JPH0396802A - Position detecting method - Google Patents

Position detecting method

Info

Publication number
JPH0396802A
JPH0396802A JP23536089A JP23536089A JPH0396802A JP H0396802 A JPH0396802 A JP H0396802A JP 23536089 A JP23536089 A JP 23536089A JP 23536089 A JP23536089 A JP 23536089A JP H0396802 A JPH0396802 A JP H0396802A
Authority
JP
Japan
Prior art keywords
light source
point
light
position detection
real image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23536089A
Other languages
Japanese (ja)
Other versions
JP2749900B2 (en
Inventor
Tetsuo Okamura
哲郎 岡村
Yoji Kubota
洋治 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Instruments Corp
Original Assignee
Sankyo Seiki Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Seiki Manufacturing Co Ltd filed Critical Sankyo Seiki Manufacturing Co Ltd
Priority to JP23536089A priority Critical patent/JP2749900B2/en
Publication of JPH0396802A publication Critical patent/JPH0396802A/en
Application granted granted Critical
Publication of JP2749900B2 publication Critical patent/JP2749900B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Abstract

PURPOSE:To detect a position with high accuracy by fixing a pair of a light source and a reflecting member or image information reflection system on a movable body, positioning a real image formed by the image formation reflection system for a spot light on a photodetection surface, and detecting the position of a moving body from the real image position of a photodetection position detecting member. CONSTITUTION:A detecting element 12, a semiconductor laser 14, and a beam splitter 16 are put in measurement mode, the semiconductor laser light 14 is turned on to form a real image at a point P through a concave mirror 18, and the detecting element 12 detects the position of the point P. The position Q of a virtual light source and the position P of the real image are symmetrical about an optical axis passing the peak point B of the concave mirror 18, the position of the point Q is already determined, and the position of the movable body 10 is detected from the distance between the points P and Q. Consequently, the position of the moving body 10 can be detected with high accuracy.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、位置検出方法に関する。[Detailed description of the invention] [Industrial application fields] The present invention relates to a position detection method.

[従来の技術] 精密機械の組立てや精密加工などに於いては、組立部品
や加工部品等に極めて高精度の位置調整か要求されるこ
とが多い。
[Prior Art] In the assembly and precision machining of precision machines, extremely high-precision position adjustment is often required for assembled parts, machined parts, and the like.

このため、可動物体である組立部品や加工部品の位置を
高精度で検出することが行われている。
For this reason, the positions of movable objects such as assembly parts and processed parts are being detected with high precision.

[発明が解決しようとする課題] 本発明も、可動物体の位置検出を高精度で行い得る新規
な位置検出方法の提供を目的とする。
[Problems to be Solved by the Invention] The present invention also aims to provide a novel position detection method that can detect the position of a movable object with high precision.

[課題を解決するための手段コ 以下、本発明を説明する。[Means to solve the problem] The present invention will be explained below.

本発明は「直線上もしくは平面上で変位可能な可動物体
の位置を規準位置に対して検出する方法」であって、「
点光源と、結像反射系と、反射部材と、受光位置検出部
材と」を用いる。
The present invention is a method for detecting the position of a movable object that can be displaced on a straight line or on a plane with respect to a reference position,
A point light source, an imaging reflection system, a reflection member, and a light receiving position detection member are used.

点光源としては、例えば半導体レーザーを用いることか
できる。結像反射系は、反射機能と結像機能を持つ光学
系であり、例えば平面鏡と結像レンズの組合せや凹面鏡
である。反射部材としては平面鏡やハーフミラー、ビー
ムスブリッターを用い得る。また受光位置検出部材は、
その受光面に入射する光束の入射位置を検出できるもの
を使用でき、例えばラインセンサーやエリアセンサーあ
るいは半導体位置検出素子を用い得る。
As a point light source, for example, a semiconductor laser can be used. The imaging reflection system is an optical system having a reflection function and an imaging function, and is, for example, a combination of a plane mirror and an imaging lens, or a concave mirror. As the reflecting member, a plane mirror, a half mirror, or a beam splitter can be used. In addition, the light receiving position detection member is
Any device capable of detecting the incident position of the light flux incident on the light receiving surface can be used, such as a line sensor, an area sensor, or a semiconductor position detection element.

位置検出に当たっては「受光位置検出部材を規準態位に
保持する」とともに、「点光源と反射部材の組」を可動
物体に固定するか、もしくは結像反射系を可動物体に固
定する。
For position detection, the light-receiving position detection member is held in a standard position, and either the point light source and reflection member set is fixed to the movable object, or the imaging reflection system is fixed to the movable object.

そして、点光源からの発散性の光束を反射部材を介して
結像反射系に入射させるように、且つ上記点光源の反射
部材による虚像と、点光源の結像反射系による実像とが
ともに受光位置検出部材の受光面上に位置するように、
点光源と結像反射系と反射部材と受光位置検出部材との
位置関係を定める。
Then, the diverging light beam from the point light source is made incident on the imaging reflection system via the reflection member, and both the virtual image of the point light source by the reflection member and the real image of the point light source by the imaging reflection system are received. so as to be located on the light receiving surface of the position detection member.
The positional relationship between the point light source, the imaging reflection system, the reflection member, and the light receiving position detection member is determined.

そして点光源を発光させ、受光位置検出部材による上記
実像の位置検出に基づき可動物体の位置を検出する。
Then, the point light source is caused to emit light, and the position of the movable object is detected based on the position detection of the real image by the light receiving position detection member.

[作  用コ 「点光源の虚像位置」と「結像反射系による実像」は、
ともに受光位置検出部材の受光面上に位置し、可動物体
の位置と実像位置とは対応関係にある。従って受光位置
検出部材の出力に基づき、可動物体の位置を検出できる
[Action: "Virtual image position of point light source" and "real image by imaging reflection system" are
Both are located on the light receiving surface of the light receiving position detection member, and the position of the movable object and the real image position are in a corresponding relationship. Therefore, the position of the movable object can be detected based on the output of the light receiving position detection member.

[実施例] 以下、具体的な実施例に即して説明する。[Example] Hereinafter, description will be given based on specific examples.

第1図の実施例に於いて、符号10は可動物体、符号1
2は受光位置検出部材としての半導体位置検出素子(以
下、単に検出素子12という)、符号14は点光源とし
ての半導体レーザー、符号16は反射部材としてのビー
ムスプリッター、符号18は結像反射系としての凹面鏡
をそれぞれ示している。
In the embodiment shown in FIG. 1, reference numeral 10 denotes a movable object;
2 is a semiconductor position detection element (hereinafter simply referred to as detection element 12) as a light receiving position detection member, 14 is a semiconductor laser as a point light source, 16 is a beam splitter as a reflection member, and 18 is an image forming reflection system. Each shows a concave mirror.

可動物体10は、第1図の左右方向と図面に直交する方
向の2次元平面上で可動である。
The movable object 10 is movable on a two-dimensional plane in the left-right direction of FIG. 1 and in a direction perpendicular to the drawing.

一方、検出素子12は、上記「2次元平面」と平行な平
面を規準面として、この規準面に受光面を合致させて配
備され、しかも配備位置は定位置に定められている。こ
の配備位置に配備されたときの検出素子12の態位を基
準態位と言う。
On the other hand, the detection element 12 is arranged with a plane parallel to the above-mentioned "two-dimensional plane" as a reference plane, and the light-receiving surface matches this reference plane, and the arrangement position is set at a fixed position. The attitude of the detection element 12 when it is deployed at this deployment position is referred to as a reference attitude.

検出素子12の近傍にはビームスプリッター]6が配備
され、ビームスプリッター16の側方には半導体レーザ
ー14が配備されている。
A beam splitter] 6 is provided near the detection element 12, and a semiconductor laser 14 is provided on the side of the beam splitter 16.

この実施例では、検出素子12とビームスブリッタ−1
6と半導体レーザー14とは、図に示す相互的な位置関
係を保つように一体化されている。
In this embodiment, the detection element 12 and the beam splitter 1
6 and the semiconductor laser 14 are integrated so as to maintain the mutual positional relationship shown in the figure.

そして、これら3者は一体として図の位置を占めるとと
もに、この位置から退避することができるようになって
いる。そして図の態位(検出態位という)を占めるとき
は自動的に検出素子12が基準態位占めるようになって
いる。
These three people collectively occupy the position shown in the figure, and are able to evacuate from this position. When the posture shown in the figure (referred to as the detection posture) is assumed, the detection element 12 automatically assumes the reference posture.

半導体レーザー14の発光部は点光源であり、この点光
源からは発散性の光束が放射される。この光束は、その
一部がビームスブリッタ−16により反射される。この
とき反射光束は恰もQ点からの光のように発散しつつ凹
面[18に入射する。
The light emitting portion of the semiconductor laser 14 is a point light source, and a diverging light beam is emitted from this point light source. A portion of this light beam is reflected by the beam splitter 16. At this time, the reflected light flux enters the concave surface [18] while diverging just like light from point Q.

Q点は、ビームスブリッターl6による点光源の虚像の
位置である。この虚像の位置は、半導体レーザー14と
ビームスブリッタ−16の位置関係に応じて一義的に定
まる。そして、図に示すように上記虚像の位置Qが検出
素子12の受光面上に位置するように、検出素子12、
半導体レーザー14、ビームスブリッター16の位置関
係が定められている。
The Q point is the position of the virtual image of the point light source created by the beam splitter l6. The position of this virtual image is uniquely determined depending on the positional relationship between the semiconductor laser 14 and the beam splitter 16. Then, as shown in the figure, the detection element 12,
The positional relationship between the semiconductor laser 14 and the beam splitter 16 is determined.

また、上述のように、これら3者の位置関係は固定的で
あるから虚像の位置Qは定位置である。そこでこの実施
例では、この虚像の位置Qを基準位置として演算手段(
図示されず)に予め記憶させて置く。
Further, as described above, since the positional relationship between these three is fixed, the position Q of the virtual image is a fixed position. Therefore, in this embodiment, the calculation means (
(not shown) is stored in advance.

ビームスブリッタ−16により反射された光束は発散し
つつ凹面[18に入射し、反射されると凹面鏡18の結
像作用によりP点に結像する。このP点は従って、点光
源の凹面鏡18による実像の結像位置である。凹面鏡1
8の位置は、このP点が検出素子12の受光面上に位置
するように調整される。
The light beam reflected by the beam splitter 16 is incident on the concave surface [18] while diverging, and when reflected, it is imaged at point P by the imaging action of the concave mirror 18. This point P is therefore the position at which a real image is formed by the concave mirror 18, which is a point light source. concave mirror 1
The position of 8 is adjusted so that this point P is located on the light receiving surface of the detection element 12.

さて、可動物体10の位置検出に就き説明する。Now, detection of the position of the movable object 10 will be explained.

可動物体10には、適当な目印(可動物体の端部等でも
良い)が付されている。この目印を図中に符号Aで示す
。すると「可動物体10の位置を検出する」とは、目印
Aの位置が前述した基準位置Qに対し第l図の左右方向
に於いてどれほど離れた位置にあるか、換言すれば基準
位置Qを可動物体10上に射影した射影点と目印Aとの
間の距離がどれほどであるかを検出することに他ならな
い。
The movable object 10 is provided with a suitable mark (the end of the movable object or the like may be used). This landmark is indicated by the symbol A in the figure. Then, "detecting the position of the movable object 10" means determining how far the position of the landmark A is from the reference position Q mentioned above in the left-right direction of FIG. This is nothing but detecting the distance between the projection point projected onto the movable object 10 and the landmark A.

位置検出は、以下の如くに行われる。Position detection is performed as follows.

まず、第1図の状態から検出素子12、半導体レーザー
14、ビームスブリッタ−16を一体として退避させる
。この状態に於いて、顕微鏡を用いて凹面鏡16の頂部
の位置Bを測定する。この顕微鏡はスフェロメーターと
呼ばれる顕微鏡である。凹面鏡の曲率中心から放射され
た光束は曲率中心に集束するので、これを利用してスフ
エロメーターにより凹面鏡の曲率中心を求め、この曲率
中心から顕微鏡の光軸が凹面鏡18に当たる位置を可動
物体10上に射影した位置を上記「頂部」の位置Bとす
る。この状態から顕微鏡が目印Aを光軸上にとらえるま
で顕微鏡を第l図左方へ移動させ、この間の顕微鏡の変
位量を顕微鏡のスケールで計測する。
First, the detection element 12, semiconductor laser 14, and beam splitter 16 are evacuated as one from the state shown in FIG. In this state, the position B of the top of the concave mirror 16 is measured using a microscope. This microscope is called a spherometer. Since the light beam emitted from the center of curvature of the concave mirror is focused on the center of curvature, this is used to find the center of curvature of the concave mirror using a spherometer, and from this center of curvature, the position where the optical axis of the microscope hits the concave mirror 18 is determined by the movable object 10. The upwardly projected position is the above-mentioned "top" position B. From this state, the microscope is moved to the left in Figure 1 until the microscope captures the mark A on the optical axis, and the amount of displacement of the microscope during this time is measured on the scale of the microscope.

これにより凹面R18の頂部の位置Bと目印Aの間の距
離Lが知れるので、このLを前述の演算手段に入力して
置く。
As a result, the distance L between the position B of the top of the concave surface R18 and the mark A is known, and this L is input into the above-mentioned calculation means.

次ぎに、検出素子12、牛導体レーザーl6、ビームス
プリッタ−16を測定態位(第1図に示された態位)に
復帰させる。これにより検出素子12は基準態位を占め
る。
Next, the detection element 12, the cow conductor laser l6, and the beam splitter 16 are returned to the measurement position (the position shown in FIG. 1). As a result, the detection element 12 assumes the reference position.

半導体レーザー14を発光させると凹面鏡18による実
像がP点に結像する。このP点の位置を検出素子12に
より検出する。凹面鏡18による結像倍率は等倍である
から、虚光源の位置Q点と実像の位置P点とは、凹面鏡
18の頂部B点を通る光軸に関して対称の位置にある。
When the semiconductor laser 14 emits light, a real image formed by the concave mirror 18 is formed at point P. The position of this point P is detected by the detection element 12. Since the imaging magnification by the concave mirror 18 is equal to the same magnification, the position Q of the virtual light source and the position P of the real image are symmetrical with respect to the optical axis passing through the top point B of the concave mirror 18.

Q点の位置は既に決定されているから、P点の位置が検
出素子12により検出されると、PQ点間の距離2δが
分かる。
Since the position of point Q has already been determined, when the position of point P is detected by the detection element 12, the distance 2δ between points P and Q is known.

すると可動物体10の目印Aの位置が、基準位置Qから
(L十δ)だけ離れていることが分かる。
Then, it can be seen that the position of the mark A on the movable object 10 is separated from the reference position Q by (L + δ).

かくして可動物体の位置が検出される。The position of the movable object is thus detected.

この例では、基準位置は点光源の虚像の位置Q点に設定
したが、基準の位置はこれに限らず、検出素子12の受
光面上の任意の位置、例えば受光面の中央位置等に設定
できる。
In this example, the reference position is set at point Q of the virtual image of the point light source, but the reference position is not limited to this, and can be set at any position on the light receiving surface of the detection element 12, such as the center position of the light receiving surface. can.

検出素子12は、第2図に示すようにX方向(第2図左
右方向)、Y方向(同図上下方向)の差し渡しが2dで
ある正方形の受光面を持ち、光スポットが入射すると、
その入射位置に応じて、4つの出力IXllIX21I
YllIY2が出力される。これらの出力は増幅器21
〜27により増幅されたのち位置演算部31.33に入
力される。これら位置演算部はX:d(Ixz−Ix+
)/(Ixz+Ix+)Y−d(Iy2−Iy+)/(
.L2”Iy+)なる演算を行って、入射スポットの位
置を与えるX, Y座標を算出する。但し、XY座標の
原点は受光面の中心部である。
As shown in FIG. 2, the detection element 12 has a square light-receiving surface whose width is 2d in the X direction (horizontal direction in FIG. 2) and the Y direction (vertical direction in the same figure), and when a light spot is incident,
Depending on its incidence position, four outputs IXllIX21I
YllIY2 is output. These outputs are sent to amplifier 21
After being amplified by steps 27 to 27, the signals are input to position calculation sections 31 and 33. These position calculation units are X:d(Ixz−Ix+
)/(Ixz+Ix+)Y-d(Iy2-Iy+)/(
.. L2"Iy+) is performed to calculate the X and Y coordinates that give the position of the incident spot. However, the origin of the XY coordinates is the center of the light receiving surface.

位置演算部の出力は、演算手段35に送られる。The output of the position calculation section is sent to the calculation means 35.

演算手段35には既にQ点の座標と、距離Lとが入力さ
れて記憶されているので、これらとP点の位置演算の結
果に基づき、目印A点の位置を検出できるのである。
Since the coordinates of the Q point and the distance L have already been input and stored in the calculation means 35, the position of the landmark point A can be detected based on these and the result of the position calculation of the P point.

可動物体10に位置合わせを行う場合であれば、このよ
うにして求められたA点の位置が所定の位置を占めるよ
うにするために、可動物体をどの方向にどれほど変位さ
せれば良いかがわかるので、その変位を実行することに
より、容易且つロ菫実に位置合わせを実現できる。
When aligning the movable object 10, it is necessary to determine in which direction and by how much the movable object should be displaced in order for the position of point A obtained in this way to occupy a predetermined position. As can be seen, by executing the displacement, alignment can be achieved easily and precisely.

上に説明した実施例の場合、虚光源の位置Q点は、検出
素子12とビームスブリッター16と半導体レーザー1
4の位置関係により「設計的」に定まる値を用いた。し
かし実際には、設計的に決定される虚光源位置Qと現実
の虚光源位置との間には、誤差によるずれがあるものと
考えられる。こ・のずれは、位置検出精度に対する誤差
になる。
In the case of the embodiment described above, the position Q of the imaginary light source is located between the detection element 12, the beam splitter 16, and the semiconductor laser 1.
A value determined by design based on the positional relationship of 4 was used. However, in reality, it is considered that there is a deviation due to an error between the imaginary light source position Q determined by design and the actual imaginary light source position. This deviation becomes an error in position detection accuracy.

検出素子12とビームスプリッタ−16と半導体レーザ
ー14の位置関係を正確に定めることにより、上記ずれ
を十分に小さくできるが、もし現実の虚光源位置を測定
できれば、「ずれ」の影響を除去できる。
By accurately determining the positional relationship between the detection element 12, the beam splitter 16, and the semiconductor laser 14, the above-mentioned deviation can be sufficiently reduced, but if the actual imaginary light source position can be measured, the influence of the "deviation" can be eliminated.

現実の虚光源位置を測定するには、以下のようにすれば
良い。
To measure the actual imaginary light source position, do the following.

第3図で、符号40は位置合わせ用の顕微鏡を示10 している。点光源41を発光させると、光はハーフ実ラ
ー43と対物レンズ45を介して射出し、ビームスプリ
ッタ−16を介して検出素子12の受光面に入射し、反
射されるとビームスブリッター16、対物レンズ45を
介してハーフミラー43に入射しハーフくラー43に反
射されるとスクリーン47上に入射する。この入射状態
を接眼レンズ49により観察する。
In FIG. 3, reference numeral 40 indicates a microscope 10 for positioning. When the point light source 41 emits light, the light is emitted through the half real mirror 43 and the objective lens 45, enters the light receiving surface of the detection element 12 through the beam splitter 16, and is reflected by the beam splitter 16, The light enters the half mirror 43 through the objective lens 45, is reflected by the half mirror 43, and then enters the screen 47. This incident state is observed through the eyepiece lens 49.

まず顕微鏡40全体を対物レンズ45の光軸方向へ変位
させ、スクリーン47上に点光源41の等倍像を結像さ
せる。このとき、像はスクリーン上のターゲットチャー
トの中心部分にある。
First, the entire microscope 40 is displaced in the direction of the optical axis of the objective lens 45, and a life-sized image of the point light source 41 is formed on the screen 47. At this time, the image is in the center of the target chart on the screen.

続いて、半導体レーザー14を発光させると、その現実
の虚光源位置Q“の像をスクリーン47上に観察できる
。この状態で顕微fi40を光軸直交方向に変位させて
、点光源41の像とQ′点の像とが重なり合うようにす
る。このとき点光源41からの光は、現実の虚光源位置
Q゛に集光している。
Next, when the semiconductor laser 14 is caused to emit light, an image of the actual imaginary light source position Q" can be observed on the screen 47. In this state, the microscope fi 40 is displaced in the direction perpendicular to the optical axis, and the image of the point light source 41 and the image of the point light source 41 can be observed. The images of point Q' are made to overlap.At this time, the light from the point light source 41 is focused on the actual virtual light source position Q'.

そこで、このときの検出素子12の出力により現実の虚
光源位置Q′を知ることができる。
Therefore, the actual imaginary light source position Q' can be known from the output of the detection element 12 at this time.

検出素子12は単一の受光面を有する。この場合、11 点光源の実像の位置が受光面に対して若干ずれると、受
光面上のスポットは幾分広がってしまうが、検出素子1
2の出力は、そのような場合、スポット内の強度分布を
重みとする強度分布の重心位置に応じて出力されるので
、実像の位置が正しく測定される。
The detection element 12 has a single light-receiving surface. In this case, if the position of the real image of the point light source 11 shifts slightly with respect to the light receiving surface, the spot on the light receiving surface will spread somewhat, but the detection element 1
In such a case, the output No. 2 is output according to the position of the center of gravity of the intensity distribution using the intensity distribution within the spot as a weight, so that the position of the real image can be accurately measured.

以下、別実施例を説明する。Another embodiment will be described below.

結像反射系を凹面鏡とする場合、第4図に示すように凹
面M18Aにガラス等による保護部材18を設けても良
い。
When the imaging reflection system is a concave mirror, a protective member 18 made of glass or the like may be provided on the concave surface M18A as shown in FIG.

また、第5図の実施例のように結像反射系を、平面R1
81と結像レンズ182の組み合わせによって構成して
も良い。但し、この場合は平面鏡181と検出素子12
の受光面とを高精度に平行にする必要がある。また、第
5図に示すように反射部材は平面鏡16Aを用いること
ができる。
In addition, as in the embodiment shown in FIG.
81 and an imaging lens 182 may be combined. However, in this case, the plane mirror 181 and the detection element 12
It is necessary to make the light-receiving surface parallel with high precision. Further, as shown in FIG. 5, a plane mirror 16A can be used as the reflecting member.

[発明の効果] 以上、本発明によれば新規な位置検出方法を提供できる
。この発明は上記のごとき構戒となっているので可動物
体の位置を容易且つ確実に検出で12 きる。
[Effects of the Invention] As described above, according to the present invention, a novel position detection method can be provided. Since the present invention is structured as described above, the position of a movable object can be detected easily and reliably.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、本発明の1実施例を説明するため
の図、第3図ないし第5図は別の実施例を説明するため
の図である。 10...可動物体、12. . .受光位置検出部材
としての半導体位置検出素子、14. . .点光源と
しての半導体レーザー、16. . .反射部材として
のビームス13
1 and 2 are diagrams for explaining one embodiment of the present invention, and FIGS. 3 to 5 are diagrams for explaining another embodiment. 10. .. .. Movable object, 12. .. .. Semiconductor position detection element as a light receiving position detection member, 14. .. .. Semiconductor laser as a point light source, 16. .. .. Beams 13 as a reflective member

Claims (1)

【特許請求の範囲】 直線上もしくは平面上で変位可能な可動物体の位置を規
準位置に対して検出する方法であって、点光源と、結像
反射系と、反射部材と、受光位置検出部材とを用い、 受光位置検出部材を規準態位に保持するとともに、上記
点光源と反射部材の組を可動物体に固定するか、もしく
は上記結像反射系を可動物体に固定し、 点光源からの発散性の光束を反射部材を介して結像反射
系に入射させるように、且つ上記点光源の反射部材によ
る虚像と、点光源の結像反射系による実像とがともに受
光位置検出部材の受光面上に位置するように、上記点光
源と結像反射系と反射部材と受光位置検出部材との位置
関係を定め、上記点光源を発光させ、受光位置検出部材
による上記実像の位置検出に基づき可動物体の位置を検
出することを特徴とする、位置検出方法。
[Claims] A method for detecting the position of a movable object that can be displaced on a straight line or on a plane with respect to a reference position, the method comprising: a point light source, an imaging reflection system, a reflection member, and a light receiving position detection member. The light receiving position detecting member is held in a standard position, and the set of the point light source and the reflecting member is fixed to a movable object, or the image forming reflection system is fixed to a movable object, and The light-receiving surface of the light-receiving position detection member is arranged such that the diverging light flux is incident on the imaging reflection system via the reflection member, and the virtual image of the point light source by the reflection member and the real image of the point light source by the imaging reflection system are The positional relationship between the point light source, the imaging reflection system, the reflection member, and the light-receiving position detection member is determined so that the light-receiving position detection member emits light, and the point light source is movable based on the position detection of the real image by the light-reception position detection member. A position detection method characterized by detecting the position of an object.
JP23536089A 1989-09-11 1989-09-11 Position detection method Expired - Lifetime JP2749900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23536089A JP2749900B2 (en) 1989-09-11 1989-09-11 Position detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23536089A JP2749900B2 (en) 1989-09-11 1989-09-11 Position detection method

Publications (2)

Publication Number Publication Date
JPH0396802A true JPH0396802A (en) 1991-04-22
JP2749900B2 JP2749900B2 (en) 1998-05-13

Family

ID=16984935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23536089A Expired - Lifetime JP2749900B2 (en) 1989-09-11 1989-09-11 Position detection method

Country Status (1)

Country Link
JP (1) JP2749900B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013061330A (en) * 2011-09-13 2013-04-04 Dr Johannes Heidenhain Gmbh Rotation type position detection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013061330A (en) * 2011-09-13 2013-04-04 Dr Johannes Heidenhain Gmbh Rotation type position detection device

Also Published As

Publication number Publication date
JP2749900B2 (en) 1998-05-13

Similar Documents

Publication Publication Date Title
KR100542832B1 (en) Interferometer system and lithographic apparatus comprising such a system
US5973788A (en) System for point-by-point measuring of spatial coordinates
US9945938B2 (en) Self-calibrating laser tracker and self-calibration method
US6683675B2 (en) Distance measuring apparatus and distance measuring method
JP3647608B2 (en) Surveyor automatic tracking device
JP2005532544A (en) Laser calibration device
JPH045508A (en) Method and device for detecting shape of body
US6067152A (en) Alignment range for multidirectional construction laser
JPH02165029A (en) Method and apparatus for checking position
JPH02161332A (en) Device and method for measuring radius of curvature
JP3921004B2 (en) Displacement tilt measuring device
JP3120885B2 (en) Mirror surface measuring device
JPH01253603A (en) Plane-position detector
JP2983673B2 (en) Method and apparatus for measuring radius of curvature
JPH0396802A (en) Position detecting method
JP3688560B2 (en) Optical measuring device
CN105807571B (en) A kind of litho machine focusing and leveling system and its focusing and leveling method
JPH10267624A (en) Measuring apparatus for three-dimensional shape
EP1202074B1 (en) Distance measuring apparatus and distance measuring method
JPH03167404A (en) Method for measuring size of large object
JPS63225108A (en) Distance and inclination measuring instrument
JPH07332954A (en) Method and apparatus for measuring displacement and inclination
JP2003161610A (en) Optical measurement device
JPH08261734A (en) Shape measuring apparatus
WO2023272440A1 (en) Measurement and positioning system based on machine vision and laser triangulation