JPH0395983A - Semiconductor laser element and its manufacture - Google Patents

Semiconductor laser element and its manufacture

Info

Publication number
JPH0395983A
JPH0395983A JP23156389A JP23156389A JPH0395983A JP H0395983 A JPH0395983 A JP H0395983A JP 23156389 A JP23156389 A JP 23156389A JP 23156389 A JP23156389 A JP 23156389A JP H0395983 A JPH0395983 A JP H0395983A
Authority
JP
Japan
Prior art keywords
layer
optical waveguide
waveguide layer
semiconductor laser
laser device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23156389A
Other languages
Japanese (ja)
Inventor
Toshiaki Tanaka
俊明 田中
Takashi Kajimura
梶村 俊
Shigekazu Minagawa
皆川 重量
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23156389A priority Critical patent/JPH0395983A/en
Publication of JPH0395983A publication Critical patent/JPH0395983A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To reduce element resistance than conventional by constituting it out of the first to third light wave guide layers which consists of Al, Ga, In, and P and whose composition ratios are restricted respectively, and forming the third light wave guide layer into the ride stripe shape in the longitudinal direction of a resonator, and setting the refractive index of the third light wave guide layer below the refractive index of a second light wave guide layer. CONSTITUTION:This has a semiconductor substrate, a first light wave guide layer 3, consisting of n-type (AlyGa1-y)0.51In0.49P (0<y<=1, y>x), a double hetero junction structure, consisting of an active layer 4 comprised of (AlxGa1-x)0.51In0.49 P (0<=x<0.4) and a second light wave guide layer 5 comprised of P-type (AlyGa1-y)0.51In0.49P (0<y<=1, y>x), and a third light wave guide layer, consisting of p-type AlalphaGa1-alphaAs (0.35<=alpha<=1) being formed on the second light wave guide layer, and which are formed in order on this semiconductor substrate. Element resistance can be reduced by putting the structure of the p-type light wave guide layer into the laminate of (AlyGa1-y)0.51In0.49P (0<y<=1) and AlalphaGa1-alphaAs layers, and putting it in the structure that the AlGaAs layer is formed in stripe shape on the surface on the side opposite to the active layer of AlGaInP layer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体レーザ素子に係り、特に光ディスク用光
源として好適な短波長半導体レーザ素子に関する. 〔従来の技術〕 従来、AfiGalnP半導体レーザの素子構造につい
ては、例えばアブライドフィジクスレタ−4 7(1 
9 8 5年)第1027頁がら第1028頁(App
l.Phys.Lett  4 7 (土985)pp
l027 −1028)或はエレクトロニクスレター2
3(1 9 8 7年)第938頁から第939頁(1
:lectronLett23(王987)pp938
−939)におレ1て論じられている。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor laser device, and particularly to a short wavelength semiconductor laser device suitable as a light source for an optical disc. [Prior Art] Conventionally, the element structure of an AfiGalnP semiconductor laser is based on, for example, Abride Physics Letter 4 7 (1
985) Pages 1027 to 1028 (App
l. Phys. Lett 4 7 (Sat 985)pp
l027 -1028) or Electronics Letter 2
3 (1987), pages 938 to 939 (1
:electronLett23 (King 987) pp938
-939).

〔発明が解決しようとするAlllm)上記従来技術は
、AQGaInP半導体レーザの横モード制御構造につ
いて十分配慮がなされておらず、素子抵抗が高く或は閾
値電流が高く,熱発生による光出力の飽和が生じて高出
力が得にくいという問題があった. 本発明の目的は、素子抵抗を低減しかつ最適な横モード
制御構造を作製することにより、低閾値電流で高効率の
レーザ発振をする素子を提供することにある。
[All issues to be solved by the invention] The above conventional technology does not give sufficient consideration to the transverse mode control structure of the AQGaInP semiconductor laser, and the element resistance is high or the threshold current is high, and the saturation of the optical output due to heat generation occurs. The problem was that it was difficult to obtain high output. An object of the present invention is to provide an element that performs highly efficient laser oscillation with a low threshold current by reducing element resistance and creating an optimal transverse mode control structure.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は以下のようにして達威される。従来、のレベ
ルが征<、添加不純物ガス流量を多くしても十分活性化
せず有効なキャリア濃度として効いてこないということ
が明らかにされている。このため、p−AQGalnP
混晶を光導波層に用いるAQGaInP半導体レーザで
は、その膜淳を厚くすると、素子抵抗が膜犀に応じて高
くなるという問題が生じる。
The above objective is achieved as follows. Conventionally, it has been revealed that when the level of impurity is low, even if the flow rate of the added impurity gas is increased, the impurity is not activated sufficiently and does not have an effective carrier concentration. Therefore, p-AQGalnP
In an AQGaInP semiconductor laser using a mixed crystal for the optical waveguide layer, when the thickness of the film is increased, a problem arises in that the element resistance increases depending on the thickness of the film.

そこで、本発明ではp型不純物ドーピング濃度がAQG
aInl’混晶の場合より高いレベルまで実現できるA
 Q a Gax− a As層(0.3 5−≦α≦
1)を光導波層に用いることにより、素子抵抗の低減を
図った。すなわち、p型の光導波層の構造を、(A Q
 yGax−y)o.sz I no.+aP (0 
< 3’ < 1 )とA Q a Ga1−a As
層の積層体とし、AnGaInF層の活性層とは反対側
の面上にAQGaAs層がリッジストライプ状に形成さ
れた構造とすることにより上記目的を達成した.ここで
.AQαGas−αAs層の屈折率は(A Q yGa
t−y)o.Ist I no.ael’層の屈折率以
ドである. さらに、AQGalnF混晶とAQGaAS混晶のエッ
チング速度が大きく異なるエッチング液を用いて、リツ
ジ部を有する光導波層を形成する。
Therefore, in the present invention, the p-type impurity doping concentration is set to AQG.
A that can be achieved to a higher level than in the case of aInl' mixed crystal
Q a Gax- a As layer (0.3 5-≦α≦
By using 1) in the optical waveguide layer, we attempted to reduce the element resistance. That is, the structure of the p-type optical waveguide layer is (A Q
yGax-y)o. sz I no. +aP (0
<3'< 1) and A Q a Ga1-a As
The above object was achieved by forming a stack of layers and forming a structure in which an AQGaAs layer was formed in a ridge stripe shape on the surface of the AnGaInF layer opposite to the active layer. here. The refractive index of the AQαGas-αAs layer is (A Q yGa
ty)o. Ist I no. It is less than the refractive index of the ael' layer. Further, an optical waveguide layer having a ridge portion is formed using an etching solution that etches the AQGalnF mixed crystal and the AQGaAS mixed crystal at greatly different etching rates.

このとき.AQGaAs光導波層とAQGalnt’光
導波層の間に挿入されるエッチング停止層は、活性層と
組戊が同じか近寄っているため、活性層におけるレーザ
光がエッチング停止層に光吸収されるoJ能性がある.
これに対しては,エッチング停止層を薄膜化し量子サイ
ズ効果を利用することや、不純物拡散による組成の混晶
化を引きおこすことによって活性層よりバンドギャップ
を大きくし光吸収を非常に小さくして解決する。
At this time. The etching stop layer inserted between the AQGaAs optical waveguide layer and the AQGalnt' optical waveguide layer has a structure that is the same as or close to that of the active layer, which reduces the OJ ability of the laser light in the active layer to be absorbed by the etching stop layer. There is a sex.
This problem can be solved by making the etching stop layer thinner and utilizing the quantum size effect, and by creating a mixed crystal composition due to impurity diffusion, which makes the band gap larger than that of the active layer and greatly reduces light absorption. do.

〔作用〕[Effect]

AQαG a s一aAs層は、ドーピング濃度をAQ
GaInP混晶よりも調整しやすく、キャリア濃度もI
XIOl8〜I X 1 0 ”cn−”の範囲で高く
とることができる。このため、AQGaInP混晶より
も抵抗を低減することができる. また、A Q a Gal−ct AsのAQ組成を0
.35くα<1とすればそのバンドギャップを活性層G
ao.δs L no.asPのバンドギャップより大
きくとることができ、さらにαが0.6〜0.7程度で
はAQGalnP光導波層と同程度のバンドギャップと
屈折率をもつことになる.したがって、A Q a G
at−tx As層をAQGalnl’層の代りに光導
波層として用いることができる。
AQαGa s - aAs layer has a doping concentration of AQ
It is easier to adjust than GaInP mixed crystal, and the carrier concentration is also lower than I.
It can be set high in the range of XIO18 to IX10 "cn-". Therefore, the resistance can be lowered than that of AQGaInP mixed crystal. In addition, the AQ composition of A Q a Gal-ct As was set to 0.
.. 35 If α<1, then the bandgap is the active layer G
ao. δs L no. It can be made larger than the bandgap of asP, and furthermore, when α is about 0.6 to 0.7, it has a bandgap and refractive index comparable to that of the AQGalnP optical waveguide layer. Therefore, A Q a G
The at-tx As layer can be used as an optical waveguide layer instead of the AQGalnl' layer.

AQαG a 1−aAs層を光導波層として用い、精
度よく適切な横モート制御構造を実現するには、例えば
、第1図および第2図に示すようにAQGaAs層との
エッチング選択比が大きいエッチング停止対6が設けら
れ。このエッチング停止層6は活性層の組成と同程度で
あるため、レーザ光がエッチング停止層によって光吸収
を受ける01能性がある.これを避けるため、エッチン
グ悴止層を薄膜胎としその上下のAQ組成の品い光導波
層と混晶化させ、そのバンドギャップを大きくすること
がなされる. これらは、例えば第l図におけるようにエッチング停止
層に不純物を商濃度にドーピングしておくか、或は第2
図におけるように、エッチング停止層に近接する領域に
不純物を高濃度にドーピングしておき、後の熱処理工程
により不純物拡散を起こさせることによって行われる. 〔実施例〕 実施例1 本発明の実施例1を第工図を用いて説明する。
In order to realize an accurate and appropriate transverse moat control structure using the AQαG a 1-aAs layer as an optical waveguide layer, for example, as shown in Figs. 1 and 2, etching with a high etching selectivity with respect to the AQGaAs layer is required. A stop pair 6 is provided. Since this etching stop layer 6 has a composition similar to that of the active layer, there is a possibility that the laser light is absorbed by the etching stop layer. In order to avoid this, the etching stop layer is made into a thin film and the bandgap thereof is increased by making it a mixed crystal with the optical waveguide layer having the AQ composition above and below it. For example, the etching stop layer is doped with impurities at a commercial concentration as shown in FIG.
As shown in the figure, this is done by doping a region close to the etching stop layer with impurities at a high concentration, and causing the impurities to diffuse through a subsequent heat treatment process. [Example] Example 1 Example 1 of the present invention will be explained using the first construction drawing.

第1図において、まずn−GaAs(001)基板工(
厚さlooμm)上に、n − G a A sバツフ
ァ層2 (厚さ0.5μm,no=IX10五6O一δ
)、n −(A Q yGat−y)o.sz I n
o.asPクラツド層(光導波層)3(厚さ0 . 8
 〜l . O /j m + n. o = 5 〜
7XIO”aa−δt O − 4 < y≦一工),
アンドープ(A QxGax−x)o.atIn0.4
9P活性層4(厚さ0.04〜0.08μm,O≦一X
≦−0.2).p−(A Q yGaz−y)o.sx
 I nO@4S Pクラツド層(光導波k!))5(
厚さ0.2〜0.4μm,n^:=3〜5X10五7c
m−”, 0 . 4 < y≦−1)、高濃度不純物
(Zn)ドープp−(AlyGa1−βGaz−β)o
.8z I no.as Pエッチング停止層6(厚さ
O。002〜0.0 1μm, n^=5 X 1 0
” 〜I X 1 0”car−8, O≦−β歪0.
2)(またはp−AQγGai一γAsエッチング停止
層(厚さ0.002〜0.0 1pm.n^=sxio
”〜I X 1 0’θ備−3,0.4≦−γ≦−0.
6)).p − A Q a Gas− a Asクラ
ツド層(光導波層)7?厚さ0.5〜1.0 pm,n
^=7 X工017〜工×I Q”am−’,0.5<
a<0.7)、PGaAs層8(厚さ0.2〜0.4 
μm,n^=↓〜2×1016dl−8)を順次有機金
屈気相成長(MOCVL))法により成長する.この後
、絶縁膜Si■zマスク(図示せず、厚さ0.1〜0.
3μm)をストライプ状に形成し、リン酸溶液又は硫酸
溶液により層7と8をエッチング加工してリツジストラ
イプ(幅3〜6μm)を作製する。次に、絶IMrmマ
スクを残したまま,再度MOCVL)或長炉に試料を入
れて、通常の或長温度600〜700℃より晶い温度8
00〜850℃にまで昇温し、約10〜30分間熱処理
を行う。このとき、高濃度不純物ドープ層6より不純物
が周囲に拡散してM6とその上下の層5及び層7との間
で組成の混晶化領域9 (第1図斜線部)が生じ層6の
AOi111成は戊長時よりも大きくなる。この後、戒
長温度600〜700℃まで降温して、n  G a 
A s光吸収兼電流ブロックJ*10(厚さ0.6 〜
1.0μms no=3〜6×↓O”(!m−’)を選
択或長ずる。次に、一旦或長炉より試料を取り出して絶
縁liIS i 02マスクを除去する.再度、或長炉
に試料を入れ、p− G a A sキャップ層11 
(厚さ2 〜4 μm ,n^= 5 X 1 0”〜
5 X 1 0”am−’)を埋込み成長する。次いで
、p側電極12,n{111電極13を蒸着し、へき開
スクライブして素子の形に切り出す。
In Fig. 1, first the n-GaAs (001) substrate fabrication (
n − Ga As buffer layer 2 (thickness 0.5 μm, no=IX1056O-δ
), n - (A Q yGat-y) o. sz I n
o. asP cladding layer (optical waveguide layer) 3 (thickness 0.8
~l. O /j m + n. o = 5 ~
7XIO”aa-δt O − 4 < y≦1 engineering),
Undoped (A QxGax-x) o. atIn0.4
9P active layer 4 (thickness 0.04-0.08 μm, O≦1X
≦-0.2). p-(A Q yGaz-y)o. sx
InO@4S P clad layer (optical waveguide k!)) 5(
Thickness 0.2~0.4μm, n^:=3~5X1057c
m-”, 0.4 < y≦-1), high concentration impurity (Zn) doped p-(AlyGa1-βGaz-β)o
.. 8z I no. asP etching stop layer 6 (thickness O.002~0.01μm, n^=5X10
” ~ I X 1 0”car-8, O≦-β strain 0.
2) (or p-AQγGai-γAs etching stop layer (thickness 0.002-0.0 1pm.n^=sxio
”~I
6)). p - A Q a Gas- a As cladding layer (optical waveguide layer) 7? Thickness 0.5-1.0 pm, n
^=7
a<0.7), PGaAs layer 8 (thickness 0.2-0.4
μm, n^ = ↓ ~ 2 × 1016 dl-8) are sequentially grown by gold organic vapor phase epitaxy (MOCVL) method. After this, an insulating film SiZ mask (not shown, thickness 0.1~0.
3 μm) is formed in a stripe shape, and layers 7 and 8 are etched using a phosphoric acid solution or a sulfuric acid solution to produce a ridge stripe (width 3 to 6 μm). Next, with the absolute IMrm mask left in place, the sample was placed in a long furnace (MOCVL again) to a crystallization temperature of 8°C, which was lower than the normal long temperature of 600-700℃.
The temperature is raised to 00 to 850°C, and heat treatment is performed for about 10 to 30 minutes. At this time, impurities diffuse into the surrounding area from the heavily doped layer 6, and a mixed crystal region 9 (shaded area in FIG. The AOi111 formation becomes larger than that at the time of the Bochu. After this, the temperature is lowered to 600-700℃, and n Ga
A s light absorption and current block J*10 (thickness 0.6 ~
Select or lengthen 1.0μms no=3~6×↓O"(!m-'). Next, take out the sample from a long furnace and remove the insulating liIS i 02 mask. A sample is placed in the p-GaAs cap layer 11.
(Thickness 2 ~ 4 μm, n^ = 5 x 10" ~
A p-side electrode 12 and an n{111 electrode 13 are then deposited and cleaved and scribed to cut into an element shape.

本実施例により、従来の素子抵抗を3〜5Ωに低減でき
た。このことにより、レーザの最高発振温度を100℃
にまで向上させることができた.ストライプ幅を3〜6
μmの範囲とすることにより、閾値#1流が30〜5 
0 m Aであり光出力30mWまで基本横モードで安
定に発振した。また、従来より高い微分量子効率60〜
70%を得ることができた.本素子では、温度50℃で
10mW定光出力動作において2000時間経過しても
顕著な劣化は見られなかった. 実施例2 本発明の実施例2を第2図を用いて説明する。
According to this example, the conventional element resistance could be reduced to 3 to 5 Ω. This increases the maximum oscillation temperature of the laser to 100°C.
I was able to improve it to. Stripe width 3-6
By setting it in the range of μm, the threshold value #1 flow is 30 to 5
0 mA, and it oscillated stably in the fundamental transverse mode up to an optical output of 30 mW. In addition, the differential quantum efficiency is 60~ higher than before.
I was able to get 70%. In this device, no significant deterioration was observed even after 2000 hours at a constant light output of 10 mW at a temperature of 50°C. Example 2 Example 2 of the present invention will be described using FIG. 2.

第2図において,実施例1と同様に素子を作製するが,
本実施例ではエッチング停止層6の混晶化を引き起こす
ために、摺7のうちエッチング停止層との界面近傍の領
域にのみ高濃度不純物ドープ層(厚さ0.05 〜0.
2μm,n^=5X1018〜5 X 1 0 エ11
国−8)を形成する。実施例lと同様に温度800〜8
50℃における熱処理(10〜30分)を施すことによ
り、エッチング停止層6と層7との間で組成の混晶化を
起こさせて無秩序化領域9(第2図中斜線部)を形成す
る。その他の工程は実施例1と全く同様である. 本実施例においても実施例1の素子特性と同様であった
In FIG. 2, an element is manufactured in the same manner as in Example 1, but
In this embodiment, in order to cause mixed crystal formation of the etching stop layer 6, a highly concentrated impurity doped layer (with a thickness of 0.05 to 0.5 mm) is applied only to the region of the slide 7 near the interface with the etching stop layer.
2μm, n^=5X1018~5X10E11
Country-8) is formed. Temperature 800-8 as in Example 1
By performing heat treatment at 50° C. (10 to 30 minutes), mixed crystal composition is caused between the etching stop layer 6 and the layer 7 to form a disordered region 9 (hatched area in FIG. 2). . The other steps are exactly the same as in Example 1. In this example, the device characteristics were similar to those in Example 1.

実施例3 本発明の実施例3を第3図を用いて説明する。Example 3 Example 3 of the present invention will be described using FIG. 3.

第3図において、実施例1と同様に結晶層を成長するが
、層5を成長した後、p−AQαGai一αAsクラツ
ド層7(厚さ0.5〜l.Oμm,n^=7X1017
〜1X1018国一8, 0.5−≦,α歪0.7)、
p−GaAs層8(厚さ0.2.〜0.4pm,n^=
1〜2X10工’m−”)*で順次MOCVD法ニヨり
成長する.この後、SiOzマスク(図示せず)をスト
ライプ状に形成し、層7と層8をエッチング加工してリ
ツジストライプを作製する.この場合,p − (A 
Q y Gax−y)o.5t I n0.49 Pク
ラツド層5がエッチング停止層として働く.次に.Si
nsマスクを残したまま高濃度に不純物をドープしたp
  GaAs層14(厚さ0.1〜0.3μm+ n^
= 5 X 1 0”〜5 X 1 0”cs−3)を
或長温度600〜700℃において選択或長ずる.この
後,温度800〜850℃に昇温しで10〜30分間熱
処理を施すことにより層l4中の不純物が拡散し、第3
図の斜線部分の不純物拡散領域9が形成される。その後
、続いて成長温度である温度600〜700℃に降温し
てn − G a A s光吸収兼電流狭窄層10を選
択戒長ずる.この後の工程は実施例1と全く同様である
In FIG. 3, a crystal layer is grown in the same manner as in Example 1, but after growing layer 5, a p-AQαGai-αAs cladding layer 7 (thickness 0.5 to 1.0 μm, n^=7×1017
~1X1018 Kokuichi 8, 0.5-≦, α distortion 0.7),
p-GaAs layer 8 (thickness 0.2-0.4 pm, n^=
The film is sequentially grown using the MOCVD method using 1 to 2 x 10 m-")*. After this, a SiOz mask (not shown) is formed into a stripe shape, and layers 7 and 8 are etched to form a ridge stripe. In this case, p − (A
Q y Gax-y) o. 5t I n0.49 P cladding layer 5 acts as an etching stop layer. next. Si
P doped with impurities at a high concentration while leaving the ns mask
GaAs layer 14 (thickness 0.1 to 0.3 μm + n^
= 5 x 10'' to 5 x 10''cs-3) at a certain temperature of 600 to 700°C. After that, the temperature is raised to 800 to 850°C and heat treatment is performed for 10 to 30 minutes to diffuse the impurities in the layer 14.
Impurity diffusion regions 9 shown in the shaded areas in the figure are formed. Thereafter, the temperature is lowered to a growth temperature of 600 to 700° C. to selectively lengthen the n-GaAs light absorption/current confinement layer 10. The subsequent steps are exactly the same as in Example 1.

本実施例によると,活性層4においてリツジストライプ
部に対向する活性層中央部を除いてその両側に不純物拡
散が行われるため、いわゆるAQGaInP混晶でwt
察される秩序構造がくずれ無秩序化した構造をとること
になる.このことにより、活性層中央部はアンドープで
秩序構造が保たれ,そのバンドギャップは1.8 5 
e Vであり、その肉側は無秩序構造となりそのバンド
ギャップが1.90eV になる.それで、活性層中央
部の非拡散領域に注入されたキャリアに対して活性層横
方向に0.0 5 e V程度のバンド障壁を形成する
ことになるので,キャリア閉じ込めが従来に比べると向
上することになる。
According to this embodiment, since impurity diffusion is performed on both sides of the active layer 4 except for the central part of the active layer facing the edge stripe part, so-called AQGaInP mixed crystal is used.
The expected ordered structure collapses and becomes a disordered structure. As a result, the central part of the active layer maintains an undoped and ordered structure, and its band gap is 1.85.
eV, and its flesh side becomes a disordered structure with a bandgap of 1.90eV. Therefore, a band barrier of about 0.05 eV is formed in the lateral direction of the active layer against carriers injected into the non-diffused region at the center of the active layer, so carrier confinement is improved compared to the conventional method. It turns out.

このため,低閾値電流でレーザ発振が口I能となり、本
実施例では閾値電流20〜30mAを得た.縦モードは
シングルモードで、キング発生光出力40〜50mW端
而破壊レベル60〜70mWを得た. 〔発明の効果〕 本発明によると、リツジストライプ構造を有するAnG
aInP半導体レ・−ザにおいて、光導波層の膜厚を所
望の膜厚に制御性・再現性良く作製できるだけでなく、
素子抵抗を従来より低減でき3〜5Ωとすることができ
た.このことにより、レーザの最高発振温度を100℃
とし温度特性を従来より改薯することがnf能であった
.また、高濃度不純物ドープ層を導入して不純物拡散に
よる混晶化により、光導波層の膜厚制御のために導入し
たエッチング停止層による光吸収損失を十分に避けるこ
とが可能となった.本発明の素子では,閾値Y4流20
〜50mAで微分量子効率60〜70%の高効率のレー
ザ発振が可能であった.さらに,キンク発生光出力40
〜50mW.端面破壊レベル60〜70mWを得た。
Therefore, laser oscillation is effective at a low threshold current, and in this example, a threshold current of 20 to 30 mA was obtained. The longitudinal mode was a single mode, and the King generation light output was 40 to 50 mW, while the destructive level was 60 to 70 mW. [Effects of the Invention] According to the present invention, AnG having a ridge stripe structure
In the aInP semiconductor laser, not only can the thickness of the optical waveguide layer be manufactured to the desired thickness with good controllability and reproducibility,
We were able to reduce the element resistance to 3 to 5 Ω compared to conventional models. This increases the maximum oscillation temperature of the laser to 100°C.
Therefore, it was possible to modify the temperature characteristics compared to the conventional one. In addition, by introducing a layer doped with highly concentrated impurities and creating mixed crystals through impurity diffusion, it became possible to sufficiently avoid light absorption loss due to the etching stop layer introduced to control the thickness of the optical waveguide layer. In the device of the present invention, the threshold Y4 current 20
Highly efficient laser oscillation with a differential quantum efficiency of 60-70% was possible at ~50 mA. Furthermore, the kink generation light output is 40
~50mW. An end face destruction level of 60 to 70 mW was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第工図〜第3図は各々本発明の実施例1〜実施例3の断
面図である。 1 − n − G a A s基板、2 − n −
 G a A sバツファ層、3 − n − (A 
Q yGat−y)o.Ist I no.is Pク
ラッド層、4・・・アンドープ(A 11 xGax−
x)o.sx1n0.49P活性M、5 − p − 
(A Q yGaz−y)o.sx I no.+oP
クラッド層.6=・p−(lβGaz−β)o.szI
no.asPエッチング停止層又は.p−AQγGa1
−γAg層、7・・・p−AQαG a 1−αAsク
ラツド層、8・・・p一G a A s層、9・・・Z
n拡散無秩序領域、10・・・n−GaAs光吸収兼電
流狭窄層,l1=−p−GaAs\(Nl”Q\Pりゝ
Figures 1 to 3 are cross-sectional views of embodiments 1 to 3 of the present invention, respectively. 1-n-GaAs substrate, 2-n-
G a As buffer layer, 3 − n − (A
Q yGat-y) o. Ist I no. is P cladding layer, 4... undoped (A 11 xGax-
x)o. sx1n0.49P activity M, 5-p-
(A Q yGaz-y) o. sx I no. +oP
Cladding layer. 6=・p−(lβGaz−β)o. szI
no. asP etch stop layer or . p-AQγGa1
-γAg layer, 7...p-AQαGa 1-αAs cladding layer, 8...p-GaAs layer, 9...Z
n diffused disordered region, 10...n-GaAs light absorption and current confinement layer, l1=-p-GaAs\(Nl"Q\P

Claims (1)

【特許請求の範囲】 1、半導体基板と、該半導体基板上に順次形成されたn
型(Al_yGa_1_−_y)_0_._5_1In
_0_._4_9P(0<y<1,y>x)から成る第
1の光導波層、 (Al_xGa_1_−_x)_0_._5_1In_
0_._4_9P(0≦x<0.4)から成る活性層お
よびp型(Al_yGa_1_−_y)_0_._5_
1In_0_._4_9P(0<y≦1,y>x)から
成る第2の光導波層から成るダブルヘテロ接合構造体と
、上記第2の光導波層上に形成されたp型 Al_αGa_1_−_αAs(0.35≦α≦1)か
ら成る第3の光導波層を有する半導体レーザ素子であつ
て、上記第3の光導波層は共振裾長方向にリツジストラ
イプ状に形成されており、かつ上記第3の光導波層の屈
折率は上記第2の光導波層の屈折率以下であることを特
徴とする半導体レーザ素子。 2、特許請求の範囲第1項記載の半導体レーザ素子にお
いて、上記第3の光導波層の側面の第2の光導波層上に
n型GaAsから成る電流挾窄兼光吸収層が形成されて
いる半導体レーザ素子。 3、特許請求の範囲第1項記載の半導体レーザ素子を作
製する際に、上記半導体基板上に上記ダブルヘテロ接合
構造体および第3の光導波層の構成層を順次形成する工
程において、上記第3の光導波層の構成層形成前に、上
記第2および第3の光導波層の不純物濃度より高い不純
物濃度を有しかつ導電型がp型の(AlPGa_1_−
_β)_0_._5_1in_0_._4_9P(0<
β<1)或はAl_γGa_1_−_γAs(0≦γ≦
1)から成るエッチング停止層を形成した後、エッチン
グにより上記リツジストライプ状の第3の光導波層を形
成し、その後熱処理を施すことにより上記エッチング停
止層と上記第2および第3の光導波層との間で組成を混
晶化させて上記エッチング停止層を無秩序化することを
特徴とする半導体レーザ素子の製造方法。 4、特許請求の範囲第3項記載の半導体レーザ素子の製
造方法において、上記エッチング停止層の膜厚は1〜2
0nmの範囲にあり、不純物濃度は3×10^1^8〜
1×10^1^9cm^−^3の範囲にある半導体レー
ザ素子の製造方法。 5、特許請求の範囲第1項記載の半導体レーザ素子を作
製する際に、上記半導体基板上に上記ダブルヘテロ接合
構造体および第3の光導波層の構成層を順次形成する工
程において、上記第3の光導波層の構成層形成前に、p
型の (Al_βGa_1_−_β)_0_._5_1In_
0_._4_9P(0≦β<1)或はAl_γGa_1
_−_γAs(0≦γ≦1)から成るエッチング停止層
を形成し、かつ上記第3の光導波層の構成層の上記エッ
チング層近傍の不純物濃度を上記第3の光導波層の構成
層の他の部分、エッチング層および第2の光導波層の不
純物濃度より高くし、その後エッチングにより上記リツ
ジストライプ状の第3の光導波層を形成し、その後熱処
理を施すことにより上記第3の光導波層中の高不純物濃
度層と上記エッチング停止層との間で組成を混晶化させ
て上記エッチング停止層を無秩序化することを特徴とす
る半導体レーザ素子の製造方法。 6、特許請求の範囲第5項記載の半導体レーザ素子の製
造方法において、上記高不純物濃度層の膜厚は0.05
〜0.2μmの範囲にあり、不純物濃度は5×10^1
^8〜5×10^1^9cm^−^3の範囲にある半導
体レーザ素子の製造方法。 7、特許請求の範囲第1項記載の半導体レーザ素子を作
製する際に、上記半導体基板上に上記ダブルヘテロ接合
構造体および第3の光導波層の構成層を順次形成した後
、エッチングにより上記リツジストライプ状の第3の光
導波層を形成し、その後該第3の光導波層のリツジ側面
部および上記第2の光導波層表面の上記第3の光導波層
で覆われていない部分上に、上記活性層、第2の光導波
層および第3の光導波層の不純物濃度より高い不純物濃
度を有しかつ導電型がp型の半導体層を形成し、その後
熱処理を施すことにより上記半導体層と上記第3の光導
波層、第2の半導体層および活性層との間で組成を混晶
化させて上記活性層の上記第3の光導波層に対向した中
央部を除きその両側を無秩序化することを特徴とする半
導体レーザ素子の製造方法。 8、特許請求の範囲第7項記載の半導体レーザ素子の製
造方法において、上半導体層の膜厚は、0.05〜0.
2μmの範囲にあり、不純物濃度は5×10^1^8〜
5×10^1^9cm^−^3の範囲にあり、かつ上記
第2の光導波層の膜厚は0.1〜0.5μmの範囲にあ
る半導体レーザ素子の製造方法。 9、半導体基板と、該半導体基板上に順次形成された第
1の光導波層、活性層および第2の光導波層から成るダ
ブルヘテロ接合構造体と、上記第2の光導波層上に共振
長方向に延在して形成された第2の光導波層と同一導電
型でかつ第2の光導波層の屈折率以下の屈折率を有する
第3の光導波層を有し、かつ該第3の光導波層を通つて
上記活性層に電流が注入される半導体レーザ素子におい
て、上記活性層の非発光領域は無秩序化されて、発光領
域の禁止帯幅より大きな禁止帯幅を有していることを特
徴とする半導体レーザ素子。 10、特許請求の範囲第9項記載の半導体レーザ素子に
おいて、上記第1の光導波層はn型(Al_yGa_1
_−_y)_0_._5_1In_0_._4_9P(
0<y≦1,y>x)から成り、上記活性層は(Al_
xGa_1_−_x)_0_._5_1In_0_._
4_9P(0≦x<0.4)から成り、上記第2の光導
波層はp型(Al_yGa_1_−_y)_0_._5
_1In_0_._4_9P(0<y≦1,y>x)か
ら成り、上記第3の光導波層はAl_αGa_1_−_
αAs(0.35≦α≦1)から成る半導体レーザ素子
[Claims] 1. A semiconductor substrate, and n-type semiconductors sequentially formed on the semiconductor substrate.
Type (Al_yGa_1_-_y)_0_. _5_1In
_0_. A first optical waveguide layer consisting of _4_9P (0<y<1, y>x), (Al_xGa_1_-_x)_0_. _5_1In_
0__. An active layer consisting of _4_9P (0≦x<0.4) and p-type (Al_yGa_1_-_y)_0_. _5_
1In_0_. A double heterojunction structure consisting of a second optical waveguide layer consisting of _4_9P (0<y≦1, y>x) and a p-type Al_αGa_1_−_αAs (0.35 ≦α≦1), wherein the third optical waveguide layer is formed in the shape of a ridge stripe in the direction of the resonance skirt length, and A semiconductor laser device characterized in that the refractive index of the optical waveguide layer is less than or equal to the refractive index of the second optical waveguide layer. 2. In the semiconductor laser device according to claim 1, a current blocking and light absorption layer made of n-type GaAs is formed on the second optical waveguide layer on the side surface of the third optical waveguide layer. Semiconductor laser element. 3. When manufacturing the semiconductor laser device according to claim 1, in the step of sequentially forming the constituent layers of the double heterojunction structure and the third optical waveguide layer on the semiconductor substrate, Before forming the constituent layers of the optical waveguide layer No. 3, a p-type (AlPGa_1_-
_β)_0_. _5_1in_0_. _4_9P(0<
β<1) or Al_γGa_1_−_γAs(0≦γ≦
After forming the etching stop layer consisting of 1), the third optical waveguide layer in the shape of a ridge stripe is formed by etching, and then heat treatment is performed to form the etching stop layer and the second and third optical waveguide layers. A method for manufacturing a semiconductor laser device, characterized in that the etching stop layer is made disordered by mixed crystal composition between the etching stop layer and the etching stop layer. 4. In the method for manufacturing a semiconductor laser device according to claim 3, the thickness of the etching stop layer is 1 to 2.
It is in the range of 0 nm, and the impurity concentration is 3 × 10^1^8 ~
A method for manufacturing a semiconductor laser element in the range of 1×10^1^9cm^-^3. 5. When manufacturing the semiconductor laser device according to claim 1, in the step of sequentially forming the constituent layers of the double heterojunction structure and the third optical waveguide layer on the semiconductor substrate, Before forming the constituent layers of the optical waveguide layer in step 3, p
of type (Al_βGa_1_−_β)_0_. _5_1In_
0__. _4_9P (0≦β<1) or Al_γGa_1
An etching stop layer made of ____γAs (0≦γ≦1) is formed, and the impurity concentration near the etching layer of the constituent layers of the third optical waveguide layer is adjusted to The impurity concentration is made higher than that of the other parts, the etching layer and the second optical waveguide layer, and then etching is performed to form the third optical waveguide layer in the shape of a ridge stripe, followed by heat treatment. A method for manufacturing a semiconductor laser device, characterized in that the etching stop layer is disordered by mixing the composition between the high impurity concentration layer in the wave layer and the etching stop layer. 6. In the method for manufacturing a semiconductor laser device according to claim 5, the film thickness of the high impurity concentration layer is 0.05.
It is in the range of ~0.2 μm, and the impurity concentration is 5 × 10^1
A method for manufacturing a semiconductor laser device having a size in the range of ^8 to 5 x 10^1^9 cm^-^3. 7. When manufacturing the semiconductor laser device according to claim 1, after sequentially forming the constituent layers of the double heterojunction structure and the third optical waveguide layer on the semiconductor substrate, the above-mentioned layer is formed by etching. forming a third optical waveguide layer in the shape of a ridge stripe, and then forming a ridge side surface portion of the third optical waveguide layer and a portion of the surface of the second optical waveguide layer that is not covered with the third optical waveguide layer; A semiconductor layer having an impurity concentration higher than the impurity concentration of the active layer, the second optical waveguide layer, and the third optical waveguide layer and having a p-type conductivity is formed thereon, and then heat treatment is performed to The composition is mixed between the semiconductor layer, the third optical waveguide layer, the second semiconductor layer, and the active layer, so that both sides of the active layer except for the central portion facing the third optical waveguide layer are mixed. 1. A method for manufacturing a semiconductor laser device, characterized by disordering the semiconductor laser device. 8. In the method for manufacturing a semiconductor laser device according to claim 7, the thickness of the upper semiconductor layer is 0.05 to 0.05.
It is in the range of 2 μm, and the impurity concentration is 5 × 10^1^8 ~
5x10^1^9cm^-^3 and the thickness of the second optical waveguide layer is in the range of 0.1 to 0.5 μm. 9. A double heterojunction structure consisting of a semiconductor substrate, a first optical waveguide layer, an active layer, and a second optical waveguide layer sequentially formed on the semiconductor substrate, and a resonance structure on the second optical waveguide layer. a third optical waveguide layer having the same conductivity type as the second optical waveguide layer formed extending in the longitudinal direction and having a refractive index lower than the refractive index of the second optical waveguide layer; In the semiconductor laser device in which a current is injected into the active layer through the optical waveguide layer No. 3, the non-emissive region of the active layer is disordered and has a bandgap width larger than the bandgap width of the emissive region. A semiconductor laser device characterized by: 10. In the semiconductor laser device according to claim 9, the first optical waveguide layer is of n-type (Al_yGa_1
_−_y)_0_. _5_1In_0_. _4_9P(
0<y≦1, y>x), and the active layer is (Al_
xGa_1_−_x)_0_. _5_1In_0_. _
4_9P (0≦x<0.4), and the second optical waveguide layer is p-type (Al_yGa_1_-_y)_0_. _5
_1In_0_. _4_9P (0<y≦1, y>x), and the third optical waveguide layer is Al_αGa_1_-_
A semiconductor laser device made of αAs (0.35≦α≦1).
JP23156389A 1989-09-08 1989-09-08 Semiconductor laser element and its manufacture Pending JPH0395983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23156389A JPH0395983A (en) 1989-09-08 1989-09-08 Semiconductor laser element and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23156389A JPH0395983A (en) 1989-09-08 1989-09-08 Semiconductor laser element and its manufacture

Publications (1)

Publication Number Publication Date
JPH0395983A true JPH0395983A (en) 1991-04-22

Family

ID=16925471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23156389A Pending JPH0395983A (en) 1989-09-08 1989-09-08 Semiconductor laser element and its manufacture

Country Status (1)

Country Link
JP (1) JPH0395983A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269568A (en) * 2005-03-23 2006-10-05 Fuji Photo Film Co Ltd Semiconductor laser element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269568A (en) * 2005-03-23 2006-10-05 Fuji Photo Film Co Ltd Semiconductor laser element

Similar Documents

Publication Publication Date Title
JP2002057406A (en) Edge non-injection type semiconductor laser and its manufacturing method
JPH02220488A (en) Semiconductor laser device and manufacture thereof
JP3982985B2 (en) Manufacturing method of semiconductor laser device
JPH07112091B2 (en) Method of manufacturing embedded semiconductor laser
JPH0395983A (en) Semiconductor laser element and its manufacture
JPH0677592A (en) Semiconductor laser element
JPH05211372A (en) Manufacture of semiconductor laser
JPH02156588A (en) Semiconductor laser and its manufacture
JP3521792B2 (en) Manufacturing method of semiconductor laser
JPH02228087A (en) Semiconductor laser element
JP2699662B2 (en) Semiconductor laser and manufacturing method thereof
JPH01192184A (en) Manufacture of buried type semiconductor laser
JPH06104534A (en) Semiconductor laser element
JPH0677588A (en) Semiconductor laser and manufacture thereof
JPH02109387A (en) Semiconductor laser element and manufacture thereof
JPH0316288A (en) Semiconductor laser element and manufacture thereof
JPH05129721A (en) Semiconductor laser and manufacture thereof
JP2000124553A (en) Semiconductor laser device and manufacture thereof
JPH02240988A (en) Semiconductor laser
JP2525776B2 (en) Method for manufacturing semiconductor device
JPH09107152A (en) Semiconductor laser diode
JPH0567849A (en) Semiconductor light emitting element
JPH03112186A (en) Algainp visible light semiconductor laser
JP2001177183A (en) Manufacturing method for semiconductor laser
JPH05121822A (en) Manufacture of semiconductor laser device