JPH0395708A - Magnetic head - Google Patents

Magnetic head

Info

Publication number
JPH0395708A
JPH0395708A JP23219289A JP23219289A JPH0395708A JP H0395708 A JPH0395708 A JP H0395708A JP 23219289 A JP23219289 A JP 23219289A JP 23219289 A JP23219289 A JP 23219289A JP H0395708 A JPH0395708 A JP H0395708A
Authority
JP
Japan
Prior art keywords
magnetic
core
tape
head
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23219289A
Other languages
Japanese (ja)
Inventor
Yoichi Masubuchi
洋一 増渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP23219289A priority Critical patent/JPH0395708A/en
Publication of JPH0395708A publication Critical patent/JPH0395708A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PURPOSE:To always obtain a stable head reproducing output without generating a step difference between cores even when the wearing of a head is advanced by obtaining a laminated structure with wearing resistance which becomes larger as a layer closes to the sliding surface of a tape in a magnetic gap depth direction for both the center cores and side cores of a part where the magnetic tape slids. CONSTITUTION:For the core of the part where the magnetic tape slids, namely, both non-magnetic side cores 21 and 22 and center cores 1 and 2 forming a magnetic path composed of a ferro-magnetic substance, the constitution is laminated in the depth direction of a magnetic gap 11. For the materials of the cores, compounds are used with the wearing resistance which goes to larger as the layer closes to a tape sliding surface 2b and a thin film is formed by laminating a vacuum thin film forming material in multiple layers to be the compound which is easily worn out toward low layer side. Accordingly, even when the wearing of the head is advanced, the spacing amount on the magnetic gap 11 maintains a minimum state for a long time. Thus, after the magnetic head is used for a long time, the reproducing output of the head can be prevented from being degraded by the physical gap to be generated between the magnetic gap and the peripheral non-magnetic part by wearing.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ビデオテープレコーダー(▼TR)、デジタ
ルオーディオテープレコーダ(DAT)等の磁気記録再
生装置に用いられる磁気ヘッドに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic head used in magnetic recording and reproducing devices such as video tape recorders (▼TR) and digital audio tape recorders (DAT).

〔従来の技術〕[Conventional technology]

第14図は従来の磁気ヘッドの一例の斜視図である。こ
の磁気ヘンド認は、強磁性酸化物l(以下後部コアと称
す)の上面1aに強磁性金属薄膜の橿層体2(以下前部
コアと称す)をスパッタリング等の真空薄膜形成技術を
用いて形威し、これらlと2を一体化した磁気コア半体
9と10 ′5:磁気ギャップUを構戒する非磁性材8
を介してガラス6を溶融の後、固化するごとにより接合
しにもσ)である。磁気ギャップ11の形成面近傍、即
ち、テープ摺動面2bにおける磁気ギャップl1の両側
部にトラック41!i(TV)を規制する第1の溝(ト
ラック幅規制溝)3が形成されており、これにより、妖
気ギャップ11に磁束を集中させている。テープ摺動面
2bは、磁気ギャップ11を頂点とした8形状になって
いる。後部コア1の材質は、例えばMn−Zn7エライ
ト、Ni−Znフエライト等の強磁性酸化物である。前
部コア2の王戒分は、Fe−Ga−81糸合金、Fe−
▲l−81糸合金(センダストと称されている)等の結
晶質磁性合金、あるいは、Oo − Nb − Zr糸
合金等の非晶質合金であり、積層膜構造となっているが
、檀層膜の各層は同一組成ではなく、異なった組成にl
りWI戊されている点が、この従来品の特徴となってい
る。即ち、テープ摺動面2bに近い層はど耐屡耗特性に
優れた組成になっており、摺動面2bから遠ざかるほど
厚耗し易い組成より戒っている。
FIG. 14 is a perspective view of an example of a conventional magnetic head. This magnetic hend recognition is achieved by using a vacuum thin film forming technique such as sputtering to form a ferromagnetic metal thin film 2 (hereinafter referred to as the front core) on the upper surface 1a of the ferromagnetic oxide 1 (hereinafter referred to as the rear core). Magnetic core halves 9 and 10 ′5: Non-magnetic material 8 that guards the magnetic gap U
After the glass 6 is melted and then solidified, the bonding temperature is also σ). Tracks 41! are formed near the surface where the magnetic gap 11 is formed, that is, on both sides of the magnetic gap l1 on the tape sliding surface 2b. A first groove (track width regulating groove) 3 is formed for regulating i(TV), thereby concentrating magnetic flux in the gap 11. The tape sliding surface 2b has eight shapes with the magnetic gap 11 as the apex. The material of the rear core 1 is, for example, a ferromagnetic oxide such as Mn-Zn7 ferrite or Ni-Zn ferrite. The front core 2 is made of Fe-Ga-81 thread alloy, Fe-
▲It is a crystalline magnetic alloy such as l-81 thread alloy (referred to as Sendust) or an amorphous alloy such as Oo-Nb-Zr thread alloy, and has a laminated film structure. Each layer of the film is not of the same composition, but has a different composition.
This conventional product is characterized by the fact that the WI is removed. That is, the layer closer to the tape sliding surface 2b has a composition with excellent wear resistance, and the further away from the sliding surface 2b the composition is more likely to wear out.

次に作用について説明する。第16図及び第17図は・
従来の磁気ヘッド比を回転ドラム14に取付けて、記録
・再生を行なうために磁気テープ15をテープ摺動面2
bに接触させた状態を示した概略の平面図であり、第1
6図は初期の状態、第17図は長時間走行後のヘッド摩
耗が進行した状態を示している。第16図の初期の状態
では、ヘッドの回転ドラム14からの突出量hが大きく
、それに加えてテープ摺動面2bが8形状をしているこ
とから、磁気テープ巧との接触面積が小さいので、磁気
テープ巧とテープ摺動面2bの接触圧力は大きくなって
いる。
Next, the effect will be explained. Figures 16 and 17 are...
A conventional magnetic head ratio is attached to the rotating drum 14, and a magnetic tape 15 is placed on the tape sliding surface 2 for recording and reproduction.
FIG. 3 is a schematic plan view showing a state in which the first
FIG. 6 shows the initial state, and FIG. 17 shows the state where head wear has progressed after running for a long time. In the initial state shown in FIG. 16, the protruding amount h of the head from the rotating drum 14 is large, and in addition, the tape sliding surface 2b has an 8-shaped shape, so the contact area with the magnetic tape is small. , the contact pressure between the magnetic tape and the tape sliding surface 2b is increased.

従って、摩耗し易い条件になっている。しかし、この時
点で、テープ摺動面2bにj!出している強磁性金属薄
膜の橿層体(前部コア)2は、摩耗しにくい組或で構戒
されているので、摩耗量の時間力−プの傾き、即ち、摩
耗速度は、この従来例以前の磁気ヘッドよりも抑制され
るように作用する。
Therefore, the condition is such that it is easy to wear out. However, at this point, j! on the tape sliding surface 2b! The ferromagnetic metal thin film rod layer (front core) 2 is made of a material that is hard to wear, so the slope of the time force of the amount of wear, that is, the wear rate, is lower than that of the conventional method. It functions to be more suppressed than previous magnetic heads.

この状態から摩耗が進行して第17図の状態に到ると、
突出thが小さくなり、かつテープ摺動面2bと磁気テ
ープl5の接触面積が大きくなるので・接触圧力が小さ
く、摩耗しにくい条件となる。しかし、この時点でテー
プ摺動面2bに露出している強磁性金属薄膜の積層体(
前部コア)2は、摩耗し易い組成で構成されているので
、摩耗速度が従来よりも大きくなる作用が生ずる。この
時点では、第14図の磁気ヘッドは第15図の斜視図の
ように変化している。以上の摩耗量の時間変化を表わし
たのが第18図の曲線18bである。この従来例以前の
磁気ヘッドの時間経過を表わす曲!18aと比べると、
長時間走行後の総JII耗量はほぼ同等であるにもかか
わらず、摩耗速度をほぼ一定に保っている。従って、長
時間使用時点においても、ヘッド摩耗によるクリーニン
グ効果は初期と同じであるから、テープ摺動面2bに非
磁性の変質層が発生することはない。
When wear progresses from this state and reaches the state shown in Figure 17,
Since the protrusion th becomes smaller and the contact area between the tape sliding surface 2b and the magnetic tape 15 becomes larger, the contact pressure becomes smaller and wear is less likely to occur. However, at this point, the stack of ferromagnetic metal thin films exposed on the tape sliding surface 2b (
Since the front core (2) is composed of a composition that is easily worn, the wear rate becomes faster than that of the conventional front core. At this point, the magnetic head shown in FIG. 14 has changed as shown in the perspective view of FIG. 15. The curve 18b in FIG. 18 represents the above-mentioned change in wear amount over time. A song that expresses the passage of time for magnetic heads before this conventional example! Compared to 18a,
Even though the total JII wear amount after long-term running is almost the same, the wear rate is kept almost constant. Therefore, even after long-term use, the cleaning effect due to head abrasion is the same as in the initial stage, and no nonmagnetic degraded layer is generated on the tape sliding surface 2b.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のm気へンド稔には、次のような問題点があった0
即ち、第19図〜第21図は磁気ヘッドしを磁気ギャッ
プUと平行な面から見たコアの厚み方向のテープ摺動面
2b付近の断面図であるが、初期においては第19図の
1うに、ガラス6面と前部コア2とは、ほぼ連続的な曲
面をなしており、磁気テープ巧と磁気ギャンプ11は署
着しているが、摩耗が進行すると、前部コア2とガラス
6の材質の違いによる摩耗量の差が発生して、前部コア
2とガラス6の界面部分に段差が生じ、この段差が磁気
テープ15と磁気ギャップ11の間のスペーシングSを
増大させるごとになるために、スペーシング損一失によ
りヘッド再生電圧の低下を招く。第20図はガラス6よ
りも前部コア2のテーブ屠動面2bに露出している付近
の磁性薄膜の方が摩耗し易い組成の場合であり、第21
図は逆にガラス6の方が磁性薄膜よりも摩耗し易い組成
の場合である。いずれにしても、ガラス6の組戎はギャ
ップ深さ方向に均一であるから、ガラス6の組成をいか
に選定したとしても、摩耗の進行に従って第20図また
は第21図のいずれかの状態に至るごとになる。
The conventional M-Ki Hendo Minoru had the following problems.
That is, FIGS. 19 to 21 are cross-sectional views of the vicinity of the tape sliding surface 2b in the thickness direction of the core when the magnetic head is viewed from a plane parallel to the magnetic gap U. The glass 6 surface and the front core 2 form a substantially continuous curved surface, and the magnetic tape and the magnetic gap 11 are in contact with each other. However, as wear progresses, the front core 2 and the glass 6 Due to the difference in the amount of wear due to the difference in the material of As a result, the head reproduction voltage decreases due to spacing loss. FIG. 20 shows a case where the magnetic thin film in the vicinity exposed to the tape slaughtering surface 2b of the front core 2 is more easily worn than the glass 6;
On the contrary, the figure shows a case where the glass 6 has a composition that is more easily worn than the magnetic thin film. In any case, since the composition of the glass 6 is uniform in the gap depth direction, no matter how the composition of the glass 6 is selected, as wear progresses, it will reach the state shown in either FIG. 20 or FIG. 21. It becomes every.

本発明は上記のような問題点を解決するためになされた
もので、磁気ヘッドを長時間使用した後に摩耗により、
磁気ギャップ部とその周囲の非懺性部分とに物理的な段
差が生じて、ヘッドの再生出力が劣化する現象を防止す
ることができる磁気ヘッドを得ることを目的とする。
The present invention was made to solve the above-mentioned problems.
It is an object of the present invention to provide a magnetic head that can prevent a phenomenon in which the reproduction output of the head deteriorates due to the occurrence of a physical step between a magnetic gap part and a non-corrosive part around the magnetic gap part.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る磁気ヘッドは、磁気テープが摺動する部分
のコア、即ち、非磁性のサイドコアと強磁性体より戊り
磁路を形成するセンターコアを両方共、磁気ギャップの
深さ方向に積層化した構或とし、テープ摺動面に近い層
程、耐摩耗性を有する組成の材料とし、下層側になる程
摩耗し易い組成となる薄膜を真空薄膜形成技術により多
層に重ねて形成したものである。
In the magnetic head according to the present invention, the core on which the magnetic tape slides, that is, the non-magnetic side core and the center core formed of a ferromagnetic material and forming a magnetic path are both laminated in the depth direction of the magnetic gap. The tape has a structure in which the layers closer to the sliding surface of the tape are made of a material with a more wear-resistant composition, and the lower the layer, the more easily abraded the thin film is, formed by stacking multiple layers using vacuum thin film formation technology. It is.

〔作用〕[Effect]

本発明における磁気ヘッドは、使用中にヘッド表面が摩
耗してゆく過程で、磁気ギャップを有するセンターコア
とその両側をはさんで位置するサイドコアの摩耗速度が
ほぼ同等であるから、テープ摺動面上σつセンターコア
とサイドコアは常にほぼ同一曲面上にある。従って、ヘ
ッド摩耗が進行しても磁気ギャップ上のスペーシング量
は最小の状態が長時間にわたって維持される。
In the magnetic head of the present invention, during the process in which the head surface wears out during use, the wear rate of the center core having a magnetic gap and the side cores located on both sides of the center core is almost the same, so the tape sliding surface The upper σ center core and side cores are always on almost the same curved surface. Therefore, even if head wear progresses, the amount of spacing on the magnetic gap remains at a minimum for a long period of time.

〔実施例〕〔Example〕

以下この発明の一実施例を図について説明する〇第1図
は本発明に係る磁気ヘッドの斜視図である。
An embodiment of the present invention will be described below with reference to the drawings. Fig. 1 is a perspective view of a magnetic head according to the present invention.

この磁気ヘッドるは、強磁性酸化物1(以下後部コアと
称す)の上面に強磁性金属薄膜2(以下前部コアと称す
)をスパッタリング等の真空薄膜形成技術を用いて形成
し、これら1と2を一体化した後、トラック幅に相当す
る幅に切断して、磁路を形成するセンターコアあと、こ
のセンターマアあの両側をサイドコアηではさんで接合
し一体化した磁気コア半体※と詞を磁気ギャップUを構
戒する非磁性材8を介して接合した#l戒となっている
。センターコア加の構成、特性については、従来例と同
一なので省略する。サイドコアdは、非磁性基板21(
以下後側部コアと称す)の上面に非磁性積層体22(以
下前側部コアと称す)を蒸着、スパッタリング等の真空
薄膜形成技術を用いテ形成される〇 前側部コアなの積層膜の各層は、同一組成ではなく、異
なった組或により構成されている点が本発明の特徴とな
っている。即ち、テープ摺動面2bに近いほど耐摩耗特
性に優れた組成となっており、摺動面2bから遠ざかる
ほど摩耗し易い組成より戒っている。前側部コアなの材
料としては、OaTio、NiTi Mno % Oo
TiMno等の非磁性セラミックスが適当である。後側
部コア2lは、磁気テープ巧と接触しないので、非磁性
であれば特別な材料を使わなくても良い。
This magnetic head has a ferromagnetic metal thin film 2 (hereinafter referred to as the front core) formed on the upper surface of a ferromagnetic oxide 1 (hereinafter referred to as the rear core) using a vacuum thin film forming technique such as sputtering. After integrating 2 and 2, the center core is cut to a width equivalent to the track width to form a magnetic path, and then both sides of this center core are joined with side cores η to form an integrated magnetic core half*. #l is joined by a non-magnetic material 8 that spans a magnetic gap U. The configuration and characteristics of the center core addition are the same as those of the conventional example, so a description thereof will be omitted. The side core d has a non-magnetic substrate 21 (
A non-magnetic laminate 22 (hereinafter referred to as the front core) is formed on the upper surface of the front core using a vacuum thin film forming technique such as vapor deposition and sputtering. Each layer of the front core laminate is The present invention is characterized by the fact that they are not of the same composition but are composed of different sets. That is, the closer the tape is to the sliding surface 2b, the more excellent the composition is in abrasion resistance, and the further away from the sliding surface 2b, the more likely the composition is to wear. Materials for the front core include OaTio, NiTi Mno% Oo
Non-magnetic ceramics such as TiMno are suitable. Since the rear core 2l does not come into contact with the magnetic tape, there is no need to use a special material as long as it is non-magnetic.

次に作用について説明する。第2図は本発明の−実施例
である磁気ヘッドるを磁気ギャップ11と平行な面から
見たコアの厚み方向のテーブ摺動面2b付近の断面図で
ある。第2図に示したような状態で磁気テープ巧と接触
し、磁気テープl5の走行時間経過に伴なって摩耗が進
行してゆく。ここで、前部コア2と前側部コアnは共に
各層ごとに耐摩耗性が徐々に変化する構成となっている
ので、テープ摺動面2bに露出した部分の前部コア2と
前側部コアなの摩耗速度は、時間経過に対して常にほぼ
同等である。従って、従来例にあった前部コア2とガラ
ス6の摩耗量の差による段差は発生せず、磁気テープ巧
と磁気ギャップ11間のスベーシング量が常に最小に維
持されるので、ヘッド再生出力電圧は、第8図の線mに
示したように一定に保たれる。また・第2図に示したよ
うにコア厚み方向に見た場合、コア外面に近いほど摩耗
し易い組成の層がテープ摺動面2bGI:N出するので
、コア厚み方向の曲率半径rは、小さい状態が維持され
る。
Next, the effect will be explained. FIG. 2 is a sectional view of the vicinity of the tape sliding surface 2b in the thickness direction of the core, when a magnetic head according to an embodiment of the present invention is viewed from a plane parallel to the magnetic gap 11. The magnetic tape 15 comes into contact with the magnetic tape in the state shown in FIG. 2, and wear progresses as the magnetic tape 15 travels over time. Here, both the front core 2 and the front core n have a structure in which the wear resistance gradually changes for each layer, so the front core 2 and the front core n in the portion exposed to the tape sliding surface 2b The wear rate of steel is always approximately the same over time. Therefore, there is no step caused by the difference in the amount of wear between the front core 2 and the glass 6, which was the case in the conventional example, and the amount of spacing between the magnetic tape and the magnetic gap 11 is always maintained at a minimum, so the head reproduction output voltage is kept constant as shown by line m in FIG. Also, as shown in Figure 2, when viewed in the core thickness direction, the closer to the outer surface of the core a layer with a composition that is more likely to wear out appears on the tape sliding surface 2bGI:N, so the radius of curvature r in the core thickness direction is remains small.

これは、磁気ギャップ■を常に最頂部として、確実に磁
気テープ15に接触させる作用を生ずる。
This produces the effect of ensuring that the magnetic gap (2) is always at the top and in contact with the magnetic tape 15.

次に第1図に示した磁気ヘッドの製造工程を第4図〜第
18図に基づき説明する。まず、第4図に示すように、
強磁性酸化物からなる素材を切断して直方体の後部コア
lを形成する。次に第5図に示すように後部コア1の上
面l&にスバフタリング等の真空薄膜形成手法を用いて
、強磁性金属薄膜の積層体2(前部コア)を形成する。
Next, the manufacturing process of the magnetic head shown in FIG. 1 will be explained based on FIGS. 4 to 18. First, as shown in Figure 4,
A rectangular parallelepiped rear core l is formed by cutting a material made of ferromagnetic oxide. Next, as shown in FIG. 5, a laminate 2 (front core) of ferromagnetic metal thin films is formed on the upper surface l& of the rear core 1 using a vacuum thin film forming method such as buffing.

この前部コア2は下層程、摩耗し易い組成となるように
積層する。次に第6図に示すように、非磁性バルク材を
切断して、直方体の非磁性基板21(後側部コア)を形
成する。次に第7図に示すように、後側部コア社の上面
21&にスパッタリング等の真空薄膜形成手法を用いて
非磁性薄膜の積層体22(前側部コア)を形成する。こ
の前側部コアnも前部コア2と同様に下層ほど摩耗し易
い組或となるように積層する。次に第7図に示した切断
線淘に沿って切断し、個別のサイドコアηに分割する。
The front core 2 is laminated so that the lower the layer, the more easily worn the composition becomes. Next, as shown in FIG. 6, the nonmagnetic bulk material is cut to form a rectangular parallelepiped nonmagnetic substrate 21 (rear side core). Next, as shown in FIG. 7, a nonmagnetic thin film laminate 22 (front core) is formed on the upper surface 21 of the rear core by using a vacuum thin film forming method such as sputtering. Like the front core 2, this front side core n is also stacked so that the lower layer is more likely to wear out. Next, it is cut along the cutting line shown in FIG. 7 to divide it into individual side cores η.

第5図で示した前部コア2と後部コアlの合体品を切断
線2jに沿って切断し、個別のセンターコアあに分割す
る。
The combined product of the front core 2 and rear core 1 shown in FIG. 5 is cut along the cutting line 2j to divide it into individual center cores.

次に第8図に示したようにセンターコア加とサイドコア
d各数枚をガラスの溶着又は接着材を用いて接合し、第
9図のようにコアブロック田を形成Tる。次に一対のコ
アブロック幻の内の少なくとも一方に、センターコアあ
とサイドコアdを分断する方向に巻線溝7を形成して、
コアブロック脚を形成する。次に第11図に示すように
、コアブロック※の突合せ面23aとコアブロック調の
突合せ面ルをランビング、ポリソシング等の加工(V:
より鏡面とし、その後、突合せ面島と施にギャップスペ
ーサとなる非磁性材8を蒸着、スパッタリング等の手段
により膜付けする。上記非磁性材の膜厚の和は、磁気ギ
ャップ11の幅にほぼ等しくする。次に第12図に示す
ように、コアブロック沼と桐を突合せる。このとき、セ
ンターコア加が互いに重なる位置に合せる。その後コ了
ブロック乙とUを突合せた状態で固定し、ガラスの溶着
または接着材を用いて接合する。次に接合されたコアブ
ロック幻と澗の前部コア2と前側部コアこの上面を非磁
性材8が充填された付近が頂点となるような円筒面を研
削加工により形成する。この工程で形成された面が、テ
ープ摺動面2bとなる。この後、接合されたコアブロッ
ク協とのを切断し、第1図に示したような個別の磁気ヘ
ッド5となる。
Next, as shown in FIG. 8, several pieces of the center core and side cores d are joined together using glass welding or an adhesive to form a core block as shown in FIG. 9. Next, a winding groove 7 is formed in at least one of the pair of core blocks in a direction that separates the center core and the side core d,
Form the core block legs. Next, as shown in Fig. 11, the abutment surface 23a of the core block* and the abutment surface of the core block pattern are processed (V:
After that, a film of non-magnetic material 8, which will become a gap spacer, is formed between the abutting surfaces and the islands by means of vapor deposition, sputtering, etc. The sum of the thicknesses of the nonmagnetic materials is approximately equal to the width of the magnetic gap 11. Next, as shown in FIG. 12, the core block swamp and paulownia are matched. At this time, align the center cores so that they overlap each other. After that, the blocks B and U are fixed in abutted state and joined by glass welding or adhesive. Next, the upper surfaces of the front core 2 and front core of the joined core blocks are ground to form a cylindrical surface whose apex is near where the non-magnetic material 8 is filled. The surface formed in this step becomes the tape sliding surface 2b. Thereafter, the joined core blocks are cut to form individual magnetic heads 5 as shown in FIG.

なお、上記実施例よりも左右のコアの接合をより強固に
するために、後部コア1と後側部コア21を貫通する溝
5を設けて、この中にガラス6を充填して、磁気ギャッ
プ11形成σ)工程でこのガラス6を溶融の後・固化し
た第21図に示したような購戊であってもよい。
In order to make the bond between the left and right cores stronger than in the above embodiment, a groove 5 passing through the rear core 1 and the rear side core 21 is provided, and glass 6 is filled in the groove 5 to form a magnetic gap. The glass 6 may be purchased as shown in FIG. 21 in which the glass 6 is melted and solidified in step 11 (formation σ).

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれは、磁気ヘッドの磁気テープ
が摺動する部分のコアを磁路を形成するセンターコア及
びセンターコアをはさむ非磁性のサイドコアの両方共、
磁気ギャップ深さ方回にテーブ摺動面に近い層ほど耐摩
耗性を有する組成となるように各層ごとに組成を変えた
積層構造としたので、ヘッド摩耗が進行した状態であっ
てもセンターコアとサイドコアの間に段差が発生せず、
常に安定したヘッド再生出力が得られる。また、常にセ
ンターコアの磁気ギャップの部分が最頂部となるように
摩耗してゆくので、磁気テープと磁気ギャップの安定し
た接触状態が得られる効果がある。
As described above, according to the present invention, both the center core that forms a magnetic path and the non-magnetic side cores that sandwich the center core include the core of the portion on which the magnetic tape of the magnetic head slides.
The layered structure has a different composition for each layer so that the layer closer to the sliding surface of the tape in the direction of the magnetic gap depth has a composition that is more wear resistant, so even if the head wear has progressed, the center core remains intact. There is no step between the side core and the side core.
A stable head playback output is always obtained. Furthermore, since the magnetic gap portion of the center core is always worn to the top, there is an effect that a stable contact state between the magnetic tape and the magnetic gap can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による磁気ヘッドの斜視図、
第2図は第1図の磁気ヘッドが磁気テープに接触してい
る状態を示す断面図、第8図は第1図の磁気ヘッド及び
従来σJ磁気ヘッドの出力電圧の時間変化を示すグラフ
、第4図〜第18図は第1図に示した本発明の一実施例
による磁気ヘッドの製造工程を示丁ための斜視図、第1
4図及び第15図は従来の磁気ヘッドの例を示す斜視図
、第16図および第17図は従来の磁気ヘッドを圓転ド
ラムに取付けた状態を示す概略の平面図、第18図は従
来の磁気ヘッドの摩耗特性を示すグラフ、第19図〜第
21図は従来の磁気ヘッドが磁気テープに接触している
状態を示す断面図、第22図は本発明の他の実施例によ
る磁気ヘッドの斜視図である。 図中、1は強磁性酸化物(後部コア)、2は強磁性金属
薄膜のFvI層体(前部コア)、7は巻線溝、8は非磁
性体、1lは磁気ギャップ、2bはテーブ摺動面、21
は非磁性基板(後側部コア)、皐は非磁性積層体(前側
部コア)である〇 なお図中同一符号は同一または相当部分を示丁。
FIG. 1 is a perspective view of a magnetic head according to an embodiment of the present invention;
2 is a cross-sectional view showing the state in which the magnetic head in FIG. 1 is in contact with a magnetic tape; FIG. 8 is a graph showing changes over time in the output voltage of the magnetic head in FIG. 1 and the conventional σJ magnetic head; 4 to 18 are perspective views for illustrating the manufacturing process of the magnetic head according to one embodiment of the present invention shown in FIG.
4 and 15 are perspective views showing examples of conventional magnetic heads, FIGS. 16 and 17 are schematic plan views showing the conventional magnetic heads attached to a rotary drum, and FIG. 18 is a conventional magnetic head. Figures 19 to 21 are cross-sectional views showing a conventional magnetic head in contact with a magnetic tape, and Figure 22 is a graph showing the wear characteristics of a magnetic head according to another embodiment of the present invention. FIG. In the figure, 1 is a ferromagnetic oxide (rear core), 2 is an FvI layer of ferromagnetic metal thin film (front core), 7 is a winding groove, 8 is a non-magnetic material, 1l is a magnetic gap, and 2b is a table. sliding surface, 21
The symbol indicates a non-magnetic substrate (rear core), and the symbol indicates a non-magnetic laminate (front core). In the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 強磁性酸化物のブロックの上面に強磁性金属薄膜の積層
体を各強磁性金属薄膜層ごとに上層に至るほど耐摩耗性
を有する組成となるように組成を変えて形成し、上記強
磁性酸化物のブロックと上記強磁性金属薄膜の積層体を
一体としてなるブロックをトラック幅に相当する幅に切
断してセンターコアとなし、非磁性基板の上面に、非磁
性積層体を各非磁性薄膜層ごとに上層に至るほど耐摩耗
性を有する組成となるように組成を変えて形成し、上記
非磁性基板を非磁性積層体を一体としてなるブロックを
適当幅に切断してサイドコアとなし、上記センターコア
の両側を上記サイドコアではさんで接合してなる一対の
コアブロックの対向側面の適所の一方または両側を切除
して巻線窓を形成し、上記一対のコアブロックを磁気ギ
ャップとして作用する非磁性材を介して接合合体し、上
記強磁性金属薄膜の積層体の磁気ギャップを有する面お
よびこの面に連続してなる非磁性積層体の上面を曲面形
状に形成し、上記曲面を磁気テープ摺動面とするように
構成したことを特徴とする磁気ヘッド。
A laminate of ferromagnetic metal thin films is formed on the upper surface of the ferromagnetic oxide block, and the composition of each ferromagnetic metal thin film layer is changed so that the composition becomes more wear-resistant toward the upper layer. A block consisting of an object block and the ferromagnetic metal thin film laminate is cut into a width corresponding to the track width to form a center core, and the nonmagnetic laminate is placed on each nonmagnetic thin film layer on the top surface of the nonmagnetic substrate. The non-magnetic substrate is formed by changing the composition so that it becomes more wear-resistant as it reaches the upper layer, and the non-magnetic substrate is formed by cutting a block made of the non-magnetic laminate into an appropriate width to form a side core. A pair of core blocks formed by joining both sides of the core with the side cores sandwiched therebetween, and cutting off one or both sides of the opposite sides at appropriate places to form a winding window, and using the pair of core blocks as a non-magnetic material that acts as a magnetic gap. The surface of the ferromagnetic metal thin film laminate having a magnetic gap and the upper surface of the non-magnetic laminate continuous to this surface are formed into a curved shape, and the curved surface is formed by sliding a magnetic tape. A magnetic head characterized in that it is configured to have a flat surface.
JP23219289A 1989-09-06 1989-09-06 Magnetic head Pending JPH0395708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23219289A JPH0395708A (en) 1989-09-06 1989-09-06 Magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23219289A JPH0395708A (en) 1989-09-06 1989-09-06 Magnetic head

Publications (1)

Publication Number Publication Date
JPH0395708A true JPH0395708A (en) 1991-04-22

Family

ID=16935435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23219289A Pending JPH0395708A (en) 1989-09-06 1989-09-06 Magnetic head

Country Status (1)

Country Link
JP (1) JPH0395708A (en)

Similar Documents

Publication Publication Date Title
JPH04278205A (en) Magnetic head
JPH0475563B2 (en)
JPH0395708A (en) Magnetic head
JPS6220607B2 (en)
JPS6339106A (en) Magnetic head
KR970008603B1 (en) Complex magnetic head
JPH0548244Y2 (en)
JPH045046Y2 (en)
JPS6236708A (en) Magnetic head
JPH0770023B2 (en) Magnetic head
JPH03185608A (en) Magnetic head and production thereof
JPH0546009B2 (en)
JPH0656646B2 (en) Magnetic head
JPH0580724B2 (en)
JPH0561681B2 (en)
JPH0565924B2 (en)
JPH07110910A (en) Manufacture of magnetic head
JPS62145516A (en) Magnetic head
JPH01235012A (en) Magnetic head
JPH04229407A (en) Magnetic head
JPH0658723B2 (en) Magnetic head manufacturing method
JPS628318A (en) Composite magnetic head
JPS62110606A (en) Manufacture of magnetic head
JPH0467247B2 (en)
JPS61287018A (en) Magnetic head