JPH05301011A - Method for concentrating gaseous hydrogen chloride - Google Patents

Method for concentrating gaseous hydrogen chloride

Info

Publication number
JPH05301011A
JPH05301011A JP4107004A JP10700492A JPH05301011A JP H05301011 A JPH05301011 A JP H05301011A JP 4107004 A JP4107004 A JP 4107004A JP 10700492 A JP10700492 A JP 10700492A JP H05301011 A JPH05301011 A JP H05301011A
Authority
JP
Japan
Prior art keywords
hydrogen chloride
gas
adsorbent
adsorption
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4107004A
Other languages
Japanese (ja)
Inventor
Teruo Hirayama
照夫 平山
Shinji Takenaka
慎司 竹中
Kunihiro Yamada
国博 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP4107004A priority Critical patent/JPH05301011A/en
Publication of JPH05301011A publication Critical patent/JPH05301011A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/07Purification ; Separation
    • C01B7/0706Purification ; Separation of hydrogen chloride
    • C01B7/0718Purification ; Separation of hydrogen chloride by adsorption

Abstract

PURPOSE:To economically and effectively obtain exhaust gas of higher concentration of gaseous hydrogen chloride than introduced gas by introducing gas contg. gaseous hydrogen chloride into an adsober to adsorb hydrogen chloride and making the gas at lower pressure than that when it is introduced to desorb the adsorbed gaseous hydrogen chloride. CONSTITUTION:Gaseous starting material contg. hydrogen chloride is increased in pressure to the prescribed one by a gas compressor 2 through a pipe 1 and delivered to the 1st adsorber 4a of three adsorbers 4a, 4b, 4c through a switching valve 3. In the adsorber 4a which has adsorbed the prescribed quantity of hydrogen chloride and is just before the saturated state, the gaseous starting material is stopped by switching the switching valve 3, and simultaneously, the adsorber is evacuated by a vacuum pump 10 by switching the switching valve 3 to be in a state of reduced pressure to desorb the hydrogen chloride absorbed on an adsorbent is while the adsorbent is regenerated. In the regeneration process, high concentration hydrogen chloride gas as a product is obtained from a discharge opening of the vacuum pump 10 and delivered to the downstream consumption process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は圧力スイング吸着法を利
用する塩化水素の濃縮方法に関するものである。
FIELD OF THE INVENTION The present invention relates to a method for concentrating hydrogen chloride using a pressure swing adsorption method.

【0002】[0002]

【従来の技術】塩化水素は非常に重要な工業中間原料で
多くの化学産業で使用されており、各所に塩化水素の分
離や濃縮のための設備が存在する。従来塩化水素を含む
混合ガスより塩化水素を分離する方法としては、(1)
高圧低温の蒸留による分離法、(2)溶媒による吸着
法、(3)水と接触させ塩酸として分離する方法、
(4)活性炭吸着塔による塩化水素分離法などがある。
しかし、(1)の方法では高圧低温の過酷な条件であ
り、エネルギー消費量も多く経済的に有利な方法とは言
えない。(2)の方法では塩化水素純度は低く、高純度
の塩化水素ガスを必要とするプロセスには使用できな
い。(3)の方法では塩化水素は水溶液の塩酸として回
収されるため多くの場合用途がない。(4)の場合では
高純度の塩化水素ガスは得られるが、吸着剤の高温再生
が必要なため操作が複雑となる。このように塩化水素を
含有するガスから塩化水素を分離する場合、現状では経
済的かつ効率的に分離する有効な方法はない。
2. Description of the Related Art Hydrogen chloride is a very important industrial intermediate material used in many chemical industries, and there are facilities for separating and concentrating hydrogen chloride in various places. Conventional methods for separating hydrogen chloride from a mixed gas containing hydrogen chloride include (1)
Separation method by distillation at high pressure and low temperature, (2) adsorption method by solvent, (3) method of contacting with water and separating as hydrochloric acid,
(4) There is a hydrogen chloride separation method using an activated carbon adsorption tower.
However, the method (1) requires high pressure and low temperature under severe conditions, consumes a large amount of energy, and cannot be said to be economically advantageous. The method (2) has a low hydrogen chloride purity and cannot be used in a process that requires high-purity hydrogen chloride gas. In the method (3), since hydrogen chloride is recovered as hydrochloric acid in an aqueous solution, it has no use in many cases. In the case of (4), high-purity hydrogen chloride gas can be obtained, but the operation becomes complicated because high temperature regeneration of the adsorbent is required. When separating hydrogen chloride from a gas containing hydrogen chloride as described above, there is currently no effective method for economically and efficiently separating hydrogen chloride.

【0003】[0003]

【発明が解決しようとする課題】本発明は高圧ガス、環
境問題等の法規制を受けず、また経済的かつ効率的に塩
化水素含有ガスから塩化水素を分離し濃縮する方法を提
供することにある。
DISCLOSURE OF THE INVENTION The present invention provides a method for separating and concentrating hydrogen chloride from a hydrogen chloride-containing gas economically and efficiently without being subject to legal restrictions such as high pressure gas and environmental problems. is there.

【0004】[0004]

【課題を解決するための手段】ガスを分離する方法とし
て良く用いられる手段に圧力スイング吸着法がある。酸
素・窒素の純度アップや一酸化炭素・水素の純度アップ
に使用されるのが通常である。検討に先立って塩化水素
に関する先行技術の調査を行ったところ、酸性ガスの吸
着分離(特開昭62−110744)において、吸着剤
に塩基性アルカリ金属化合物及び塩基性アルカリ土類金
属化合物の中から選ばれた少なくとも1種と非ゼオライ
ト系多孔質酸化物との複合体を用いた塩化水素と窒素の
分離例があるのみであり、一酸化炭素を含む塩化水素混
合ガスから塩化水素を分離し濃縮する方法に関する文献
や技術は存在しない。
Means for Solving the Problems A pressure swing adsorption method is often used as a method for separating gas. It is usually used to increase the purity of oxygen and nitrogen and the purity of carbon monoxide and hydrogen. Prior to the investigation, a prior art survey on hydrogen chloride was conducted. As a result, in the adsorption separation of acidic gas (Japanese Patent Laid-Open No. 62-110744), the adsorbent was selected from basic alkali metal compounds and basic alkaline earth metal compounds. There is only an example of separating hydrogen chloride and nitrogen using a complex of at least one selected and a non-zeolitic porous oxide, and separating and concentrating hydrogen chloride from a hydrogen chloride mixed gas containing carbon monoxide. There is no literature or technology on how to do this.

【0005】そこで本発明者らは一酸化炭素を含む塩化
水素を含有するガスを圧力スイング吸着により塩化水素
を分離できないかという点について鋭意検討し、吸着剤
にゼオライト、非ゼオライト系多孔質酸性酸化物、活性
炭又は分子ふるいカーボンを用いることにより塩化水素
を有効に分離することが可能であることを見出し本発明
に至った。
Therefore, the present inventors diligently investigated whether hydrogen chloride containing gas containing carbon monoxide and hydrogen chloride could be separated by pressure swing adsorption, and used zeolite or non-zeolitic porous acidic oxidation as an adsorbent. It was found that hydrogen chloride can be effectively separated by using a substance, activated carbon or molecular sieving carbon, and the present invention has been completed.

【0006】即ち、本発明は塩化水素を吸着しうる吸着
剤を充填した吸着塔に、塩化水素を含有するガスを導入
して特に塩化水素を吸着させ、その後ガスの導入を停止
し、吸着のためにガスを導入した時よりも低い圧力にす
ることで、吸着されていた塩化水素ガスを脱着し、導入
ガスの塩化水素濃度より高い塩化水素濃度のガスを得る
とともに吸着剤は再生される技術であり、このようにし
て再生された吸着剤は再び前出の塩化水素ガス吸着に使
用することができる塩化水素ガスの濃縮方法である。
That is, according to the present invention, a gas containing hydrogen chloride is introduced into an adsorption tower filled with an adsorbent capable of adsorbing hydrogen chloride to adsorb hydrogen chloride in particular, and thereafter the introduction of the gas is stopped to stop the adsorption. For this reason, a technology is used in which the adsorbent is regenerated while the adsorbent is desorbed by desorbing the adsorbed hydrogen chloride gas by obtaining a gas with a hydrogen chloride concentration higher than that of the introduced gas by setting the pressure lower than when the gas was introduced. The adsorbent thus regenerated is a method of concentrating hydrogen chloride gas that can be used again for the adsorption of hydrogen chloride gas.

【0007】本発明の方法が適用される塩化水素を含有
するガスには塩化水素以外のガスとしては酸素、窒素、
二酸化炭素、一酸化炭素、水素、アルゴン、メタンなど
の炭化水素等が存在してよいが、圧力スイング吸着法で
これらを含むガスから塩化水素を分離するには、これら
のガスと吸着剤との吸着親和力が塩化水素に対する場合
より充分に差があるものを選択する必要がある。
Gases containing hydrogen chloride to which the method of the present invention is applied include oxygen, nitrogen, and gases other than hydrogen chloride.
Hydrocarbons such as carbon dioxide, carbon monoxide, hydrogen, argon, methane, etc. may be present, but in order to separate hydrogen chloride from a gas containing them by a pressure swing adsorption method, these gases and an adsorbent are separated. It is necessary to select one having a sufficiently different adsorption affinity than that for hydrogen chloride.

【0008】そこで本発明に使用する塩化水素の吸着剤
としては、合成および天然ゼオライト、非ゼオライト系
多孔質酸性酸化物や活性炭および分子ふるいカーボンの
ような炭素質吸着剤が選択される。たとえばゼオライト
としてはA型、X型、Y型、L型、ZSM型、モルデナ
イトなどが挙げられる。非ゼオライト系多孔質酸性酸化
物としてはアルミナ、シリカゲル、シリカアルミナ、チ
タニア、マグネシア等が挙げられる。活性炭としては果
実殻系、木材系、石炭系、石油系、泥炭系などが吸着剤
として使用できる。
Therefore, as the hydrogen chloride adsorbent used in the present invention, carbonaceous adsorbents such as synthetic and natural zeolites, non-zeolitic porous acidic oxides, activated carbon and molecular sieving carbon are selected. Examples of zeolites include A type, X type, Y type, L type, ZSM type and mordenite. Examples of the non-zeolitic porous acidic oxide include alumina, silica gel, silica-alumina, titania, magnesia and the like. As the activated carbon, fruit shell type, wood type, coal type, petroleum type, peat type or the like can be used as an adsorbent.

【0009】これらの吸着剤に対しては塩化水素は前記
の各ガスに比較しより強い親和力を有しているので、こ
れらの吸着剤を充填した吸着塔に塩化水素を含有するガ
スを導入すると塩化水素は他のガスより優先的に吸着さ
れるので、吸着塔のガス出口側では塩化水素濃度の低い
ガスが、時にはほとんど検出されない程度までのガスが
得られる。
Since hydrogen chloride has a stronger affinity for these adsorbents than the above-mentioned gases, if a gas containing hydrogen chloride is introduced into an adsorption tower filled with these adsorbents. Since hydrogen chloride is adsorbed preferentially over other gases, a gas having a low hydrogen chloride concentration can be obtained at the gas outlet side of the adsorption tower, to the extent that it is rarely detected.

【0010】吸着剤に吸着させる塩化水素を含有するガ
スの塩化水素濃度には特に制限はないが通常10〜95
%塩化水素濃度が適用される。塩化水素濃度が低い場合
には脱着による再生操作までの吸着時間を長く取ること
ができる。なおこの吸着操作の操作圧力は後の塩化水素
の脱着操作より高い圧力にする。操作温度は充填する吸
着剤の種類・導入ガスに含まれる塩化水素以外のガスの
種類や経済的な問題で決定される。
The hydrogen chloride concentration of the gas containing hydrogen chloride to be adsorbed on the adsorbent is not particularly limited, but is usually 10 to 95.
The% hydrogen chloride concentration applies. When the hydrogen chloride concentration is low, the adsorption time until the regeneration operation by desorption can be lengthened. The operation pressure for this adsorption operation is higher than that for the subsequent desorption operation for hydrogen chloride. The operating temperature is determined by the type of adsorbent to be filled, the type of gas other than hydrogen chloride contained in the introduced gas, and economic problems.

【0011】たとえば、シリカゲルを吸着剤として使用
した場合には、常温付近でも充分な塩化水素吸着を行う
ことができる。 一方、充填物の劣化防止や設備の材質
劣化を防止するために原料ガス中の水分は低い方が良
く、1000ppm 以下が望ましい。吸着塔への塩化
水素の吸着が進み、飽和状態に近づいたところで原料と
しての塩化水素を含有するガスの吸着塔への供給を停止
する。続いて吸着塔の操作圧力を降下させ、吸着してい
る塩化水素およびその他のガスを脱着させる。この時の
操作圧力は吸着時の圧力以下とし、必要に応じては真空
ポンプにより大気圧以下にすることも有効である。
For example, when silica gel is used as an adsorbent, sufficient hydrogen chloride adsorption can be performed even at around room temperature. On the other hand, in order to prevent the deterioration of the filling material and the deterioration of the material of the equipment, the water content in the raw material gas is preferably low, and 1000 ppm or less is desirable. When the adsorption of hydrogen chloride in the adsorption tower progresses and approaches a saturated state, the supply of the gas containing hydrogen chloride as a raw material to the adsorption tower is stopped. Then, the operating pressure of the adsorption tower is lowered to desorb adsorbed hydrogen chloride and other gases. The operation pressure at this time is set to be equal to or lower than the pressure at the time of adsorption, and it is also effective to set the pressure to be equal to or lower than the atmospheric pressure by a vacuum pump as needed.

【0012】また操作温度は任意であるが、基本的には
吸着時の温度と同じとする方が経済的である。もちろん
経済的に有効であればいわゆるサーマルスイング方式を
取ることも可能である。
The operating temperature is arbitrary, but basically it is economical to set it at the same temperature as during adsorption. Of course, a so-called thermal swing method can be adopted if it is economically effective.

【0013】更に、脱着操作時に少量の不活性ガス、好
ましくは窒素ガスを通気させることは吸着剤から塩化水
素ガスの脱着が促進され好ましい態様である。この脱着
操作により導入ガスにおけるよりも塩化水素濃度の高い
ガスを得ることができるとともに、塩化水素を吸着した
吸着剤は脱塩化水素されるので再生することができ、再
び次の吸着操作を繰り返し行うことができる。
Further, aeration of a small amount of an inert gas, preferably nitrogen gas, during the desorption operation is a preferred mode because the desorption of hydrogen chloride gas from the adsorbent is promoted. This desorption operation makes it possible to obtain a gas having a higher hydrogen chloride concentration than that of the introduced gas, and the adsorbent that has adsorbed hydrogen chloride can be regenerated because it is dehydrochlorinated, and the next adsorption operation is repeated again. be able to.

【0014】次に工業規模におけるより具体的な形での
実施の状態について説明する。図1はその形態を示す。
図1では塩化水素を含有する原料ガスは管1よりガス圧
縮機2に送られ、ここで所定圧力まで昇圧された後、切
換弁3を経て、3基の吸着塔4a,4b,4cの内の第
1の吸着塔4aに送り込まれる。
Next, the state of implementation in a more specific form on an industrial scale will be described. FIG. 1 shows the form.
In FIG. 1, a raw material gas containing hydrogen chloride is sent from a pipe 1 to a gas compressor 2, where the pressure is increased to a predetermined pressure, and after passing through a switching valve 3, among the three adsorption towers 4a, 4b, 4c. Is sent to the first adsorption tower 4a.

【0015】3基の吸着塔4a,4b,4cは各々前出
の塩化水素を優先的に吸着する吸着剤が充填されてお
り、加圧状態で導入された原料ガス中の塩化水素が優先
的に吸着され、吸着塔4aの出口には塩化水素の含有率
の低いガス、時にはほとんど検出できない程度に低い塩
化水素濃度のガス(以下処理済ガスとする)が得られ
る。
Each of the three adsorption towers 4a, 4b, 4c is filled with an adsorbent that preferentially adsorbs the above-mentioned hydrogen chloride, and hydrogen chloride in the raw material gas introduced under pressure is preferential. At the outlet of the adsorption tower 4a, a gas having a low hydrogen chloride content, and sometimes a gas having a hydrogen chloride concentration that is so low as to be almost undetectable (hereinafter referred to as a treated gas) is obtained.

【0016】この脱塩化水素ガスは切換弁5、弁6を経
てブロワ7に送られ排出される。この時、第2の吸着塔
4bでは、第1の吸着塔4aから吐出した処理済ガスの
一部が流量調節機構8、切換弁9を経て第2の吸着塔4
b内に導入され、この塔内の圧力が処理済ガスによって
高められる昇圧工程が実施されており、また第3の吸着
塔4cではこの塔内の真空ポンプ10とが切換弁11,
12aを経て接続され、この塔内の吸着剤が減圧状態で
再生処理される再生工程が実施されている。
This dehydrochlorinated gas is sent to the blower 7 via the switching valve 5 and the valve 6 and discharged. At this time, in the second adsorption tower 4b, a part of the treated gas discharged from the first adsorption tower 4a passes through the flow rate adjusting mechanism 8 and the switching valve 9 and then flows into the second adsorption tower 4b.
A pressure increasing step is carried out in which the pressure in the column is introduced into the column b and the pressure in the column is increased by the treated gas, and in the third adsorption column 4c, the vacuum pump 10 in the column and the switching valve 11,
A regeneration process is performed in which the adsorbent is connected via 12a and the adsorbent in this tower is regenerated under reduced pressure.

【0017】そして所定量の塩化水素を吸着して飽和寸
前となった吸着塔4aは、切換弁3の切り換えによって
原料ガスの導入が停止されると共に、切換弁13の切り
換えによって塔内が真空ポンプ10で排気されて減圧状
態となり、吸着剤に吸着された塩化水素が脱着され、吸
着剤が再生される(再生工程)。
In the adsorption tower 4a which has just adsorbed a predetermined amount of hydrogen chloride and is about to be saturated, the introduction of the raw material gas is stopped by switching the switching valve 3, and the inside of the tower is vacuum pumped by switching the switching valve 13. At 10 the gas is exhausted to a depressurized state, the hydrogen chloride adsorbed by the adsorbent is desorbed, and the adsorbent is regenerated (regeneration step).

【0018】この再生工程で製品としての塩化水素濃度
の高いガスを真空ポンプ10の吐出口から得ることがで
き、この塩化水素を高濃度に含有したガスは下流の消費
工程に送られる。この時第2の吸着塔4bでは、原料ガ
スが切換弁14を経て導入され、この塔の出口から処理
済ガスが吐出し、切換弁15、弁6を経てブロワ7に送
られ、さらに消費工程へ送られる。
In this regeneration step, a gas having a high hydrogen chloride concentration as a product can be obtained from the discharge port of the vacuum pump 10, and the gas containing a high concentration of hydrogen chloride is sent to the downstream consumption step. At this time, in the second adsorption tower 4b, the raw material gas is introduced through the switching valve 14, the treated gas is discharged from the outlet of this tower, is sent to the blower 7 through the switching valve 15 and the valve 6, and is further consumed. Sent to.

【0019】また第3の吸着塔4cでは第2の吸着塔4
bから吐出される処理済ガスの一部が流量調節機構8、
切換弁16を経て導入され、この塔内の圧力が処理済ガ
スによって高められる昇圧工程が実施されている。
In the third adsorption tower 4c, the second adsorption tower 4 is
A part of the processed gas discharged from b is a flow rate adjusting mechanism 8,
A pressurization step is carried out, which is introduced through the switching valve 16 and the pressure in the column is increased by the treated gas.

【0020】その後第3の吸着塔4cでは切換弁17を
経て原料ガスが導入され、処理済ガスが切換弁18、弁
6を経てブロワ7に送られ排出される。これと同時に第
1の吸着塔4aでは、第3の吸着塔4cから吐出される
処理済ガスの一部が流量調節機構8、切換弁19を経て
導入され、この塔内の圧力が処理済ガスによって高めら
れる昇圧工程が実施されている。
After that, in the third adsorption tower 4c, the raw material gas is introduced through the switching valve 17, and the treated gas is sent to the blower 7 through the switching valve 18 and the valve 6 and discharged. At the same time, in the first adsorption tower 4a, a part of the treated gas discharged from the third adsorption tower 4c is introduced through the flow rate adjusting mechanism 8 and the switching valve 19, and the pressure in the tower is adjusted to the treated gas. The pressure boosting process which is increased by is carried out.

【0021】この時第2の吸着塔4bでは、切換弁14
の切り換えにより原料ガスの導入が停止されると共に、
切換弁20の切り換えによって塔内が真空ポンプ10で
排気されて減圧状態になり、吸着剤に吸着された塩化水
素が脱着され、吸着剤が再生される。
At this time, in the second adsorption tower 4b, the switching valve 14
The introduction of the raw material gas is stopped by switching the
By switching the switching valve 20, the inside of the tower is evacuated by the vacuum pump 10 to a depressurized state, the hydrogen chloride adsorbed by the adsorbent is desorbed, and the adsorbent is regenerated.

【0022】以下同様に、この一連操作を3基の吸着塔
4a,4b,4cについて交互に繰り返すことによって
塩化水素を含有する原料ガスより塩化水素を分離し、原
料ガス中の塩化水素濃度以上の塩化水素濃度のガスを連
続的に得ることができる。
Similarly, by repeating this series of operations alternately for the three adsorption towers 4a, 4b, 4c, hydrogen chloride is separated from the source gas containing hydrogen chloride, and the hydrogen chloride concentration higher than the concentration of hydrogen chloride in the source gas is obtained. A gas having a hydrogen chloride concentration can be continuously obtained.

【0023】[0023]

【実施例】次に実施例により本発明をさらに詳細に説明
する。 実施例1 シリカゲル(富士デビソン製、組成 SiO2:99.
7%,Fe23:0.008%,Al23:0.02
5,CaO:0.01:,Na2O:0.05)43g
を充填したステンレス製の吸着カラムに25℃にて塩化
水素(90%)・一酸化炭素(10%)の組成ガスを1
atmの条件下、200ml/minで7分間通気し
た。この間カラムから流出するガスをガスクロマトグラ
フ分析を行いガス組成を分析したところ塩化水素は50
0ppm検出された。通気完了後原料ガスの供給を停止
し、真空ポンプで吸着カラムを60mmHgの圧力に1
0分間おき、塩化水素を脱着させて脱着したガスの分析
をしたところ塩化水素濃度99%であった。この脱着後
の吸着カラムに再び初めと同様の組成のガスを同条件で
通気したところ、やはり7分間は流出するガスの塩化水
素濃度は500ppmであった。
The present invention will be described in more detail with reference to the following examples. Example 1 Silica gel (manufactured by Fuji Davison, composition SiO 2 : 99.
7%, Fe 2 O 3 : 0.008%, Al 2 O 3 : 0.02
5, CaO: 0.01 :, Na 2 O: 0.05) 43 g
A composition gas of hydrogen chloride (90%) and carbon monoxide (10%) was added to a stainless adsorption column filled with 1 at 25 ° C.
Aeration was performed at 200 ml / min for 7 minutes under the conditions of atm. During this period, the gas flowing out of the column was subjected to gas chromatographic analysis to analyze the gas composition.
0 ppm was detected. After aeration is completed, supply of the raw material gas is stopped, and the adsorption column is set to a pressure of 60 mmHg by a vacuum pump.
The hydrogen chloride was desorbed every 0 minutes, and the desorbed gas was analyzed to find that the hydrogen chloride concentration was 99%. When a gas having the same composition as that of the first gas was passed through the adsorption column after the desorption under the same conditions, the hydrogen chloride concentration of the gas flowing out for 7 minutes was 500 ppm.

【0024】実施例2 シリカゲル(富士デビソン製、組成 SiO2:99.
7%,Fe23:0.008%,Al23:0.02
5,CaO:0.01:,Na2O:0.05)43g
を充填したステンレス製の吸着カラムに25℃にて塩化
水素(90%)・一酸化炭素(10%)の組成ガスを5
atmの条件下、200ml/minで15分間通気し
た。この間カラムから流出するガスをガスクロマトグラ
フ分析を行いガス組成を分析したところ塩化水素は50
0ppm検出された。通気完了後原料ガスの供給を停止
し、真空ポンプで吸着カラムを60mmHgの圧力に1
0分間おき、塩化水素を脱着させて脱着したガスの分析
をしたところ塩化水素濃度98%であった。この脱着後
の吸着カラムに再び初めと同様の組成のガスを同条件で
通気したところ、やはり15分間は流出するガスの塩化
水素濃度は500ppmであった。
Example 2 Silica gel (manufactured by Fuji Devison, composition SiO 2 : 99.
7%, Fe 2 O 3 : 0.008%, Al 2 O 3 : 0.02
5, CaO: 0.01 :, Na 2 O: 0.05) 43 g
A composition gas of hydrogen chloride (90%) and carbon monoxide (10%) was added to a stainless steel adsorption column filled with 5 at 25 ° C.
Aeration was carried out at 200 ml / min for 15 minutes under the conditions of atm. During this period, the gas flowing out of the column was subjected to gas chromatographic analysis to analyze the gas composition.
0 ppm was detected. After aeration is completed, supply of the raw material gas is stopped, and the adsorption column is set to a pressure of 60 mmHg by a vacuum pump.
The hydrogen chloride was desorbed every 0 minutes, and the desorbed gas was analyzed to find that the hydrogen chloride concentration was 98%. When a gas having the same composition as that of the first gas was passed through the adsorption column after the desorption under the same conditions, the hydrogen chloride concentration of the gas flowing out for 15 minutes was 500 ppm.

【0025】実施例3 合成Y型ゼオライト(ZEOCHEM製)40gを充填
したステンレス製の吸着カラムに60℃にて塩化水素
(90%)・一酸化炭素(5%)・窒素(5%)の組成
のガスを1atmの圧力に調節して200ml/min
で7分間通気した。この間カラムから流出するガスをガ
スクロマトグラフ分析を行いガス組成を分析したところ
塩化水素ガスは500ppm検出された。通気完了後原
料ガスの供給を停止し、真空ポンプで吸着カラムを60
mmHgの圧力に5分間おき、塩化水素ガスを脱着させ
た。脱着したガスを分析したところ塩化水素濃度99%
であった。この脱着後の吸着カラムに再び初めと同様の
組成のガスを同条件で通気したところ、やはり7分間は
流出するガスの塩化水素濃度は500ppmであった。
Example 3 Composition of hydrogen chloride (90%), carbon monoxide (5%) and nitrogen (5%) at 60 ° C. in a stainless adsorption column packed with 40 g of synthetic Y-type zeolite (made by ZEOCHEM). Gas of 1 atm is adjusted to 200 ml / min
Aerated for 7 minutes. During this period, the gas flowing out from the column was subjected to gas chromatographic analysis to analyze the gas composition, and 500 ppm of hydrogen chloride gas was detected. After the completion of aeration, supply of the raw material gas is stopped, and the adsorption column is set to 60 with a vacuum pump.
The pressure of mmHg was maintained for 5 minutes to desorb hydrogen chloride gas. When the desorbed gas was analyzed, the hydrogen chloride concentration was 99%
Met. When a gas having the same composition as that of the first gas was passed through the adsorption column after the desorption under the same conditions, the hydrogen chloride concentration of the gas flowing out for 7 minutes was 500 ppm.

【0026】実施例4 活性炭PCB(東洋カルゴン製)23gを充填したステ
ンレス製の吸着カラムに25℃にて塩化水素(90%)
・一酸化炭素(5%)・酸素(5%)の組成のガスを1
atmの圧力に調節して200ml/minで11分間
通気した。この間カラムから流出するガスをガスクロマ
トグラフ分析を行いガス組成を分析したところ塩化水素
ガスは500ppm検出された。通気完了後原料ガスの
供給を停止し、真空ポンプで吸着カラムを60mmHg
の圧力に10分間おき、塩化水素ガスを脱着させて脱着
したガスを分析したところ塩化水素濃度99%であっ
た。この脱着後の吸着カラムに再び初めと同様の組成の
ガスを同条件で通気したところ、やはり11分間は流出
するガスの塩化水素濃度は500ppmであった。
Example 4 Hydrogen chloride (90%) at 25 ° C. in an adsorption column made of stainless steel packed with 23 g of activated carbon PCB (made by Toyo Calgon).
・ One gas with the composition of carbon monoxide (5%) and oxygen (5%)
The pressure was adjusted to atm and the mixture was aerated at 200 ml / min for 11 minutes. During this period, the gas flowing out from the column was subjected to gas chromatographic analysis to analyze the gas composition, and 500 ppm of hydrogen chloride gas was detected. After the completion of aeration, supply of the raw material gas is stopped and the adsorption column is moved to 60 mmHg with a vacuum pump.
The hydrogen chloride gas was desorbed at that pressure for 10 minutes, and the desorbed gas was analyzed. As a result, the hydrogen chloride concentration was 99%. When the gas having the same composition as that of the first gas was passed through the adsorption column after the desorption again under the same conditions, the hydrogen chloride concentration of the gas flowing out for 11 minutes was 500 ppm.

【0027】実施例6 分子ふるいカーボンMSC(武田薬品製)20gを充填
したステンレス製の吸着カラムに25℃にて塩化水素
(90%)・一酸化炭素(5%)・二酸化炭素(5%)
の組成のガスを1atmの圧力に調節して200ml/
minで11分間通気した。この間カラムから流出する
ガスをガスクロマトグラフ分析を行いガス組成を分析し
たところ塩化水素ガスは500ppm検出された。通気
完了後原料ガスの供給を停止し、真空ポンプで吸着カラ
ムを60mmHgの圧力に10分間おき、塩化水素ガス
を脱着させて脱着したガスを分析したところ塩化水素濃
度99%であった。この脱着後の吸着カラムに再び初め
と同様の組成のガスを同条件で通気したところ、やはり
10分間は流出するガスの塩化水素濃度は500ppm
であった。
Example 6 Hydrogen sulphate (90%), carbon monoxide (5%), carbon dioxide (5%) at 25 ° C. in a stainless steel adsorption column packed with 20 g of molecular sieve carbon MSC (manufactured by Takeda Pharmaceutical Co., Ltd.).
The gas of the composition is adjusted to a pressure of 1 atm and 200 ml /
Aerated for 11 minutes at min. During this period, the gas flowing out from the column was subjected to gas chromatographic analysis to analyze the gas composition, and 500 ppm of hydrogen chloride gas was detected. After completion of the aeration, the supply of the raw material gas was stopped, the pressure of the adsorption column was kept at 60 mmHg for 10 minutes by the vacuum pump, the hydrogen chloride gas was desorbed, and the desorbed gas was analyzed to find that the hydrogen chloride concentration was 99%. When the gas having the same composition as that of the first gas was again passed through the adsorption column after the desorption under the same conditions, the hydrogen chloride concentration of the gas flowing out for 10 minutes was 500 ppm.
Met.

【0028】[0028]

【発明の効果】本発明は圧力スイング吸着法を適用する
ことにより、塩化水素を含有するガスから塩化水素を容
易に分離、濃縮する方法を提供するもので、その工業的
価値は非常に大きい。本発明は吸着剤を用いて塩化水素
ガスを回収する技術であって、高圧ガスを取扱う法律の
規制を受けず、また溶剤の再生も要しない方法である。
本発明は塩化水素を利用する設備において付属設備とし
て実施される。
INDUSTRIAL APPLICABILITY The present invention provides a method for easily separating and concentrating hydrogen chloride from a gas containing hydrogen chloride by applying the pressure swing adsorption method, and its industrial value is very large. The present invention is a technique for recovering hydrogen chloride gas using an adsorbent, and is a method that is not subject to the regulation of the law dealing with high-pressure gas and does not require regeneration of the solvent.
The present invention is implemented as an auxiliary equipment in equipment using hydrogen chloride.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を特に連続的に行なうために複数の吸着
塔を用いる設備の模式図である。
FIG. 1 is a schematic diagram of an installation using a plurality of adsorption towers for carrying out the present invention particularly continuously.

【符号の説明】[Explanation of symbols]

1 原料ガス供給管 2 圧縮機 4a,4b,4c 吸着塔 6 弁 7 ブロワー 8 流量調節機構 10 真空ポンプ 3、5、9、11、12a、12b、13〜20 切
換弁
1 Raw material gas supply pipe 2 Compressor 4a, 4b, 4c Adsorption tower 6 Valve 7 Blower 8 Flow rate adjusting mechanism 10 Vacuum pump 3, 5, 9, 11, 12a, 12b, 13-20 Switching valve

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】塩化水素を吸着しうる吸着剤を充填した吸
着塔に、塩化水素を含有するガスを導入して塩化水素を
吸着させ、その後ガスの導入を停止し、ガス導入時より
も低い圧力下で脱着を行ない、導入ガスの塩化水素濃度
より高い塩化水素濃度のガスを得るとともに吸着剤を再
生することを特徴とする塩化水素ガスの濃縮方法。
1. A gas containing hydrogen chloride is introduced into an adsorption tower filled with an adsorbent capable of adsorbing hydrogen chloride to adsorb hydrogen chloride, and then the introduction of the gas is stopped. A method for concentrating hydrogen chloride gas, which comprises desorbing under pressure to obtain a gas having a hydrogen chloride concentration higher than the hydrogen chloride concentration of the introduced gas and regenerating the adsorbent.
【請求項2】塩化水素を吸着しうる吸着剤がゼオライト
である請求項1記載の方法。
2. The method according to claim 1, wherein the adsorbent capable of adsorbing hydrogen chloride is zeolite.
【請求項3】塩化水素を吸着しうる吸着剤が非ゼオライ
ト系多孔質酸性酸化物である請求項1記載の方法。
3. The method according to claim 1, wherein the adsorbent capable of adsorbing hydrogen chloride is a non-zeolitic porous acidic oxide.
【請求項4】塩化水素を吸着しうる吸着剤が活性炭であ
る請求項1記載の方法。
4. The method according to claim 1, wherein the adsorbent capable of adsorbing hydrogen chloride is activated carbon.
【請求項5】活性炭が分子ふるいカーボンである請求項
4記載の方法。
5. The method according to claim 4, wherein the activated carbon is molecular sieving carbon.
【請求項6】塩化水素を含有する導入ガスの少なくも1
成分が一酸化炭素である請求項1記載の方法。
6. At least one introduced gas containing hydrogen chloride.
The method of claim 1 wherein the component is carbon monoxide.
JP4107004A 1992-04-24 1992-04-24 Method for concentrating gaseous hydrogen chloride Pending JPH05301011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4107004A JPH05301011A (en) 1992-04-24 1992-04-24 Method for concentrating gaseous hydrogen chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4107004A JPH05301011A (en) 1992-04-24 1992-04-24 Method for concentrating gaseous hydrogen chloride

Publications (1)

Publication Number Publication Date
JPH05301011A true JPH05301011A (en) 1993-11-16

Family

ID=14448055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4107004A Pending JPH05301011A (en) 1992-04-24 1992-04-24 Method for concentrating gaseous hydrogen chloride

Country Status (1)

Country Link
JP (1) JPH05301011A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015182927A (en) * 2014-03-25 2015-10-22 住友精化株式会社 Method of and equipment for refining hydrogen chloride
JP2016150869A (en) * 2015-02-17 2016-08-22 住友精化株式会社 Method for producing hydrogen chloride
CN112591711A (en) * 2020-12-16 2021-04-02 浙江天采云集科技股份有限公司 High-purity high-yield FTrPSA separation and purification extraction method for HF/HCl mixed gas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015182927A (en) * 2014-03-25 2015-10-22 住友精化株式会社 Method of and equipment for refining hydrogen chloride
JP2016150869A (en) * 2015-02-17 2016-08-22 住友精化株式会社 Method for producing hydrogen chloride
CN112591711A (en) * 2020-12-16 2021-04-02 浙江天采云集科技股份有限公司 High-purity high-yield FTrPSA separation and purification extraction method for HF/HCl mixed gas
CN112591711B (en) * 2020-12-16 2022-05-20 浙江天采云集科技股份有限公司 High-purity high-yield FTrPSA separation and purification extraction method for HF/HCl mixed gas

Similar Documents

Publication Publication Date Title
AU649823B2 (en) Process for the purification of the inert gases
KR940001410B1 (en) Method of concentrating chlorine gas
US4376640A (en) Repressurization of pressure swing adsorption system
US6030598A (en) Process for producing a gaseous product
US4775394A (en) Process for separation of high purity gas from mixed gas
CA1188231A (en) Repressurization for pressure swing adsorption system
JPH10114508A (en) Method for purifying flow of inert gas
EP0545559B1 (en) Separation of gas mixtures
JPH05301011A (en) Method for concentrating gaseous hydrogen chloride
JP3080687B2 (en) How to concentrate chlorine gas
EP0055669B1 (en) Repressurization for pressure swing adsorption system
CA1176994A (en) Repressurization for pressure swing adsorption system
JPS62117612A (en) Regenerating method for adsorption tower
EP0055962B1 (en) Repressurisation for pressure swing adsorption system
JP2909253B2 (en) How to concentrate chlorine gas
JP2909254B2 (en) How to concentrate chlorine gas
KR100228239B1 (en) Apparatus and process for producing nitrogen using psa system depending on nitrogen concentration in the product
JPS634824A (en) Impure gas adsorption bed
EP0114912A1 (en) Novel repressurization for pressure swing adsorption system
JPS62193623A (en) Method for taking out easily-adsorbing substance as high-purity gas
JPS62241523A (en) Separation and purification for carbon monoxide excellent in recovery efficiency
JPH0221285B2 (en)
JPH10249188A (en) Method for making nitrogen trifluoride gas harmless and device therefor
JPS60155518A (en) Process for purifying carbon monoxide from mixed gas containing carbon monoxide using adsorption process
JPH07100323A (en) Separation of air