JP3080687B2 - How to concentrate chlorine gas - Google Patents

How to concentrate chlorine gas

Info

Publication number
JP3080687B2
JP3080687B2 JP03138749A JP13874991A JP3080687B2 JP 3080687 B2 JP3080687 B2 JP 3080687B2 JP 03138749 A JP03138749 A JP 03138749A JP 13874991 A JP13874991 A JP 13874991A JP 3080687 B2 JP3080687 B2 JP 3080687B2
Authority
JP
Japan
Prior art keywords
gas
chlorine
adsorption
adsorbent
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03138749A
Other languages
Japanese (ja)
Other versions
JPH04363109A (en
Inventor
照夫 平山
慎司 竹中
国博 山田
嘉嗣 神野
洋之 伊藤
功 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP03138749A priority Critical patent/JP3080687B2/en
Publication of JPH04363109A publication Critical patent/JPH04363109A/en
Application granted granted Critical
Publication of JP3080687B2 publication Critical patent/JP3080687B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は圧力スイング吸着法を利
用する塩素の濃縮方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for concentrating chlorine using a pressure swing adsorption method.

【0002】[0002]

【従来の技術】塩素は非常に重要な工業中間原料で多く
の化学産業で使用されており、各所に塩素の分離のため
の設備が存在する。
BACKGROUND OF THE INVENTION Chlorine is a very important industrial intermediate and is used in many chemical industries, and there are facilities for chlorine separation in various places.

【0003】従来、塩素を含む混合ガスより塩素を分離
する方法としては、ガスを加圧・冷却して液体塩素とし
ガスより分離する方法や、塩素系有機溶剤に塩素を吸収
させた溶剤をストリッピングすることにより塩素を分離
する方法が知られている。しかし、前者の方法は高圧の
ガスを取り扱うので、高価で保守管理の面倒なガス圧縮
機や冷凍設備などが必要となり、特に塩素濃度の比較的
低いガスより塩素を分離する場合には、非常な高圧また
は極低温による操作となり設備費が増大する。また後者
の方法は、通常溶剤として四塩化炭素を使用するが、昨
今のフロンガスによる環境問題により四塩化炭素の使用
が禁止される方向にあり将来でも有効な方法とは言えな
くなった。
Conventionally, as a method for separating chlorine from a mixed gas containing chlorine, a method in which a gas is pressurized and cooled to form liquid chlorine and separated from the gas, or a method in which a chlorine-based organic solvent is used to absorb chlorine is used. A method of separating chlorine by ripping is known. However, the former method uses a high-pressure gas, and therefore requires a gas compressor and a refrigeration facility, which are expensive and troublesome for maintenance, especially when separating chlorine from a gas having a relatively low chlorine concentration. Operation at high pressure or cryogenic temperature increases equipment costs. In the latter method, carbon tetrachloride is usually used as a solvent. However, the use of carbon tetrachloride has been banned due to environmental problems caused by recent chlorofluorocarbon gas, and cannot be said to be an effective method in the future.

【0004】[0004]

【発明が解決しようとする課題】塩素を含む混合ガスよ
り塩素を分離する方法の一つに圧力スイング吸着法があ
る。この分離法に用いられる吸着剤にはゼオライト、非
ゼオライト系多孔質酸性酸化物、活性炭および分子ふる
いカーボンがあるが、現状では塩素選択性が不十分であ
るため高濃度の塩素が得られない。本発明は圧力スイン
グ吸着法に使用される吸着剤の改良を行ない、塩素及び
二酸化炭素を含む混合ガスより塩素をより選択的に分離
し濃縮することにある。
One of the methods for separating chlorine from a mixed gas containing chlorine is a pressure swing adsorption method. Adsorbents used in this separation method include zeolites, non-zeolitic porous acidic oxides, activated carbon, and molecular sieve carbon. However, at present, chlorine concentration cannot be obtained because of insufficient chlorine selectivity. The present invention performs improvement of adsorbent used in the pressure swing adsorption method, chlorine and
It is to separate and concentrate chlorine more selectively than a mixed gas containing carbon dioxide .

【0005】[0005]

【課題を解決するための手段】塩素ガスを分離する方法
として用いられる手段の一つに圧力スイング吸着法があ
る。この分離法に用いられる吸着剤にはゼオライト、非
ゼオライト系多孔質酸性酸化物、活性炭および分子ふる
いカーボンがあるが、現状では塩素選択性の点に問題が
ある。そこで本発明者らは、圧力スイング吸着法に使用
される吸着剤を改良することにより、より選択的に塩素
を分離し濃縮することができないかという点について鋭
意検討し、Ca、Ba、Liから選ばれるアルカリ金属
および/又はアルカリ土類金属を吸着剤に含有させるこ
とにより、塩素をより選択的に分離することが可能であ
ることを見出し、本発明に至った。
Means for Solving the Problems One of the means used as a method for separating chlorine gas is a pressure swing adsorption method. Adsorbents used in this separation method include zeolites, non-zeolitic porous acidic oxides, activated carbon, and molecular sieve carbon. However, at present, there is a problem in chlorine selectivity. Therefore, the present inventors diligently studied whether it is possible to more selectively separate and concentrate chlorine by improving the adsorbent used in the pressure swing adsorption method, and from Ca, Ba, Li The present inventors have found that it is possible to more selectively separate chlorine by including the selected alkali metal and / or alkaline earth metal in the adsorbent, and have reached the present invention.

【0006】本発明の方法が適用される塩素を含む混合
ガスには、塩素以外のガスとしては、少なくとも二酸化
炭素が含まれ、さらに酸素・窒素・一酸化炭素・水素・
アルゴン・メタンなどの炭化水素等が存在してよいが、
圧力スイング吸着法でこれらを含むガスから塩素を分離
するには、これらのガスと吸着剤との吸着親和力が塩素
に対する場合より充分に差があるものを選択する必要が
ある。そこで本発明に使用する塩素の吸着剤としては、
合成および天然ゼオライトが選択される。
[0006] The mixed gas containing chlorine to which the method of the present invention is applied includes at least dioxide as a gas other than chlorine.
Contains carbon, oxygen, nitrogen, carbon monoxide, hydrogen,
Hydrocarbons such as argon and methane may be present,
In order to separate chlorine from gases containing these by the pressure swing adsorption method, it is necessary to select one having a sufficiently different adsorption affinity between these gases and the adsorbent as compared with chlorine. Therefore, as the chlorine adsorbent used in the present invention,
Synthetic and natural zeolites bets are selected.

【0007】たとえばゼオライトとしては、A型、X
型、Y型、L型、ZSM型、天然モルデナイトなどが挙
げられるが、好ましくはX型、Y型、L型、ZSM型で
あり、より好ましくは高ケイ素含有のゼオライトであ
り、特に好ましくはY型及び/又は13X型のゼオライ
トである。
For example, as zeolites, type A, X
Type, Y type, L type, ZSM type, natural mordenite, etc., preferably X type, Y type, L type, ZSM type, and more preferably zeolite containing high silicon.
And particularly preferably zeolite of the Y type and / or the 13X type.
It is.

【0008】本発明の方法は、これらの吸着剤にCa、
Ba、Liから選ばれるアルカリ金属イオン、アルカリ
土類金属イオンを含有させたものを使用することを特徴
とする。これらイオンの吸着剤への含有方法は通常の方
法、すなわち導入する金属イオンの塩類の水溶液と吸着
剤とを接触させ、次いて固液分離、洗浄、付着水除去
(乾燥)を行なう。本来、イオンを含有させていない上
記の吸着剤に対しても塩素は前出のガスに比較しより強
い親和力を有するが、イオンを含有させた上記吸着剤は
塩素に対する親和力がさらに向上する性能を有する。
[0008] The method of the present invention comprises the step of adding Ca,
A material containing an alkali metal ion or an alkaline earth metal ion selected from Ba and Li is used. The method for containing these ions in the adsorbent is an ordinary method, that is, an aqueous solution of a salt of a metal ion to be introduced is brought into contact with the adsorbent, followed by solid-liquid separation, washing, and removal of attached water (drying). Originally, chlorine has a stronger affinity for the above-mentioned adsorbent that does not contain ions than the above-mentioned gas, but the adsorbent containing ions has the ability to further improve the affinity for chlorine. Have.

【0009】これらのイオン含有吸着剤に対しては、塩
素は前記の各ガスに比較しより強い親和力を有している
ので、これらの吸着剤を充填した吸着塔に塩素を含む混
合ガスを導入すると塩素が他のガスより優先的に吸着さ
れるので、吸着塔のガス出口側では塩素濃度の低いガス
が、時にはほとんど検出されない程度までのガスが得ら
れる。
Since chlorine has a stronger affinity for these ion-containing adsorbents than the above-mentioned gases, a mixed gas containing chlorine is introduced into an adsorption tower filled with these adsorbents. Then, chlorine is adsorbed preferentially over other gases, so that a gas having a low chlorine concentration can be obtained on the gas outlet side of the adsorption tower to such an extent that it is sometimes hardly detected.

【0010】吸着剤に吸着される塩素を含む混合ガスの
塩素濃度には特に制限はないが、通常5〜80%塩素濃
度が適用される。塩素濃度が低い場合には脱着による再
生操作までの吸着時間は長く取ることができる。なおこ
の吸着操作の操作圧力は後の塩素の脱着操作より高い圧
力にする。操作温度は充填するゼオライトの種類、導入
ガスに含まれる塩素以外のガスの種類や経済的な問題で
決定される。たとえばY型ゼオライトを吸着剤として使
用し、同伴ガスに二酸化炭素が混合されている場合には
常温付近でも充分な塩素吸着を行なうことができる。一
方、充填物の劣化防止や設備の材質劣化を防止するため
に原料ガス中の水分は低い方が良く、1000ppm以
下が望ましい。
The chlorine concentration of the mixed gas containing chlorine adsorbed by the adsorbent is not particularly limited, but usually a chlorine concentration of 5 to 80% is applied. When the chlorine concentration is low, the adsorption time until the regeneration operation by desorption can be long. The operation pressure of this adsorption operation is set to be higher than that of the subsequent chlorine desorption operation. The operating temperature is determined by the type of zeolite to be charged, the type of gas other than chlorine contained in the introduced gas, and economical problems. For example, when Y-type zeolite is used as the adsorbent and carbon dioxide is mixed in the accompanying gas, sufficient chlorine adsorption can be performed even at around normal temperature. On the other hand, in order to prevent the deterioration of the packing material and the material of the equipment, the moisture in the raw material gas is preferably low, and is preferably 1000 ppm or less.

【0011】吸着塔への塩素の吸着が進み、飽和状態に
近づいたところで原料としての塩素を含む混合ガスの吸
着塔への供給を停止する。続いて吸着塔の操作圧力を降
下させ、吸着している塩素およびその他のガスを脱着さ
せる。この時の操作圧力は吸着時の圧力以下とし、必要
に応じて真空ポンプにより大気圧以下にすることも有効
である。
When the adsorption of chlorine into the adsorption tower progresses and the state approaches a saturated state, the supply of the mixed gas containing chlorine as a raw material to the adsorption tower is stopped. Subsequently, the operating pressure of the adsorption tower is lowered to desorb adsorbed chlorine and other gases. At this time, the operation pressure is set to be equal to or lower than the pressure at the time of adsorption, and if necessary, it is also effective to set the pressure to equal to or lower than the atmospheric pressure by using a vacuum pump.

【0012】また、操作温度は任意であるが、基本的に
は吸着時の温度と同じとする方が経済的である。もちろ
ん、経済的に有効であればいわゆるサーマルスイング方
式を取ることも可能である。更に、脱着操作時に少量の
不活性ガス、好ましくは窒素ガスを通気させることは吸
着剤から塩素ガスの脱着が促進され好ましい態様であ
る。
Although the operating temperature is arbitrary, it is basically more economical to set the same temperature as the temperature at the time of adsorption. Of course, if economically effective, a so-called thermal swing method can be adopted. Further, it is a preferable embodiment that a small amount of inert gas, preferably nitrogen gas, is passed during the desorption operation because the desorption of chlorine gas from the adsorbent is promoted.

【0013】この脱着操作により導入ガスよりも塩素濃
度の高いガスを得ることができるとともに、塩素を吸着
した吸着剤は脱塩素されるので再生することができ、再
び次の吸着操作を繰り返し行なうことができる。
By this desorption operation, a gas having a higher chlorine concentration than the introduced gas can be obtained, and the adsorbent which has adsorbed chlorine can be regenerated because it is dechlorinated, and the next adsorption operation is repeated. Can be.

【0014】次に、工業規模におけるより具体的な形で
の実施の状態について説明する。図1にその形態を示
す。
Next, the state of implementation in a more specific form on an industrial scale will be described. FIG. 1 shows the configuration.

【0015】図1では塩素及び二酸化炭素を含む混合原
料ガスは、管1よりガス圧縮機2に送られ、ここで所定
圧力まで昇圧された後、切換弁3を経て、3基の吸着塔
4a、4b、4cの内の第1の吸着塔4aに送り込まれ
る。3基の吸着塔4a、4b、4cには各々前出の塩素
を優先的に吸着する吸着剤が充填されており、加圧状態
で導入された原料ガス中の塩素が優先的に吸着され、吸
着塔4aの出口には塩素の含有率の低いガス、時にはほ
とんど検出できない程度に低い塩素濃度のガス(以下処
理済ガスとする)が得られる。この脱塩素ガスは切換弁
5、弁6を経てブロア7に送られ排出される(吸着工
程)。
In FIG. 1, a mixed raw material gas containing chlorine and carbon dioxide is sent from a pipe 1 to a gas compressor 2, where the pressure is raised to a predetermined pressure, and then, through a switching valve 3, three adsorption towers 4a. , 4b and 4c are sent to the first adsorption tower 4a. Each of the three adsorption towers 4a, 4b, and 4c is filled with an adsorbent that preferentially adsorbs the above-mentioned chlorine, and preferentially adsorbs chlorine in the source gas introduced in a pressurized state. At the outlet of the adsorption tower 4a, a gas having a low chlorine content, and sometimes a gas having a chlorine concentration low enough to be hardly detectable (hereinafter referred to as a treated gas) is obtained. The dechlorinated gas is sent to the blower 7 via the switching valve 5 and the valve 6 and discharged (adsorption step).

【0016】この時、第2の吸着塔4bでは、第1の吸
着塔4aから吐出した処理済ガスの一部が流量調節機構
8、切換弁9を経て第2の吸着塔4b内に導入され、こ
の塔内に圧力が処理済ガスによって高められる充圧工程
が実施されており、また第3の吸着塔4cではこの塔内
と真空ポンプ10が切換弁11、12aを経て接続さ
れ、この塔内の吸着剤が減圧状態で再生処理される再生
工程が実施されている。
At this time, in the second adsorption tower 4b, a part of the treated gas discharged from the first adsorption tower 4a is introduced into the second adsorption tower 4b via the flow rate adjusting mechanism 8 and the switching valve 9. In the third adsorption tower 4c, a vacuum pump 10 is connected to the inside of the tower via switching valves 11 and 12a, and a pressure step of increasing the pressure by the treated gas is performed in the tower. A regeneration step is performed in which the adsorbent in the inside is regenerated under reduced pressure.

【0017】そして、所定量の塩素を吸着して飽和寸前
となった吸着塔4aは、切換弁3の切換えによって原料
ガスの導入が停止されると共に、切換弁13の切換えに
よって塔内が真空ポンプ10で排気されて減圧状態とな
り、吸着剤に吸着された塩素が脱着され、吸着剤が再生
される(再生工程)。この再生工程で製品としての塩素
濃度の高いガスを真空ポンプ10の吐出口から得ること
ができ、この塩素を高濃度に含有したガスは下流の消費
工程に送られる。
In the adsorption tower 4a, which has reached a point of saturation by adsorbing a predetermined amount of chlorine, the introduction of the raw material gas is stopped by switching the switching valve 3, and the inside of the tower is switched by the switching of the switching valve 13 to a vacuum pump. The gas is exhausted in step 10 to be in a reduced pressure state, the chlorine adsorbed on the adsorbent is desorbed, and the adsorbent is regenerated (regeneration step). In this regeneration step, a gas having a high chlorine concentration as a product can be obtained from the discharge port of the vacuum pump 10, and the gas containing a high concentration of chlorine is sent to a downstream consumption step.

【0018】この時第2の吸着塔4bでは、原料ガスが
切換弁14を経て導入され、この塔の出口から処理済ガ
スが吐出し、切換弁15、弁6を経てブロア7に送ら
れ、さらに消費工程へ送られる。また第3の吸着塔4c
では第2の吸着塔4bから吐出される処理済ガスの一部
が流量調節機構8、切換弁16を経て導入され、この塔
内の圧力が処理済ガスによって高められる充圧工程が実
施されている。その後第3の吸着塔4cでは切換弁17
を経て原料ガスが導入され、処理済ガスが切換弁18、
弁6を経てブロア7に送られ、排出される。これと同時
に第1の吸着塔4aでは、第3の吸着塔4cから吐出さ
れる処理済ガスの一部が流量調節機構8、切換弁19を
経て導入され、この塔内の圧力が処理済ガスによって高
められる充圧工程が実施されている。
At this time, in the second adsorption tower 4b, the raw material gas is introduced through the switching valve 14, the treated gas is discharged from the outlet of this tower, and sent to the blower 7 through the switching valve 15 and the valve 6, Further sent to the consumption process. Also, the third adsorption tower 4c
In the above, a part of the treated gas discharged from the second adsorption tower 4b is introduced through the flow rate adjusting mechanism 8 and the switching valve 16, and the pressure in the tower is increased by the treated gas. I have. Thereafter, in the third adsorption tower 4c, the switching valve 17
The raw material gas is introduced through the
It is sent to the blower 7 via the valve 6 and discharged. At the same time, in the first adsorption tower 4a, a part of the treated gas discharged from the third adsorption tower 4c is introduced through the flow rate adjusting mechanism 8 and the switching valve 19, and the pressure in the tower is reduced. A pressure-increasing step is carried out.

【0019】この時第2の吸着塔4bでは、切換弁14
の切り換えにより原料ガスの導入が停止されると共に、
切換弁20の切り換えによって塔内が真空ポンプ10で
排気されて減圧状態になり、吸着剤に吸着された塩素が
脱着され、吸着剤が再生される。
At this time, in the second adsorption tower 4b, the switching valve 14
The introduction of the source gas is stopped by switching
By switching the switching valve 20, the inside of the tower is evacuated by the vacuum pump 10 to be in a decompressed state, the chlorine adsorbed by the adsorbent is desorbed, and the adsorbent is regenerated.

【0020】以下同様に、この一連操作を3基の吸着塔
4a、4b、4cについて交互に繰り返すことによって
塩素及び二酸化炭素を含む混合原料ガスより塩素を分離
し、原料ガス中の塩素濃度以上の塩素濃度のガスを連続
的に得ることができる。
In the same manner, by repeating this series of operations alternately for the three adsorption towers 4a, 4b, and 4c, chlorine is separated from the mixed raw material gas containing chlorine and carbon dioxide , and the chlorine concentration in the raw material gas is increased. A gas having a chlorine concentration can be continuously obtained.

【0021】[0021]

【実施例】次に、実施例により本発明をさらに詳細に説
明する。
Next, the present invention will be described in more detail by way of examples.

【0022】実施例1 合成Y型ゼオライト(ZEOCHEM製)を塩化カルシ
ウム10%水溶液に2時間接触させ、固液分離、水洗、
乾燥し、Ca交換したY型ゼオライトを得た。次にこの
Y型ゼオライトを200cc/minの窒素気流中に曝
しながら300℃に4時間保持した。次いで窒素気流中
で室温まで冷却した。この吸着剤40gを充填したステ
ンレス製の吸着カラムに25〜30℃にて塩素(15
%)・二酸化炭素(15%)・酸素(70%)の組成の
ガスを5atmの圧力に調節して200ml/minで
12分間通気した。この間カラムから流出するガスをガ
スクロマトグラフ分析を行いガス組成を分析したところ
塩素ガスは100〜300ppm検出された。
Example 1 A synthetic Y-type zeolite (manufactured by ZEOCHEM) was brought into contact with a 10% aqueous solution of calcium chloride for 2 hours, followed by solid-liquid separation and washing with water.
Drying and Ca exchanged Y-type zeolite was obtained. Next, the Y-type zeolite was kept at 300 ° C. for 4 hours while being exposed to a nitrogen stream at 200 cc / min. Then, it was cooled to room temperature in a nitrogen stream. At 25 to 30 ° C., chlorine (15
%) / Carbon dioxide (15%) / oxygen (70%) was adjusted to a pressure of 5 atm and aerated at 200 ml / min for 12 minutes. During this time, the gas flowing out of the column was analyzed by gas chromatography to analyze the gas composition. As a result, 100 to 300 ppm of chlorine gas was detected.

【0023】通気完了後、原料ガスの供給を停止し、真
空ポンプで吸着カラムを60mmHg abs.の圧力
に5分間おき、塩素ガスを脱着させた。脱着したガスを
分析したところ塩素濃度88%であった。この脱着後の
吸着カラムに再び初めと同様の組成のガスを同条件で通
気したところ、やはり12分間は流出するガスの塩素濃
度は100〜300ppmであった。
After the completion of the ventilation, the supply of the raw material gas was stopped, and the adsorption column was moved to 60 mmHg abs. At a pressure of 5 minutes to desorb chlorine gas. When the desorbed gas was analyzed, the chlorine concentration was 88%. When a gas having the same composition as the first gas was again passed through the adsorption column after the desorption under the same conditions, the chlorine concentration of the gas flowing out for 12 minutes was 100 to 300 ppm.

【0024】実施例2 合成Y型ゼオライト(ZEOCHEM製)を塩化バリウ
ム10%水溶液に2時間接触させ、固液分離、水洗、乾
燥し、Ba交換したY型ゼオライトを得た。次にこのY
型ゼオライトを200cc/minの窒素気流中に曝し
ながら300℃に4時間保持した。次いで窒素気流中で
室温まで冷却した。この吸着剤40gを充填したステン
レス製の吸着カラムに25〜30℃にて塩素(5%)・
二酸化炭素(15%)・ヘリウム(80%)の組成のガ
スを5atmの圧力に調節して25分間通気した。この
間カラムから流出するガスをガスクロマトグラフ分析を
行いガス組成を分析したところ、塩素ガスは100〜3
00ppm検出された。
Example 2 A synthetic Y-type zeolite (manufactured by ZEOCHEM) was brought into contact with a 10% aqueous barium chloride solution for 2 hours, solid-liquid separated, washed with water and dried to obtain a Ba-exchanged Y-type zeolite. Then this Y
The zeolite was kept at 300 ° C. for 4 hours while being exposed to a 200 cc / min nitrogen stream. Then, it was cooled to room temperature in a nitrogen stream. At 25-30 ° C, chlorine (5%)
A gas having a composition of carbon dioxide (15%) and helium (80%) was adjusted to a pressure of 5 atm and aerated for 25 minutes. During this time, the gas flowing out of the column was subjected to gas chromatographic analysis to analyze the gas composition.
00 ppm was detected.

【0025】通気完了後、原料ガスの供給を停止し、真
空ポンプで吸着カラムを60mmHg abs.の圧力
に5分間おき、塩素ガスを脱着させた。脱着したガスを
分析したところ、塩素濃度65%であった。この脱着後
の吸着カラムに再び初めと同様の組成のガスを同条件で
通気したところ、やはり25分間は流出ガスの塩素濃度
は100〜300ppmであった。
After the completion of the ventilation, supply of the raw material gas was stopped, and the adsorption column was moved to 60 mmHg abs. At a pressure of 5 minutes to desorb chlorine gas. Analysis of the desorbed gas revealed a chlorine concentration of 65%. When a gas having the same composition as the first gas was again passed through the adsorption column after the desorption under the same conditions, the chlorine concentration of the effluent gas was 100 to 300 ppm for 25 minutes.

【0026】参考例1 合成Y型ゼオライト(ZEOCHEM製)を塩化リチウ
ム10%水溶液に2時間接触させ、固液分離、水洗、乾
燥し、Li交換したY型ゼオライトを得た。次にこのY
型ゼオライトを200cc/minの窒素気流中に曝し
ながら300℃に4時間保持した。次いで窒素気流中で
室温まで冷却した。この吸着剤40gを充填したステン
レス製の吸着カラムに25〜30℃にて塩素(15%)
・窒素(15%)・ヘリウム(70%)の組成のガスを
5atmの圧力に調節して200ml/minで12分
間通気した。この間カラムから流出するガスをガスクロ
マトグラフ分析を行いガス組成を分析したところ、塩素
ガスは100〜300ppm検出された。
REFERENCE EXAMPLE 1 A synthetic Y-type zeolite (manufactured by ZEOCHEM) was brought into contact with a 10% aqueous solution of lithium chloride for 2 hours , followed by solid-liquid separation, washing with water and drying.
After drying, Li-exchanged Y-type zeolite was obtained. Then this Y
The zeolite was kept at 300 ° C. for 4 hours while being exposed to a 200 cc / min nitrogen stream. Then, it was cooled to room temperature in a nitrogen stream. A stainless steel adsorption column filled with 40 g of this adsorbent is added with chlorine (15%) at 25 to 30 ° C.
A gas having a composition of nitrogen (15%) and helium (70%) was adjusted to a pressure of 5 atm and aerated at 200 ml / min for 12 minutes. During this time, the gas flowing out of the column was analyzed by gas chromatography to analyze the gas composition. As a result, 100 to 300 ppm of chlorine gas was detected.

【0027】通気完了後、原料ガスの供給を停止し、真
空ポンプで吸着カラムを60mmHg abs.の圧力
に5分間おき、更に窒素ガスを7ml/minで3分間
通気し塩素ガスを脱着させた。脱着したガスを分析した
ところ塩素濃度93%であった。この脱着後の吸着カラ
ムに再び初めと同様の組成のガスを同条件で通気したと
ころ、やはり12分間は流出するガスの塩素濃度は10
0〜300ppmであった。
After the completion of the ventilation, supply of the raw material gas was stopped, and the adsorption column was moved to 60 mmHg abs. At a pressure of 5 minutes, and nitrogen gas was further passed at 7 ml / min for 3 minutes to desorb chlorine gas. When the desorbed gas was analyzed, the chlorine concentration was 93%. When a gas having the same composition as that of the first gas was again passed through the adsorption column after the desorption under the same conditions, the chlorine concentration of the gas flowing out for 10 minutes also became 10%.
It was 0 to 300 ppm.

【0028】実施例3 合成13X型ゼオライト(富士デビソン製)を塩化カル
シウム10%水溶液に2時間接触させ、固液分離、水
洗、乾燥し、Ca交換した13X型ゼオライトを得た。
次にこの13X型ゼオライトを200cc/minの窒
素気流中に曝しながら300℃に4時間保持した。次い
で窒素気流中で室温まで冷却した。この吸着剤40gを
充填したステンレス製の吸着カラムに60℃にて塩素
(15%)・二酸化炭素(15%)・ヘリウム(70
%)の組成のガスを5atmの圧力に調節して200m
l/minで6分間通気した。この間カラムから流出す
るガスをガスクロマトグラフ分析を行いガス組成を分析
したところ、塩素ガスは200〜500ppm検出され
た。
Example 3 A synthetic 13X zeolite (manufactured by Fuji Devison) was brought into contact with a 10% aqueous solution of calcium chloride for 2 hours, solid-liquid separated, washed with water and dried to obtain a Ca-exchanged 13X zeolite.
Next, the 13X type zeolite was kept at 300 ° C. for 4 hours while being exposed to a nitrogen stream at 200 cc / min. Then, it was cooled to room temperature in a nitrogen stream. At 60 ° C., chlorine (15%), carbon dioxide (15%), and helium (70) were applied to a stainless steel adsorption column filled with 40 g of the adsorbent.
%) Of a gas having a composition of 200 atm.
It was aerated at 1 / min for 6 minutes. During this time, the gas flowing out of the column was analyzed by gas chromatography to analyze the gas composition. As a result, 200 to 500 ppm of chlorine gas was detected.

【0029】通気完了後、原料ガスの供給を停止し、真
空ポンプで吸着カラムを60mmHgabs.の圧力に
5分間おき、塩素ガスを脱着させた。脱着したガスを分
析したところ塩素濃度82%であった。この吸着後の吸
着カラムに再び初めと同様の組成のガスを同条件で通気
したところ、やはり6分間は流出するガスの塩素濃度は
200〜500ppmであった。
After the completion of the ventilation, supply of the raw material gas was stopped, and the adsorption column was moved to 60 mmHgabs. At a pressure of 5 minutes to desorb chlorine gas. When the desorbed gas was analyzed, the chlorine concentration was 82%. When a gas having the same composition as the first gas was again passed through the adsorption column after the adsorption under the same conditions, the chlorine concentration of the gas flowing out for 6 minutes was 200 to 500 ppm.

【0030】 比較例1合成Y型ゼオライト(ZEOCH
EM製)40gを充填したステンレス製の吸着カラムに
25〜30℃にて塩素(15%)・二酸化炭素(15
%)・酸素(70%)の組成のガスを5atmの圧力に
調節して200ml/minで12分間通気した。この
間カラムから流出するガスをガスクロマトグラフ分析を
行いガス組成を分析したところ塩素ガスは100〜30
0ppm検出された。
[0030] Comparative Example 1 Synthesis zeolite Y (ZEOCH
EM (manufactured by EM) in a stainless steel adsorption column filled with 40 g of chlorine (15%) / carbon dioxide (15
%) / Oxygen (70%) gas was adjusted to a pressure of 5 atm and aerated at 200 ml / min for 12 minutes. During this time, the gas flowing out of the column was analyzed by gas chromatography to analyze the gas composition.
0 ppm was detected.

【0031】 通気完了後、原料ガスの供給を停止し、真
空ポンプで吸着カラムを60mmHg abs.の圧力
に5分間おき、塩素ガスを脱着させた。脱着したガスを
分析したところ塩素濃度78%であった。この脱着後の
吸着カラムに再び初めと同様の組成のガスを同条件で通
気したところ、やはり12分間は流出するガスの塩素濃
度は100〜300ppmであった。
[0031] After completion aeration, the supply of the source gas is stopped, 60 mmHg abs adsorption column with a vacuum pump. At a pressure of 5 minutes to desorb chlorine gas. When the desorbed gas was analyzed, the chlorine concentration was 78%. When a gas having the same composition as the first gas was again passed through the adsorption column after the desorption under the same conditions, the chlorine concentration of the gas flowing out for 12 minutes was 100 to 300 ppm.

【0032】[0032]

【発明の効果】本発明は圧力スイング吸着法に用いられ
る吸着剤として、Ca、Ba、Liから選ばれるアルカ
リ金属および/又はアルカリ土類金属を含有させたY型
及び/又は13X型ゼオライトを用いることにより改良
し、塩素及び二酸化炭素を含む混合ガスから塩素をより
選択的に分離する方法を提供するもので、塩素濃度の向
上策として非常に有効である。
According to the present invention , a Y type containing an alkali metal and / or an alkaline earth metal selected from Ca, Ba, and Li as an adsorbent used in the pressure swing adsorption method.
And / or 13X-type zeolite, which is improved by using a zeolite and provides a method for more selectively separating chlorine from a mixed gas containing chlorine and carbon dioxide , which is very effective as a measure for improving chlorine concentration.

【0033】 本発明は塩素を利用する設備において付属
設備として実施される。
The present invention is implemented as an accessory in equipment utilizing chlorine.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を特に連続的に行うために複数の吸着塔
を用いる設備の模式図である。
FIG. 1 is a schematic diagram of an installation using a plurality of adsorption towers for performing the present invention particularly continuously.

【符号の説明】[Explanation of symbols]

1. 原料ガス供給管 2. 圧縮機 4a.4b.4c. 吸着塔 6. 弁 7. ブロア 8. 流量調節機構 10. 真空ポンプ 3,5,9,11,12a,12b,13〜20 切換
1. Source gas supply pipe 2. Compressor 4a. 4b. 4c. Adsorption tower 6. Valve 7. Blower 8. Flow control mechanism 10. Vacuum pump 3,5,9,11,12a, 12b, 13-20 switching valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 洋之 福岡県大牟田市浅牟田町30 三井東圧化 学株式会社内 (72)発明者 菊地 功 福岡県大牟田市浅牟田町30 三井東圧化 学株式会社内 審査官 森 健一 (56)参考文献 米国特許3029575(US,A) 日本ソーダ工業会編集・発行「ソーダ ハンドブック」(昭50−1−30)第324 頁 (58)調査した分野(Int.Cl.7,DB名) B01D 53/04 B01J 20/18 C01B 7/07 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroyuki Ito 30 Asamuta-cho, Omuta-shi, Fukuoka Pref. Inspector in Japan Kenichi Mori (56) Reference US Patent 3029575 (US, A) Soda Handbook (edited and published by Japan Soda Industry Association) (Sho 50-1-30), p.324 (58) .Cl. 7 , DB name) B01D 53/04 B01J 20/18 C01B 7/07

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 塩素を吸着しうる吸着剤を充填した吸着
塔に、塩素及び二酸化炭素を含有するガスを導入して塩
素を選択的に吸着させ、その後ガスの導入を停止し、ガ
ス導入時よりも低い圧力下で脱着を行ない、導入ガスの
塩素濃度より高い塩素濃度のガスを得るとともに吸着剤
を再生する方法において、塩素を吸着しうる吸着剤がC
a、Ba、Liから選ばれるアルカリ金属及び/又はア
ルカリ土類金属を含有したY型及び/又は13X型ゼオ
ライトであることを特徴とする塩素ガスの濃縮方法。
1. A gas containing chlorine and carbon dioxide is introduced into an adsorption tower filled with an adsorbent capable of adsorbing chlorine to selectively adsorb chlorine, and thereafter the gas introduction is stopped. In the method of desorbing under a lower pressure to obtain a gas having a chlorine concentration higher than the chlorine concentration of the introduced gas and regenerating the adsorbent, the adsorbent capable of adsorbing chlorine is C
A method for concentrating chlorine gas, which is a Y-type and / or 13X-type zeolite containing an alkali metal and / or an alkaline earth metal selected from a, Ba, and Li.
JP03138749A 1991-06-11 1991-06-11 How to concentrate chlorine gas Expired - Lifetime JP3080687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03138749A JP3080687B2 (en) 1991-06-11 1991-06-11 How to concentrate chlorine gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03138749A JP3080687B2 (en) 1991-06-11 1991-06-11 How to concentrate chlorine gas

Publications (2)

Publication Number Publication Date
JPH04363109A JPH04363109A (en) 1992-12-16
JP3080687B2 true JP3080687B2 (en) 2000-08-28

Family

ID=15229286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03138749A Expired - Lifetime JP3080687B2 (en) 1991-06-11 1991-06-11 How to concentrate chlorine gas

Country Status (1)

Country Link
JP (1) JP3080687B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180094317A (en) * 2017-02-15 2018-08-23 한국원자력연구원 System for Recycling Salt Wastes Using Absorbent and Method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5536302A (en) * 1994-03-23 1996-07-16 Air Products And Chemicals, Inc. Adsorbent for removal of trace oxygen from inert gases
EP2865444B1 (en) 2012-06-25 2019-08-07 Panasonic Corporation Carbon dioxide adsorbent

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
日本ソーダ工業会編集・発行「ソーダハンドブック」(昭50−1−30)第324頁

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180094317A (en) * 2017-02-15 2018-08-23 한국원자력연구원 System for Recycling Salt Wastes Using Absorbent and Method thereof
KR102011710B1 (en) * 2017-02-15 2019-08-19 한국원자력연구원 System for Recycling Salt Wastes Using Absorbent and Method thereof

Also Published As

Publication number Publication date
JPH04363109A (en) 1992-12-16

Similar Documents

Publication Publication Date Title
JP3072129B2 (en) How to concentrate chlorine gas
US3957463A (en) Oxygen enrichment process
CA1322971C (en) Process for producing high purity oxygen gas from air
CA1271710A (en) Process for producing high concentration oxygen by a pressure-swing-absorption method
US5919286A (en) PSA process for removel of nitrogen oxides from gas
CN1137418A (en) Removal of carbon dioxide from gas streams
US5840099A (en) Process for the removal of water, CO2, ethane and C3 + hydrocarbons from a gas stream
JP3902416B2 (en) Gas separation method
RU2707767C1 (en) Cryogenic adsorption process for xenon extracting
JPH11290635A (en) Removal of carbon dioxide from gas flow
JPH10113502A (en) Method and apparatus for producing low temperature fluid in high purity liquid
EP0946410B1 (en) Process for recovering sulfur hexafluoride
US6017382A (en) Method of processing semiconductor manufacturing exhaust gases
KR101781256B1 (en) Purification of air
JP2002204917A (en) Method for separating raw material gas
JP3080687B2 (en) How to concentrate chlorine gas
JP2909254B2 (en) How to concentrate chlorine gas
JP2909253B2 (en) How to concentrate chlorine gas
JPH05301011A (en) Method for concentrating gaseous hydrogen chloride
JPS621767B2 (en)
JPS61230715A (en) Method for concentrating and recovering gas by using psa apparatus
KR19980016382A (en) Pressure swing adsorption method for producing high purity carbon dioxide
JPS62117612A (en) Regenerating method for adsorption tower
JPS63182206A (en) Process and apparatus for producing nitrogen having high purity
Mao et al. Ethylene recovery from low grade gas stream by adsorption on zeolites and controlled desorption

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080623

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 11

EXPY Cancellation because of completion of term