JPH05121822A - Manufacture of semiconductor laser device - Google Patents

Manufacture of semiconductor laser device

Info

Publication number
JPH05121822A
JPH05121822A JP26707691A JP26707691A JPH05121822A JP H05121822 A JPH05121822 A JP H05121822A JP 26707691 A JP26707691 A JP 26707691A JP 26707691 A JP26707691 A JP 26707691A JP H05121822 A JPH05121822 A JP H05121822A
Authority
JP
Japan
Prior art keywords
layer
conductivity type
optical waveguide
ridge
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26707691A
Other languages
Japanese (ja)
Inventor
Hideki Fukunaga
秀樹 福永
Hideo Nakayama
秀生 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP26707691A priority Critical patent/JPH05121822A/en
Publication of JPH05121822A publication Critical patent/JPH05121822A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control the thickness of an optical waveguide layer on an active layer in a non-ridge part and suppress the diffusion of a current into the active layer by a method wherein a mask layer in which a stripe-shaped window is formed is provided to make a second conductivity type cladding layer and a second conductivity type can layer grow. CONSTITUTION:A first conductivity type cladding layer 2 and an active layer 4 which is provided between optical waveguide layers 3 are successively built up on a (100) face GaAs substrate 1. Then a mask layer 7 in which a stripe- shaped window extended along the [011] direction of the crystal azimuth of the GaAs substrate 1 is provided to make a second conductivity type cladding layer 5 and a second conductivity type cap layer 6 grow. As a ridge is formed by crystal growth as described above, the thickness of the optical waveguide layer 3 on the active layer 4 in a non-ridge part can be controlled highly accurately with a crystal growth speed. Therefore, by suppressing the leakage of a current out of a light confining region, a low threshold stable lateral mode ridge waveguide type semiconductor laser can be obtain with high reproducibility.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、半導体レーザの製造
方法に係り、しきい電流が低く、基本安定モードで発振
することの可能なリッジ導波路型半導体レーザに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser manufacturing method, and more particularly to a ridge waveguide type semiconductor laser having a low threshold current and capable of oscillating in a fundamental stable mode.

【0002】[0002]

【従来の技術】従来、リッジ導波路型半導体レーザのリ
ッジ導波路はエッチングによって形成されており、その
際の非リッジ部のエッチングは、光導波層に達するか、
あるいはこの層に近接しうるまでの深さになされてい
る。図10は従来のリッジ導波路型半導体レーザの一例
を示す断面図である。この図において、1はn形GaA
sからなる基板、2はn形AlGaAsからなるクラッ
ド層、3はノンドープAlGaAsからなる光導波層、
4はアンドープAlGaAsからなる活性層、5はp形
AlGaAsからなるクラッド層、8は絶縁体層、6は
p形GaAsからなるキャップ層、10はp側電極、1
1はn側電極、12は電流の注入領域、13は光の閉じ
込め領域である。
2. Description of the Related Art Conventionally, a ridge waveguide of a ridge waveguide type semiconductor laser is formed by etching, and the etching of the non-ridge portion at that time reaches the optical waveguide layer, or
Alternatively, the depth is such that it can be close to this layer. FIG. 10 is a sectional view showing an example of a conventional ridge waveguide type semiconductor laser. In this figure, 1 is n-type GaA
a substrate made of s, 2 is a cladding layer made of n-type AlGaAs, 3 is an optical waveguide layer made of undoped AlGaAs,
4 is an active layer made of undoped AlGaAs, 5 is a cladding layer made of p-type AlGaAs, 8 is an insulator layer, 6 is a cap layer made of p-type GaAs, 10 is a p-side electrode, 1
Reference numeral 1 is an n-side electrode, 12 is a current injection region, and 13 is a light confinement region.

【0003】次にこのリッジ導波路型半導体レーザの動
作について説明する。p側電極10とn側電極11の間
に電圧を印加すると、電流はリッジ上部のキャップ層6
へ注入された後、クラッド層のリッジ部を通して活性層
に注入される。したがって、活性層4においてはリッジ
部の下の領域に電流が集中し、活性層4の禁制帯幅に対
応した光が発生される。一方、この光に対するリッジ部
の下の光導波層3における実効屈折率は、非リッジ部の
下の光導波層3における実効屈折率より高くなるので、
発生した光はリッジ下部の光導波路に閉じ込められる。
その結果、電流の注入領域12と光の閉じ込め領域13
とが重なって光学的な利得が増大し、低しきい電流が達
成される。
Next, the operation of this ridge waveguide type semiconductor laser will be described. When a voltage is applied between the p-side electrode 10 and the n-side electrode 11, a current flows in the cap layer 6 on the ridge.
Then, it is injected into the active layer through the ridge portion of the cladding layer. Therefore, in the active layer 4, current concentrates on the region under the ridge portion, and light corresponding to the forbidden band width of the active layer 4 is generated. On the other hand, since the effective refractive index of the optical waveguide layer 3 below the ridge portion for this light is higher than the effective refractive index of the optical waveguide layer 3 below the non-ridge portion,
The generated light is confined in the optical waveguide below the ridge.
As a result, the current injection region 12 and the light confinement region 13
Overlap with each other to increase the optical gain and achieve a low threshold current.

【0004】このように従来のリッジ導波路型半導体レ
ーザでは、光の閉じ込め領域13に電流を効率良く集中
させるために、非リッジ部におけるクラッド層5を光導
波層3に達するかあるいはこの領域に近接しうるまでエ
ッチングを行い、光の閉じ込め領域13外への電流の拡
散を抑える必要がある。しかしその場合、非リッジ部に
おける活性層上のクラッド層の厚みのわずかな変動で非
リッジ部における光導波層の実効屈折率が大きく変化す
るため、低しきい値でかつ安定な基本モードを再現性良
く得るには、非リッジ部における活性層上のクラッド層
の厚みを0.1μm以下の単位で精度良く制御すること
が必要である。
As described above, in the conventional ridge waveguide type semiconductor laser, in order to efficiently concentrate the current in the optical confinement region 13, the cladding layer 5 in the non-ridge portion reaches the optical waveguide layer 3 or in this region. It is necessary to perform etching until they can be close to each other to suppress the diffusion of current outside the light confinement region 13. However, in that case, a slight variation in the thickness of the cladding layer on the active layer in the non-ridge portion causes a large change in the effective refractive index of the optical waveguide layer in the non-ridge portion. In order to obtain good performance, it is necessary to accurately control the thickness of the cladding layer on the active layer in the non-ridge portion in units of 0.1 μm or less.

【0005】次に、この従来の半導体レーザの製造方法
を説明する。まず、n形GaAs基板からなる基板上に
n形AlGaAsからなるクラッド層、ノンドープAl
GaAsからなる光導波層、ノンドープAlGaAsか
らなる活性層、ノンドープAlGaAsからなる光導波
層、p形AlGaAsからなるクラッド層、p形GaA
sからなるキャップ層を順次エピタキシャル成長により
形成する。次に、キャップ層上にフォトリソグラフィに
よりレジストからなるストライプ状のマスクを形成す
る。次に、レジストからなるマスクをエッチング用マス
クとして、例えばH2SO4+H22系のエッチング液に
より、AlGaAsからなる光導波層を残して、p形G
aAsからなるキャップ層とp形AlGaAsからなる
クラッド層をエッチングしてリッジ部を形成する。光導
波層に対してクラッド層を選択的にエッチングすること
ができないため、この時のエッチング深さはエッチング
時間だけで制御する。次に、レジストからなるマスクを
除去した後、SiO2からなる絶縁体をたい積しリッジ
上部のSiO2をフォトリソグラフィによって除去する
ことにより、非リッジ部がSiO2からなる電流ブロッ
ク層で埋めこまれる。最後にp側電極、n側電極を形成
することにより従来のリッジ導波路型半導体レーザを完
成させる。
Next, a method of manufacturing this conventional semiconductor laser will be described. First, on a substrate made of an n-type GaAs substrate, a clad layer made of n-type AlGaAs and non-doped Al
Optical waveguide layer made of GaAs, active layer made of non-doped AlGaAs, optical waveguide layer made of non-doped AlGaAs, cladding layer made of p-type AlGaAs, p-type GaA
A cap layer made of s is sequentially formed by epitaxial growth. Next, a stripe-shaped mask made of a resist is formed on the cap layer by photolithography. Next, using the mask made of resist as an etching mask, the optical waveguide layer made of AlGaAs is left by an H 2 SO 4 + H 2 O 2 -based etching solution to leave the p-type G
The cap layer made of aAs and the clad layer made of p-type AlGaAs are etched to form a ridge portion. Since the cladding layer cannot be selectively etched with respect to the optical waveguide layer, the etching depth at this time is controlled only by the etching time. Next, after removing the masks made of resist, by removing the SiO 2 of the ridge upper deposited an insulator made of SiO 2 by photolithography, the non-ridge portion is buried with a current blocking layer made of SiO 2 . Finally, a p-side electrode and an n-side electrode are formed to complete the conventional ridge waveguide type semiconductor laser.

【0006】[0006]

【発明が解決しようとする課題】しかし、このような従
来のリッジ導波路型半導体レーザの製造方法では、非リ
ッジ部における活性層上のクラッド層の厚みをエッチン
グ時間のみで制御していたため、厚みを0.1μm単位
で精度良く制御することが極めて困難であった。また、
安定な基本モードを得るためリッジ部における光導波層
と非リッジ部における光導波層との間の実効屈折率差が
小さくなるように非リッジ部における光導波層上のクラ
ッド層の厚みを厚くすると、非リッジ部における活性層
4へ電流が拡散することによりレーザ発振に寄与しない
無効電流が生じ、しきい電流の増大が起こった。
However, in such a conventional method of manufacturing a ridge waveguide type semiconductor laser, the thickness of the cladding layer on the active layer in the non-ridge portion is controlled only by the etching time. It was extremely difficult to accurately control the value in units of 0.1 μm. Also,
To obtain a stable fundamental mode, increase the thickness of the cladding layer on the optical waveguide layer in the non-ridge portion to reduce the effective refractive index difference between the optical waveguide layer in the ridge portion and the optical waveguide layer in the non-ridge portion. As a result of diffusion of the current into the active layer 4 in the non-ridge portion, a reactive current that does not contribute to laser oscillation is generated, and the threshold current is increased.

【0007】そこで、この発明はかかる問題を解決する
ためになされたもので、非リッジ部における活性層上の
クラッド層の厚みを0.1μm単位で精度良く制御で
き、さらに非リッジ部における活性層への電流の拡散を
抑制し、この結果、所望の特性を再現性良く得ることが
できる半導体レーザの製造方法を提供することを目的と
する。
Therefore, the present invention has been made in order to solve such a problem, and the thickness of the clad layer on the active layer in the non-ridge portion can be accurately controlled in units of 0.1 μm. It is an object of the present invention to provide a method for manufacturing a semiconductor laser capable of suppressing the diffusion of current into the semiconductor laser and, as a result, obtaining desired characteristics with good reproducibility.

【0008】[0008]

【課題を解決するための手段】そこで請求項1に係る発
明方法においては、(100)面GaAs基板上に第一
導電型クラッド層及び光導波層により挟まれた活性層を
順次成長させ、次いで前記GaAs基板の結晶方位に対
して[011]方向に伸びたストライプ状の窓を形成し
たマスク層を設けて第二導電型クラッド層、第二導電型
キャップ層を成長させる工程とを含むことにより課題を
解決する。
Therefore, in the method of the present invention according to claim 1, an active layer sandwiched by a first conductivity type cladding layer and an optical waveguide layer is sequentially grown on a (100) plane GaAs substrate, and then, Providing a mask layer having a stripe-shaped window extending in the [011] direction with respect to the crystal orientation of the GaAs substrate and growing a second conductivity type clad layer and a second conductivity type cap layer. Solve the problem.

【0009】請求項2に係る発明方法においては、(1
00)面GaAs基板上に第一導電型クラッド層及び光
導波層により挟まれた活性層を順次成長させ、次いで前
記GaAs基板の結晶方位に対して[011]方向に伸
びたストライプ状の窓を形成したSiO2層を設けて第
二導電型クラッド層、第二導電型キャップ層を成長さ
せ、さらに前記SiO2層下部の活性層が光導波層との
間での相互拡散によって混晶化し禁制帯幅が広がるよう
熱処理を行う工程とを含むことにより課題を解決する。
In the method of the invention according to claim 2, (1
An active layer sandwiched by a first conductivity type clad layer and an optical waveguide layer is sequentially grown on a (00) plane GaAs substrate, and then a striped window extending in the [011] direction with respect to the crystal orientation of the GaAs substrate is formed. The formed SiO 2 layer is provided to grow the second conductivity type clad layer and the second conductivity type cap layer, and the active layer under the SiO 2 layer is mixed with the optical waveguide layer to form a mixed crystal, which is forbidden. The problem is solved by including a step of performing heat treatment so that the band width is widened.

【0010】[0010]

【作用】請求項1に係る発明方法によれば、リッジを結
晶成長により形成するため、非リッジ部における活性層
上の光導波層の厚みは結晶成長速度で制御される。結晶
成長速度は通常1μm/hであるため、非リッジ部にお
ける活性層上の光導波層の厚みを0.1μm単位以下で
精度良く制御することが可能となる。
According to the method of the first aspect of the present invention, since the ridge is formed by crystal growth, the thickness of the optical waveguide layer on the active layer in the non-ridge portion is controlled by the crystal growth rate. Since the crystal growth rate is usually 1 μm / h, it is possible to accurately control the thickness of the optical waveguide layer on the active layer in the non-ridge portion in units of 0.1 μm or less.

【0011】請求項2に係る発明方法によれば、非リッ
ジ部となる光導波層上にSiO2膜をたい積させた状態
で熱処理を行うと、このSiO2膜に隣接する互いに組
成の異なる活性層と光導波層との間で相互拡散が促進さ
れ混晶化が起こる。この混晶化領域は活性領域よりも禁
制帯幅が広がるため注入された電流は禁制帯幅の狭い活
性領域に閉じ込められるため、非リッジ部への電流の拡
散が抑制され注入領域が限定される。
According to the method of the second aspect of the present invention, when the heat treatment is performed in the state where the SiO 2 film is deposited on the optical waveguide layer which becomes the non-ridge portion, the activities adjacent to the SiO 2 film having different compositions are activated. Interdiffusion is promoted between the layer and the optical waveguide layer to cause mixed crystal. Since the forbidden band width of this mixed crystal region is wider than that of the active region, the injected current is confined in the active region having a narrow forbidden band width, so that the diffusion of the current to the non-ridge portion is suppressed and the injection region is limited. ..

【0012】[0012]

【実施例】以下、本発明の実施例を図面を用いて説明す
る。図1は本発明による半導体レーザの第1の実施例を
示す断面図である。図2〜7はこの実施例の半導体レー
ザの製造方法の各工程後の断面図である。
Embodiments of the present invention will be described below with reference to the drawings. 1 is a sectional view showing a first embodiment of a semiconductor laser according to the present invention. 2 to 7 are cross-sectional views after each step of the method for manufacturing the semiconductor laser of this embodiment.

【0013】まずn形GaAs基板1の(100)面上
にSeドープAlXGa1-XAsでなる厚さ1μmのクラ
ッド層2、ノンドープAlYGa1-YAsでなる厚さ0.
1μmの光導波層3、ノンドープAlZGa1-ZAsでな
る厚さ0.01μmの活性層4、ノンドープAlYGa
1-YAsでなる厚さ0.1μmの光導波層3をMOCV
D法により順次積層する(図2)。
First, a 1 μm thick clad layer 2 made of Se-doped Al X Ga 1-X As on the (100) plane of an n-type GaAs substrate 1 and a thickness of 0.1 μm made of non-doped Al Y Ga 1-Y As.
1 μm optical waveguide layer 3, 0.01 μm thick active layer 4 made of non - doped Al Z Ga 1-Z As, non-doped Al Y Ga
MOCV the optical waveguide layer 3 made of 1-Y As and having a thickness of 0.1 μm.
The layers are sequentially laminated by the D method (FIG. 2).

【0014】次ぎにSiO27を1000オングストロ
ームたい積させる。その後フォトリソグラフィによりS
iO27に幅5μmのストライプ状の窓を開ける(図
3)。これに、MOCVD法でMgドープAlXGa1-X
Asでなる厚さ1μmのクラッド層5、MgドープGa
Asでなる厚さ0.1μmのキャップ層6を成長させ
る。MOCVD法では成長速度に異方性があり、(10
0)面では速く、(111)B面ではほとんど成長しな
い。従って、ストライプ状の窓部の(100)面に選択
的に成長を行うと(111)B面を側面とするリッジが
形成される(図4)。
Next, SiO 2 7 is deposited to 1000 Å. After that, by photolithography, S
Opening the stripe-shaped window having a width 5μm to iO 2 7 (Fig. 3). Then, the Mg-doped Al X Ga 1-X was formed by the MOCVD method.
1 μm thick clad layer 5 made of As, Mg-doped Ga
A cap layer 6 made of As and having a thickness of 0.1 μm is grown. In the MOCVD method, the growth rate is anisotropic and (10
The (0) plane is fast, and the (111) B plane hardly grows. Therefore, when the growth is selectively performed on the (100) plane of the striped window portion, a ridge having the (111) B plane as the side surface is formed (FIG. 4).

【0015】このリッジ部及び非リッジ部をSiN
X(8)で覆い(図5)、石英管中にヒ素と共に封管し
た後電気炉中で850°C、1時間熱処理を行う。ここ
で、組成の異なるAlGaAsの多層薄膜上にSiO2
を着膜し熱処理すると、SiO2下部の多層薄膜間では
互いの構成元素が入れ替わる相互拡散が促進される。し
たがって、非リッジ部ではSiO2をたい積させたこと
により層間のAlとGaの相互拡散が促進されるため、
SiO2下部の活性層と光導波層との間で混晶化が生じ
る(図6)。この時リッジ部下部の活性層ではこの相互
拡散は促進されないため、この活性層は非リッジ下部の
混晶層に埋めこまれる。一方、下部光導波層3と下部ク
ラッド層2の境界はSiO2と離れており、また光導波
層3の厚さ(0.1μm)に比べ、相互拡散における拡
散距離も短い(約0.005μm)ため光導波層内の組
成の変化は小さい。したがって、光導波路に対する相互
拡散の効果は無視できる。
The ridge portion and the non-ridge portion are made of SiN.
After covering with X (8) (FIG. 5) and sealing the tube with arsenic in a quartz tube, heat treatment is performed at 850 ° C. for 1 hour in an electric furnace. Here, SiO 2 is formed on the AlGaAs multilayer thin film having different compositions.
When deposited and heat-treated, the mutual diffusion of the constituent elements of the multilayer thin films under the SiO 2 is promoted. Therefore, in the non-ridge portion, the interdiffusion of Al and Ga between the layers is promoted by depositing SiO 2 .
Mixed crystals occur between the active layer below SiO 2 and the optical waveguide layer (FIG. 6). At this time, since the mutual diffusion is not promoted in the active layer under the ridge portion, this active layer is buried in the mixed crystal layer under the non-ridge portion. On the other hand, the boundary between the lower optical waveguide layer 3 and the lower cladding layer 2 is separated from SiO 2, and the diffusion distance in mutual diffusion is shorter (about 0.005 μm) than the thickness of the optical waveguide layer 3 (0.1 μm). Therefore, the composition change in the optical waveguide layer is small. Therefore, the effect of mutual diffusion on the optical waveguide can be ignored.

【0016】なおSiO2キャップとして熱処理をおこ
なうことにより、その下部の多層薄膜間で互いの構成元
素が入れ替わり相互拡散が促進されることは、Appl
ied Physics Letters.56
(1),1,1990,19〜20頁等により知られて
いる。
It should be noted that by performing heat treatment as a SiO 2 cap, mutual constituent elements are exchanged between the multi-layered thin films thereunder and mutual diffusion is promoted.
ied Physics Letters. 56
(1), 1, 1990, pages 19-20, etc.

【0017】次にフォトリソグラフィによりリッジ上の
SiNXを除去し(図7)、p側電極メタルを蒸着す
る。また、基板側を100μmの厚さまで研磨した後、
n側電極メタルを蒸着する。
Next, SiN x on the ridge is removed by photolithography (FIG. 7), and a p-side electrode metal is deposited. After polishing the substrate side to a thickness of 100 μm,
Evaporate n-side electrode metal.

【0018】以上の説明ではn型GaAs基板を用いた
場合について説明したが、p型GaAs基板を用いた場
合においても適用できる。ただし、p型GaAs基板の
場合MOCVD法による成長の順序が異なり、基板上に
MgドープAlXGa1-XAsでなる厚さ1μmのクラッ
ド層、ノンドープAlYGa1-YAsでなる厚さ0.1μ
mの光導波層、ノンドープAlZGa1-ZAsでなる厚さ
0.01μmの活性層、ノンドープAlYGa1-YAsで
なる厚さ0.1μmの光導波層の順で積層し、SiO2
をマスクとしてSeドープAlXGa1-XAsでなる厚さ
1μmのクラッド層、SeドープGaAsでなる厚さ
0.1μmのキャップ層を成長させてリッジを形成す
る。その後の相互拡散の手順はn型GaAs基板を用い
た場合と同様である。
In the above description, the case of using the n-type GaAs substrate has been described, but the present invention can be applied to the case of using the p-type GaAs substrate. However, in the case of a p-type GaAs substrate, the growth order by MOCVD is different, and a 1 μm thick cladding layer made of Mg-doped Al X Ga 1-X As and a thickness made of non-doped Al Y Ga 1-Y As are formed on the substrate. 0.1μ
m optical waveguide layer, a non-doped Al Z Ga 1-Z As active layer having a thickness of 0.01 μm, and a non-doped Al Y Ga 1-Y As optical waveguide layer having a thickness of 0.1 μm, which are laminated in this order. SiO 2
Using the as a mask, a 1 μm thick clad layer made of Se-doped Al x Ga 1-x As and a 0.1 μm thick cap layer made of Se-doped GaAs are grown to form a ridge. The procedure of the subsequent mutual diffusion is the same as that in the case of using the n-type GaAs substrate.

【0019】図8は本発明を適用した他の半導体レーザ
の断面図であり、基本モードをより安定とするため、非
リッジ部の光導波層上に薄いクラッド層を積層した後、
リッジを形成した例である。
FIG. 8 is a cross-sectional view of another semiconductor laser to which the present invention is applied. In order to make the fundamental mode more stable, after laminating a thin clad layer on the optical waveguide layer in the non-ridge portion,
This is an example of forming a ridge.

【0020】図9は本発明を適用したさらに他の半導体
レーザの断面図であり、放熱効果を上げるため、プレー
ナー状になるよう非リッジ部を絶縁体あるいは高抵抗層
により埋めこんだ例である。
FIG. 9 is a cross-sectional view of still another semiconductor laser to which the present invention is applied, which is an example in which the non-ridge portion is filled with an insulator or a high resistance layer so as to have a planar shape in order to enhance the heat radiation effect. ..

【0021】[0021]

【発明の効果】本発明によれば非リッジ部における活性
層上の厚みが結晶成長で決まるため、精度良く制御する
ことが可能で光の閉じ込め領域外への電流の漏れを抑え
ることにより、低しきい値安定横モードのリッジ導波路
型半導体レーザを再現性よく得ることができる。
According to the present invention, the thickness of the active layer in the non-ridge portion is determined by crystal growth, so that the thickness can be controlled with high accuracy, and the current leakage to the outside of the light confinement region can be suppressed to reduce the thickness. It is possible to obtain a ridge waveguide type semiconductor laser with a threshold stable lateral mode with good reproducibility.

【0022】また、従来は不純物の熱拡散やイオン注入
と熱処理による混晶化が行われていたが、その場合混晶
化された領域にはキャリアが生成されるためにこのキャ
リアによる光吸収が生じていた。しかしながら、絶縁膜
を用いた混晶化ではこのようなキャリアは生成されない
ため、光損失の少ない光導波路が形成される。さらにリ
ッジ形成時にマスクとして用いた絶縁体が混晶化に用い
られるために作製プロセスも簡便である。
Conventionally, mixed crystals were formed by thermal diffusion of impurities, ion implantation, and heat treatment. In that case, however, carriers are generated in the mixed crystal regions, so that light absorption by the carriers is caused. It was happening. However, such carriers are not generated in the mixed crystal formation using the insulating film, so that an optical waveguide with less optical loss is formed. Furthermore, since the insulator used as a mask when forming the ridge is used for mixed crystal formation, the manufacturing process is simple.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法を適用した半導体レーザの断
面図。
FIG. 1 is a sectional view of a semiconductor laser to which a manufacturing method of the present invention is applied.

【図2】本発明の実施例の半導体レーザの製造方法(光
導波層の積層)。
FIG. 2 is a method for manufacturing a semiconductor laser according to an embodiment of the present invention (stacking of optical waveguide layers).

【図3】本発明の実施例の半導体レーザの製造方法(ス
トライプ状の窓を開ける)。
FIG. 3 is a method for manufacturing a semiconductor laser according to an embodiment of the present invention (opening a stripe-shaped window).

【図4】本発明の実施例の半導体レーザの製造方法(リ
ッジの形成)。
FIG. 4 is a method for manufacturing a semiconductor laser according to an embodiment of the present invention (ridge formation).

【図5】本発明の実施例の半導体レーザの製造方法(非
リッジ部分を覆う)。
FIG. 5 is a method for manufacturing a semiconductor laser according to an embodiment of the present invention (covering a non-ridge portion).

【図6】本発明の実施例の半導体レーザの製造方法(混
晶化)。
FIG. 6 is a method for manufacturing a semiconductor laser (mixed crystal) according to an embodiment of the present invention.

【図7】本発明の実施例の半導体レーザの製造方法(リ
ッジ上のSiNxの除去)。
FIG. 7 is a method for manufacturing a semiconductor laser according to an embodiment of the present invention (removal of SiNx on a ridge).

【図8】本発明を適用した他の半導体レーザの断面図FIG. 8 is a sectional view of another semiconductor laser to which the present invention is applied.

【図9】本発明を適用したさらに他の半導体レーザの断
面図
FIG. 9 is a sectional view of still another semiconductor laser to which the present invention is applied.

【図10】従来の半導体レーザの断面図。FIG. 10 is a sectional view of a conventional semiconductor laser.

【符号の説明】[Explanation of symbols]

1はn形半導体基板、2はn形クラッド層、5はp形ク
ラッド層、3は光導波層、4は活性層、6はキャップ
層、7はSiO2、8はSiNX、9は混晶化領域、10
はp側電極、11はn側電極、12は電流注入領域、1
3は光閉じ込め領域、14は埋め込み層である。
1 is an n-type semiconductor substrate, 2 is an n-type cladding layer, 5 is a p-type cladding layer, 3 is an optical waveguide layer, 4 is an active layer, 6 is a cap layer, 7 is SiO 2 , 8 is SiN x , and 9 is mixed. Crystallized region, 10
Is a p-side electrode, 11 is an n-side electrode, 12 is a current injection region, 1
Reference numeral 3 is a light confining region, and 14 is a buried layer.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 (100)面GaAs基板上に第一導電
型クラッド層及び光導波層により挟まれた活性層を順次
成長させ、次いで前記GaAs基板の結晶方位に対して
[011]方向に伸びたストライプ状の窓を形成したマ
スク層を設けて第二導電型クラッド層、第二導電型キャ
ップ層を成長させる工程とを含むことを特徴とする半導
体レーザ装置の製造方法。
1. An active layer sandwiched by a first conductivity type clad layer and an optical waveguide layer is sequentially grown on a (100) plane GaAs substrate, and then extended in a [011] direction with respect to a crystal orientation of the GaAs substrate. And a step of growing a second conductivity type clad layer and a second conductivity type cap layer by providing a mask layer having a stripe-shaped window formed therein, and a method of manufacturing a semiconductor laser device.
【請求項2】 (100)面GaAs基板上に第一導電
型クラッド層及び光導波層により挟まれた活性層を順次
成長させ、次いで前記GaAs基板の結晶方位に対して
[011]方向に伸びたストライプ状の窓を形成したS
iO2層を設けて第二導電型クラッド層、第二導電型キ
ャップ層を成長させ、さらに前記SiO2層下部の活性
層が光導波層との間での相互拡散によって混晶化し禁制
帯幅が広がるよう熱処理を行う工程とを含むことを特徴
とする半導体レーザ装置の製造方法。
2. An active layer sandwiched by a first conductivity type clad layer and an optical waveguide layer is sequentially grown on a (100) plane GaAs substrate, and then extended in a [011] direction with respect to a crystal orientation of the GaAs substrate. With a striped window
An iO 2 layer is provided to grow a second conductivity type clad layer and a second conductivity type cap layer, and the active layer under the SiO 2 layer is mixed with the optical waveguide layer to form a mixed crystal and a forbidden band width. And a step of performing a heat treatment so as to spread the semiconductor laser device.
JP26707691A 1991-09-17 1991-09-17 Manufacture of semiconductor laser device Pending JPH05121822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26707691A JPH05121822A (en) 1991-09-17 1991-09-17 Manufacture of semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26707691A JPH05121822A (en) 1991-09-17 1991-09-17 Manufacture of semiconductor laser device

Publications (1)

Publication Number Publication Date
JPH05121822A true JPH05121822A (en) 1993-05-18

Family

ID=17439697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26707691A Pending JPH05121822A (en) 1991-09-17 1991-09-17 Manufacture of semiconductor laser device

Country Status (1)

Country Link
JP (1) JPH05121822A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0801450A3 (en) * 1996-04-10 1999-02-17 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device and method of fabricating semiconductor laser device
US6023483A (en) * 1997-03-26 2000-02-08 Mitsubishi Chemical Corporation Semiconductor light-emitting device
JP2000312052A (en) * 1999-02-23 2000-11-07 Mitsubishi Chemicals Corp Semiconductor optical device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0801450A3 (en) * 1996-04-10 1999-02-17 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device and method of fabricating semiconductor laser device
US6023483A (en) * 1997-03-26 2000-02-08 Mitsubishi Chemical Corporation Semiconductor light-emitting device
JP2000312052A (en) * 1999-02-23 2000-11-07 Mitsubishi Chemicals Corp Semiconductor optical device

Similar Documents

Publication Publication Date Title
US4932033A (en) Semiconductor laser having a lateral p-n junction utilizing inclined surface and method of manufacturing same
JPH0794833A (en) Semiconductor laser and its manufacturing method
US5395792A (en) Process for fabricating a semiconductor laser device
US5108948A (en) Method of producing a semiconductor device having a disordered superlattice using an epitaxial solid diffusion source
US5786234A (en) Method of fabricating semiconductor laser
JPH0474877B2 (en)
JPH05259574A (en) Semiconductor laser device and manufacture thereof
JP2950028B2 (en) Method for manufacturing optical semiconductor device
JPH05121822A (en) Manufacture of semiconductor laser device
JP2629678B2 (en) Semiconductor laser device and method of manufacturing the same
US5887011A (en) Semiconductor laser
JPH0513881A (en) Manufacture of semiconductor laser
JP2973215B2 (en) Semiconductor laser device
JPH01192184A (en) Manufacture of buried type semiconductor laser
JPH06112592A (en) Fabrication of semiconductor laser element
JPH0745902A (en) Semiconductor laser and manufacture thereof
JPH1174624A (en) Laser diode and fabrication thereof
JPH09307182A (en) Ridge type semiconductor laser and its manufacture
JP4024319B2 (en) Semiconductor light emitting device
JP3034177B2 (en) Semiconductor laser device and method of manufacturing the same
JPH057050A (en) Semiconductor laser device and manufacture thereof
JPH0446477B2 (en)
JPH0730190A (en) Semiconductor laser and its manufacture
JPH04171782A (en) Compound semiconductor laser
JPS60149184A (en) Manufacture of semiconductor laser element