしたグラフである。 2……空気圧縮機、20a,22a……上流側
吸着筒、20b,22b……下流側吸着筒。
Figure 1 is a configuration diagram of a gas purification device used in the conventional pressure swing gas purification method, and Figure 2 is a diagram showing the structure of a gas purification device used in the conventional pressure swing gas purification method. A graph plotting the CO 2 concentration gradient in the adsorption column when the ratio of the regeneration gas amount to the gas amount is changed. Figure 3 shows the desorption CO 2 concentration versus desorption time for NaX type synthetic zeolite and silica alumina. The graph in FIG. 4 is for explaining one embodiment of the present invention, and the diagram in FIG. 2 is a graph plotting the CO 2 concentration gradient in the adsorption column in the present invention and two comparative examples in the purification of air. 2... Air compressor, 20a, 22a... Upstream adsorption cylinder, 20b, 22b... Downstream adsorption cylinder.

Claims (1)

【特許請求の範囲】[Claims] 1 水および炭酸ガスを含有する空気を原料ガス
として、この中の該水および炭酸ガスを選択的に
吸着する複数の吸着筒を吸着・再生の各工程に切
換えることにより連続的に精製ガスを得るプレツ
シヤースイング法によるガス精製法において、上
記各吸着筒を上流側吸着筒と下流側吸着筒とに分
割し、かつ上流側吸着筒に合成ゼオライトを、下
流側吸着筒にシリカアルミナ系吸着剤をそれぞれ
充填するとともに、下流側吸着筒の吸着・再生切
換時間を上流側吸着・再生切換時間より少なくし
たことを特徴とするプレツシヤースイング法によ
るガス精製法。
1 Using air containing water and carbon dioxide as a raw material gas, a plurality of adsorption cylinders that selectively adsorb the water and carbon dioxide therein are switched to each adsorption/regeneration process to continuously obtain purified gas. In the gas purification method using the pressure swing method, each adsorption column is divided into an upstream adsorption column and a downstream adsorption column, and the upstream adsorption column is filled with synthetic zeolite, and the downstream adsorption column is filled with silica-alumina-based adsorbent. A gas purification method using a pressure swing method, characterized in that the adsorption/regeneration switching time of the downstream adsorption column is shorter than the upstream adsorption/regeneration switching time.
JP57150338A 1982-08-30 1982-08-30 Purification of gas due to pressure swing method Granted JPS5939325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57150338A JPS5939325A (en) 1982-08-30 1982-08-30 Purification of gas due to pressure swing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57150338A JPS5939325A (en) 1982-08-30 1982-08-30 Purification of gas due to pressure swing method

Publications (2)

Publication Number Publication Date
JPS5939325A JPS5939325A (en) 1984-03-03
JPH039766B2 true JPH039766B2 (en) 1991-02-12

Family

ID=15494816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57150338A Granted JPS5939325A (en) 1982-08-30 1982-08-30 Purification of gas due to pressure swing method

Country Status (1)

Country Link
JP (1) JPS5939325A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5593475A (en) * 1995-04-13 1997-01-14 Liquid Air Engineering Corporation Mixed bed adsorber

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531492A (en) * 1978-08-21 1980-03-05 Air Prod & Chem Separation of multiicomponent gas mixture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531492A (en) * 1978-08-21 1980-03-05 Air Prod & Chem Separation of multiicomponent gas mixture

Also Published As

Publication number Publication date
JPS5939325A (en) 1984-03-03

Similar Documents

Publication Publication Date Title
US3957463A (en) Oxygen enrichment process
US4477265A (en) Argon purification
US5792239A (en) Separation of gases by pressure swing adsorption
US6273939B1 (en) Process for purifying a gas stream of its N2O impurities
US3977845A (en) Adsorptive process for selective separation of gases
JP2003246606A (en) Syngas purifying method
US5302187A (en) Concentration process of gaseous chlorine
US3221476A (en) Adsorption-desorption method
AU702778B1 (en) Process for the removal of water, CO2, ethane and CO3+ hydrocarbons from gas stream
EP1245266A2 (en) Process for reducing the level of carbon dioxide in a gaseous mixture
CA1313627C (en) Adsorptive purification process
US4329160A (en) Suppression of COS formation in molecular sieve purification of hydrocarbon gas streams
JPH1066819A (en) Separation of isoalkane and normal-alkane by adsorption in gaseous phase using pressure change and four adsorbers
KR830008537A (en) Adsorption Separation Method of Mixed Gas
GB2227685A (en) Pressure swing adsorption process
JPH039766B2 (en)
JP7431168B2 (en) Methods for decarboxylation of gas streams
KR900007860B1 (en) High purity nitrogen manufacturing method
KR100849987B1 (en) Enrichment of ethylene from fcc off-gas
JP3080687B2 (en) How to concentrate chlorine gas
RU2797668C2 (en) Method and installation for processing of gas mixture
KR0145787B1 (en) Process for preparing oxygen by changing pressure
JPH05301011A (en) Method for concentrating gaseous hydrogen chloride
JPS6135889B2 (en)
JPS62273025A (en) Separation of gaseous mixture