JPH0395524A - Bistable semiconductor laser - Google Patents

Bistable semiconductor laser

Info

Publication number
JPH0395524A
JPH0395524A JP23367889A JP23367889A JPH0395524A JP H0395524 A JPH0395524 A JP H0395524A JP 23367889 A JP23367889 A JP 23367889A JP 23367889 A JP23367889 A JP 23367889A JP H0395524 A JPH0395524 A JP H0395524A
Authority
JP
Japan
Prior art keywords
optical waveguide
region
face
light
stripe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23367889A
Other languages
Japanese (ja)
Inventor
Shinsuke Ueno
上野 眞資
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP23367889A priority Critical patent/JPH0395524A/en
Publication of JPH0395524A publication Critical patent/JPH0395524A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F3/00Optical logic elements; Optical bistable devices
    • G02F3/02Optical bistable devices
    • G02F3/026Optical bistable devices based on laser effects

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To enable bistable operation in a wide current area and to provide a light injecting function by providing an optical waveguide between two stripes areas consisting of nonexcitation and excitation areas and providing a light reflecting surface at the other end. CONSTITUTION:A 1st clad layer 11, an active layer 12, a 2nd clad layer 13 and an SiO2 film 14 are formed on a substrate 10, two window are provided in stripes, and Zn is diffused in them to form a 1st excited area 19 and a 1st nonexcitation area 20. Similarly, a 2nd excitation area 21 and a 2nd noexcitation area 22 are formed and the optical waveguides 26 is provided between those two striped areas; and a V-cut end surface 25 is formed at one end and a light reflecting surface 31 is formed at the other end. Those excitation areas 19 and 21 and nonexcitation areas 20 and 22 are made to meet specific requirements and thus the bistable operation is performed in the wide current area; and light is made incident to enable optical switch operation and different- wavelength laser oscillation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光情報処理装置等において光スイッチ素子や光
論理演算素子等として用いられる双安定半導体レーザに
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a bistable semiconductor laser used as an optical switch element, an optical logic operation element, etc. in an optical information processing device or the like.

〔従来の技術〕[Conventional technology]

光出力特性にヒステリシス現象をもつ光双安定素子は高
速光スイッチ,光論理演算,光メモリなどの機能を持ち
光情報処理装置,光コンピュータなどの基本的な光機能
デバイスとして広く注目され、現在研究開発が進められ
ている。
Optical bistable devices with a hysteresis phenomenon in their optical output characteristics have functions such as high-speed optical switches, optical logic operations, and optical memories, and are attracting wide attention as basic optical functional devices for optical information processing equipment, optical computers, etc., and are currently being researched and developed. is in progress.

ダブルヘテロ接合( DH(double heLer
o))構造をもつ通常の半導体レーザを用いて双安定動
作をさせる双安定半導体レーザとしてはカワクチ( H
.Kaw−acuchi)とイワネ( G.Iwane
)とがエレクトロニックス・レターズ( Electr
onics Letters)誌1981年17巻16
7〜168頁に「不均一励起を伴った半導体レーザにお
ける双安定動作J ( Bistableoperat
ion  in  semiconductor wi
th  inhomogeneousexcitati
on)と題して発表している。この双安定半導体レーザ
は第9図に示すようにストライプ状の共振器長て方向に
おいて、六角形状をしたキャリア注入領域61をInG
aAsP/InP半導体レーザのキャップ層62に亜鉛
(Z n)拡散によって周期的に形戒した構造になって
いる。
Double heterojunction (DH
Kawakuchi (H
.. Kaw-acuchi) and G.Iwane
) and Electronics Letters ( Electr
onics Letters) Magazine 1981 Volume 17 16
"Bistable operation in semiconductor lasers with non-uniform excitation" on pages 7-168.
ion in semiconductor wi
th inhomogeneous excitati
The presentation was titled ``on''. As shown in FIG. 9, this bistable semiconductor laser has a hexagonal carrier injection region 61 in the longitudinal direction of the striped resonator.
The cap layer 62 of the aAsP/InP semiconductor laser has a periodically shaped structure by diffusion of zinc (Zn).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述のカワクチ等の双安定半導体レーザでは、温度やキ
ャリア注入領域の長さによって双安定動作は変動し不安
定であり、その動作領域(動作電流領域)は狭く再現性
に欠けている。また光が−1(振端面から放出されるの
で面発光型デバイスのように集積化できない欠点もあっ
た。
In the above-mentioned bistable semiconductor laser such as Kawakuchi, the bistable operation fluctuates and is unstable depending on the temperature and the length of the carrier injection region, and its operating region (operating current region) is narrow and lacks reproducibility. Also, since light is emitted from the -1 (wavelength) surface, there is a drawback that it cannot be integrated like a surface-emitting type device.

面発光型デバイスを組合せて光情報の処理を行う場合に
は、単に面発光するばかりでなく、光の垂直方向への放
出および垂直方向から注入される光に反応する素子構造
が必要である。しかしこのような双安定素子はいまだ提
案されていない。
When processing optical information using a combination of surface-emitting devices, it is necessary to have an element structure that not only emits light from the surface but also emits light in the vertical direction and responds to light injected from the vertical direction. However, such a bistable element has not yet been proposed.

本発明の目的は上記諸欠点を除去し、双安定の動作原理
に基づき、双安定動作が広い電流領域にわたって安定に
生じるとともに、垂直方向の光の−5一 注入機能を具備した双安定半導体レーザを提供する事に
ある。
The object of the present invention is to eliminate the above-mentioned drawbacks, and to provide a bistable semiconductor laser which stably produces bistable operation over a wide current range based on the principle of bistable operation, and which also has a function of -5-injection of light in the vertical direction. The goal is to provide the following.

〔課題を解決するための手段〕[Means to solve the problem]

前述の問題を解決するために本発明が提供する第1の手
段は活性層を該活性層よりもバンドギャップの広い半導
体層で挟みこんだダブルヘテロ接合構造を少くとも含ん
でいる多層構造を有し、共振器の長て方向に連なって該
活性層内に該活性層よりも小さいバンドギャップを有す
る非励起領域と励起領域とから構威され、かつ互いにバ
ンドギャップが異なる2個のストライプ状領域を平行に
具備し、該2個のストライプ状領域よりも広いバンドギ
ャップを有する活性層をもつダブルヘテロ接合構造から
なる光導波路を該2個のストライプ状領域の共振器長て
方向でかつ両者の間に具備し、その全体を該活性層より
もバンドギャップの広い半導体層で埋込んだ埋込構造と
し、該光導波路の一方の端面ば素子中央に位置し、かつ
、そのストライプ長て方向に進行する光が進行方向に対
して90度の左右両方向に反射するような傾斜面−6 を有し、該2個のストライプ状領域の素子中央付近に位
置する端面ば前記光導波路の端面から左右両方向に反射
された光を各々のストライプ状領域のストライプの長て
方向に反1Jするような傾斜領域を具備し、該光導波路
の他方の端面ば素子表面に対して垂直面をなし、かつ、
その垂直面に幻向して、素子底面に対し45度の斜面を
右し、素子表面に垂直な方向からの入射光を直角に反射
して該先導波路内に光を入射させる反斜面を有する状態
において、該2個のストライプ状領域の各々において励
起領域の全長と非励起領域の全長の比を(1−h):h
 (0<h<1)とし、かつ該非励起領域全体の損失α
を共振器損失Pを用いて規格化した損失βをβ=hα/
Pとしたとき励起領域の微分利得係数gaと非励起領域
の微分利得係数g,との比ga/gbおよびギャリア自
然寿命の比いる事を特徴とする双安定半導体レーザであ
る。
A first means provided by the present invention to solve the above-mentioned problem is to have a multilayer structure including at least a double heterojunction structure in which an active layer is sandwiched between semiconductor layers having a wider band gap than the active layer. two stripe-shaped regions that are continuous in the longitudinal direction of the resonator and are composed of a non-excited region and an excited region that have a smaller band gap than the active layer in the active layer, and that have different band gaps from each other; In parallel, an optical waveguide consisting of a double heterojunction structure having an active layer having a wider bandgap than the two striped regions is connected in the resonator length direction of the two striped regions and between the two striped regions. The optical waveguide has a buried structure in which its entirety is buried with a semiconductor layer having a wider band gap than the active layer, and one end surface of the optical waveguide is located at the center of the element, and the stripe is located in the longitudinal direction of the optical waveguide. It has an inclined surface 6 such that the traveling light is reflected in both left and right directions at 90 degrees with respect to the traveling direction, and the end faces located near the center of the element of the two striped regions are located right and left from the end face of the optical waveguide. The optical waveguide is provided with an inclined region so that the light reflected in both directions is reflected by 1J in the longitudinal direction of the stripe of each striped region, and the other end face of the optical waveguide is perpendicular to the element surface, and
Facing the vertical plane, it has a 45-degree slope to the right of the bottom surface of the element, and has a reverse slope that reflects incident light from a direction perpendicular to the element surface at right angles and makes the light enter the guiding waveguide. In each of the two striped regions, the ratio of the total length of the excited region to the total length of the non-excited region is (1-h): h
(0<h<1), and loss α of the entire non-excited region
The loss β normalized using the resonator loss P is β=hα/
The present invention is a bistable semiconductor laser characterized by a ratio ga/gb of a differential gain coefficient ga in an excitation region to a differential gain coefficient g in a non-excitation region and a comparison of Gallia natural lifetime, where P is a differential gain coefficient ga in an excitation region and a differential gain coefficient g in a non-excitation region.

本発明の第2の手段は上記第1の手段において該光導波
路の共振器長て方向でかつ素子の他方の端面近傍に第2
の光導波路を具備し、該2個のストライプ状領域におい
て素子中央付近に位置し傾斜面を有する端面に対峙する
他の片方の端面ば各々ストライプの長て方向に進行する
光が該第2の光導波路の方向に反則するようにストライ
プの長て方向に対して傾斜を有し、該第2の光導波路に
おいてその素子内部に位置する端面は該2個のストライ
プ状領域の端面から反射された各々の光をス}・ライブ
の長て方向に反射するように傾斜領域を具備し、該第2
の光導波路の他方の端面ば素子垂直な面に対して45度
をなす斜面を具備した状態において、該第2の光導波路
とこの斜面とが接する活性層を垂直方向に含みレーザ発
振光に対して透明な層表面を出すように該素子に穴を形
威した事を特徴とする面発光型の双安定半導体し・ザで
ある。
A second means of the present invention is a second means in the first means described above, in which a second portion is provided in the longitudinal direction of the resonator of the optical waveguide and in the vicinity of the other end face of the element.
The light propagating in the longitudinal direction of each stripe is provided with an optical waveguide, and when the other end surface of the two striped regions is located near the center of the element and faces the end surface having the inclined surface, the light traveling in the longitudinal direction of each stripe passes through the second striped region. The second optical waveguide has an inclination with respect to the longitudinal direction of the stripe so as to be contrary to the direction of the optical waveguide, and the end face located inside the element in the second optical waveguide is reflected from the end face of the two striped regions. A sloped area is provided to reflect each light in the longitudinal direction of the second live.
The other end face of the optical waveguide is provided with an inclined surface at an angle of 45 degrees with respect to a plane perpendicular to the element, and the second optical waveguide includes an active layer in contact with the inclined surface in the vertical direction, and is directed to the laser oscillation light. This is a surface-emitting bistable semiconductor device characterized by having holes formed in the device to expose a transparent layer surface.

〔実施例〕〔Example〕

以下図面を用いて本発明の実施例を説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本実施例の斜視図、第2図は上面図、第3図と
第4図は各々第1図のA−A’,B−B’断面図である
。第5図は別の実施例の斜視図、第6図は第5図の上面
図、第7図は第5図のC−C’断面図である。この実施
例の製造方法は第8図に示すようにn形G a A s
基板10上にn形Aβo4G a o,s A s第1
クラッド層l1を3.0μm,n形A (l o.o 
s G a 0.9 5 A S活性層12(キャリア
濃度3X 1 0 18cm−3)を0.10μm,n
形A R o.h G a o.aAs第2クラッド層
13を2.0μm連続戒長ずる。
1 is a perspective view of this embodiment, FIG. 2 is a top view, and FIGS. 3 and 4 are sectional views taken along line AA' and line BB' in FIG. 1, respectively. FIG. 5 is a perspective view of another embodiment, FIG. 6 is a top view of FIG. 5, and FIG. 7 is a sectional view taken along the line CC' of FIG. The manufacturing method of this embodiment is as shown in FIG.
n-type Aβo4G ao,s A s first on the substrate 10
The cladding layer l1 is 3.0 μm, n-type A (l o.o
s Ga 0.9 5 A S active layer 12 (carrier concentration 3X 10 18 cm-3) is 0.10 μm, n
Shape A R o. h G a o. The aAs second cladding layer 13 is continuously lengthened by 2.0 μm.

第3層めのn形第2クラッド層13の上にSiO2膜1
4を形成し、このSiCh膜14中にフォトレジスト技
術で幅3μm長さ150μmのストライプ状の2本の窓
15.16をそれぞれ平行で互いに接しないようにl2
μmはなしてあけ、更にこの2本のストライプ状の窓1
5.16の中心線と一致するように幅3μm1長さ22
0μmのストライプ状の2本の窓17.18をそれぞれ
ストライプ状の窓15.16の端から5μmはなしてそ
の延長上に形成する(第8図)。これらの窓からZnを
低濃度拡散する。拡散フロン1・はn形AA.,.G 
a o.s A S第1クラッド層1内、より望ましく
は一9一 第1クラッド層11と活性層12との境界にとどめる。
SiO2 film 1 on the third n-type second cladding layer 13
4, and in this SiCh film 14, two stripe-shaped windows 15 and 16 with a width of 3 μm and a length of 150 μm are formed using a photoresist technique so that they are parallel to each other and do not touch each other.
Open the μm apart, and then add these two striped windows 1.
5. Width 3 μm 1 length 22 to match the center line of 16
Two striped windows 17 and 18 of 0 .mu.m are formed on the extension of the striped window 15.16, separated by 5 .mu.m from each end (FIG. 8). Zn is diffused at a low concentration through these windows. Diffusion Freon 1 is n-type AA. 、. G
a o. s A S within the first cladding layer 1 , more preferably at the boundary between the first cladding layer 11 and the active layer 12 .

この時拡散するZnの濃度を4×1018cm″″3と
制御すると活性層内の拡散された領域はキャリア濃度I
 X 1 0 IJcm−3のp形に変換されて不純物
補償されたp形になっている。このとき不純物補償され
た活性層のバンドギャップは本発明者の測定によればも
との活性層12のバンドギャップより40meV縮少し
ていた。ここにおいて窓15および窓17の下の不純物
袖償された活性層はそれぞれ第1励起領域】9と第1非
励起領域20になる(第2図)。
If the concentration of Zn diffused at this time is controlled to 4 x 1018 cm''3, the diffused region in the active layer has a carrier concentration I
It is converted to a p-type of X 1 0 IJcm-3 and is a p-type with impurity compensation. At this time, the band gap of the impurity-compensated active layer was found to be 40 meV smaller than the band gap of the original active layer 12, according to measurements made by the inventor. Here, the impurity-redeemed active layers under the windows 15 and 17 become a first excitation region 9 and a first non-excitation region 20, respectively (FIG. 2).

次にストライプ状の窓15.17をSiO2膜でおおい
ストライプ状の窓16.18からZnを7 X 1 0
 18cm−3活性層内部まで拡散する。このとき拡散
された領域の活性層の濃度は上記とあわせて8 X 1
 0 18cm−3のp形となり、そのバンドギャップ
は本発明者の測定によればもとの活性層12のバンドギ
ャップより6 0meV縮少していた。ここにおいて窓
16および窓18の下の不純物補償された活性層はそれ
ぞれ第2励起領域21一10 と第2非励起領域22になる(第2図)。
Next, the striped window 15.17 is covered with a SiO2 film, and Zn is added from the striped window 16.18 to 7×10
Diffuses to the inside of the 18cm-3 active layer. At this time, the concentration of the active layer in the diffused region is 8 x 1 in addition to the above.
According to measurements made by the present inventors, the band gap was 60 meV smaller than that of the original active layer 12. The impurity-compensated active layers under windows 16 and 18 now become second excitation regions 21-10 and second non-excitation regions 22, respectively (FIG. 2).

次に第8図に示すように、SiO2膜を除去後再びSi
02膜をつけ、上記の窓15とlγからのZn拡散領域
をつなげた第1のストライプ部分と窓16と18からの
Zn拡散領域をつなげた第2のストライプ部分とこれら
の間でかつ窓17と18からのZn拡散領域の各端面近
くからZn拡散領域とは逆方向に延びる幅6μmの第3
のストライプ状領域およびこれにつづく端面近傍全体の
SiO2膜を残し、他の部分はエッチングで除去する。
Next, as shown in FIG. 8, after removing the SiO2 film, the Si
02 film is applied, and between the first stripe portion connecting the Zn diffusion regions from windows 15 and lγ, the second stripe portion connecting the Zn diffusion regions from windows 16 and 18, and the window 17. and 18, each having a width of 6 μm and extending from near each end face of the Zn diffusion region in the direction opposite to the Zn diffusion region.
The SiO2 film in the striped region and the entire vicinity of the end face is left, and the other parts are removed by etching.

このとぎ第1と第2のストライプ領域のZn拡散領域端
面ば、第3のストライプ状領域をはさむ外側を共振器の
長て方向に対して45度をなす傾斜をもち(第1傾斜端
面23,第2傾斜端面24)、端面に垂直にはいってき
た光が90度反射され各ストライプ領域内を共振器方向
に進行していくようにする(第2図)。一方第3のスト
ライプ状領域の素子中央付近の端面ば上記45度の傾斜
面23.24に対応してその中心部分の共振器長て方向
においてV字の形状でその角度が90度になる切れこみ
を形成し(V字切れこみ端面25)第3のストライプ状
領域に注入した光がこの45度の傾斜面で90度方向に
反射され第1と第2とのストライプ領域に注入されるよ
うにする。この第3のストライプ状領域が光導波路26
となる(第2図)。このときエッチングは第1クラッド
層l1内部まで行なう。
The Zn diffusion region end faces of the first and second striped regions have an inclination of 45 degrees with respect to the longitudinal direction of the resonator at the outer side sandwiching the third striped region (the first inclined end face 23, The second inclined end surface 24) allows light entering perpendicular to the end surface to be reflected by 90 degrees and travel within each stripe region toward the resonator (FIG. 2). On the other hand, the end face of the third striped region near the center of the element has a V-shaped cut whose angle is 90 degrees in the longitudinal direction of the resonator, corresponding to the 45-degree inclined surface 23 and 24. A groove is formed (V-shaped notch end face 25) so that the light injected into the third stripe-like region is reflected in a 90-degree direction by this 45-degree inclined surface and is injected into the first and second stripe regions. Make it. This third stripe-shaped area is the optical waveguide 26.
(Figure 2). At this time, etching is performed to the inside of the first cladding layer l1.

次に全体を高抵抗A I! o.oa G a O.9
2 A S層27で埋込む(第3図,第4図)。上記戊
長においてMOVPE法を用いればMOVPE法は有機
金属を用いた気相成長法であるので混合ガスの組成を変
化させる事で任意の組或の層を層厚の制御よく戒長ずる
事ができる。更に高抵抗層27は成長ガス中に酸素を導
入すれば容易に形戒する事ができる。
Next, apply high resistance AI! o. oa G a O. 9
2A S layer 27 (FIGS. 3 and 4). If the MOVPE method is used in the above-mentioned process, it is possible to lengthen any set of layers with good control of the layer thickness by changing the composition of the mixed gas, since the MOVPE method is a vapor phase growth method using organic metals. can. Furthermore, the high resistance layer 27 can be easily formed by introducing oxygen into the growth gas.

またこの埋込み戊長においてガス流量を制御すればSi
O2膜上に成長せずエッチングした領域のみに戒長させ
る事ができる。さらに埋込み前においてHCj7ガスで
表面をガスエッチングする事もできより信頼性を向上さ
せる事ができる。
Moreover, if the gas flow rate is controlled at this embedding length, Si
It is possible to lengthen only the etched region without growing on the O2 film. Furthermore, the surface can be gas-etched with HCj7 gas before embedding, and reliability can be further improved.

高抵抗層27の戒長後、Sin2膜を除去し、第1励起
領域l9に対応するZn拡散領域にp形オーミックコン
タクト28,第2励起領域21に対応するZn拡散領域
にp形オーミックコンタクト29をつけ、n形基板10
側にn形オーミックコンタクト30を形成する。
After the formation of the high resistance layer 27, the Sin2 film is removed, and a p-type ohmic contact 28 is formed in the Zn diffusion region corresponding to the first excitation region l9, and a p-type ohmic contact 29 is formed in the Zn diffusion region corresponding to the second excitation region 21. Attach n-type substrate 10
An n-type ohmic contact 30 is formed on the side.

次にp形オーミックコンタクトをつけた表面にフォトレ
ジストをおこない、前記光導波路26の素子端面近傍に
あたる前記エッチングで残した領域において、共振器の
長て方向に対して直角に幅2μm程度のストライプ状の
窓をあけ垂直にドライエッチングを第1クラッド層11
の深さまで行う。次に再びフォトレジストを行い、上記
の溝をレジストで埋めた後上記溝に隣接して光導波路の
端面方向に対して斜め45度になるようにドライエッチ
ングをする。このとき垂直なドライエッチングビームに
対して素子を45度傾けておくとよい。こうして得られ
た斜面31に対して第3図に示すように、上方から入射
した光は斜面3lで直角に反割され光導波路26内へと
進行していく(第2図,第3図)。
Next, a photoresist is applied to the surface on which the p-type ohmic contact is attached, and in the region left by the etching near the element end face of the optical waveguide 26, a stripe pattern of about 2 μm in width is formed perpendicular to the longitudinal direction of the resonator. Open a window and perform vertical dry etching on the first cladding layer 11.
Do this to a depth of . Next, photoresist is applied again, and after filling the groove with resist, dry etching is performed adjacent to the groove at an angle of 45 degrees with respect to the end face direction of the optical waveguide. At this time, it is preferable to tilt the element at 45 degrees with respect to the vertical dry etching beam. As shown in FIG. 3 with respect to the thus obtained slope 31, light incident from above is split at right angles by the slope 3l and proceeds into the optical waveguide 26 (FIGS. 2 and 3). .

−13− こうして本発明の第1の半導体レーザが得られる(第1
図,第2図,第3図,第4図)。
-13- Thus, the first semiconductor laser of the present invention is obtained (first
(Fig. 2, Fig. 3, Fig. 4).

上述の製造過程において高抵抗埋込み戒長前のエッチン
グに際して、上述の外に窓15と16から行ったZn拡
散領域の端面近くから上記光導波路26と逆の共振器長
て方向に幅6μmの第4のストライプ状領域を形成する
。この際第1と第2のストライプ領域の端面には第4の
ストライプ状領域をはさむ外側にも第1傾斜端面23と
第2傾斜端面24とに対峙するように共振器方向に対し
て45度の角度をなす第3傾斜端面32と第4傾斜端面
33を形成する(第6図)。又一方第4のストライプ状
領域の素子内部の端面は光導波路26と同様なV字切れ
こみ端面34を形威しこの第4のストライプ状領域が第
2光導波路35となる。
In the above-mentioned manufacturing process, during etching before high-resistance embedding, a 6-μm wide groove was etched from near the end face of the Zn diffusion region through the windows 15 and 16 in the direction of the resonator length opposite to the optical waveguide 26. 4 striped areas are formed. At this time, the end surfaces of the first and second striped regions are also provided on the outside sandwiching the fourth striped region at an angle of 45 degrees with respect to the resonator direction so as to face the first inclined end surface 23 and the second inclined end surface 24. A third inclined end surface 32 and a fourth inclined end surface 33 forming an angle of (FIG. 6) are formed. On the other hand, the end face of the fourth stripe-like region inside the element forms a V-shaped notch end face 34 similar to the optical waveguide 26, and this fourth stripe-like region becomes a second optical waveguide 35.

こうして光導波路26を進行する光はその素子内部の端
面で第1と第2のストライプ領域に分離して進行しとも
に第2光導波路内35にはいりその内部を進行すること
ができる(第6図)。これを第1図の如く高抵抗層27
で埋込み、p形とn形一14 のオーミックコンタクトを形成する。上述の斜面31の
形成とともにそれに対峙する素子端面第2光導波路35
にも共振器長て方向素子内部に対して135度すなわち
斜面31と平行な斜面36をドライエッチングで形成す
る。これは斜面31と同時に形成する事ができる。
In this way, the light traveling through the optical waveguide 26 can be separated into the first and second stripe regions at the end face inside the element, and both can enter the second optical waveguide 35 and travel therein (Fig. 6). ). As shown in Fig. 1, the high resistance layer 27
14 to form p-type and n-type ohmic contacts. Along with the formation of the above-mentioned slope 31, a second optical waveguide 35 is formed on the element end face facing the slope 31.
Also, a slope 36 that is parallel to the slope 31 is formed at an angle of 135 degrees with respect to the inside of the element in the longitudinal direction of the resonator by dry etching. This can be formed simultaneously with the slope 31.

次に基板側にフォトレジスト膜をつけ第2光導波路35
と斜面36が接する活性層の中央部分から基板に垂直に
おろした点を中心として半径2μmの円状の窓をフォト
レジスト膜にあげる。次にドライエッチングおよび化学
エッチングを用いて第1クラッド層11の表面が現われ
るまで基板10に穴37をほり、その後すべてのフォト
レジスト膜を除去する。こうして本発明の別の構造のレ
ーザが得られる(第5図,第6図,第7図)。
Next, a photoresist film is applied to the substrate side and the second optical waveguide 35 is formed.
A circular window with a radius of 2 μm is formed in the photoresist film, centered on a point perpendicular to the substrate from the center of the active layer where the slope 36 contacts. Next, a hole 37 is drilled in the substrate 10 using dry etching and chemical etching until the surface of the first cladding layer 11 is exposed, and then all the photoresist film is removed. In this way, a laser having another structure of the present invention is obtained (FIGS. 5, 6, and 7).

〔作用・原理〕[Action/Principle]

本実施例の構造において各Zn拡散領域上のp形オーミ
ックコンタクトから注入されたキャリアZn拡散領域を
通って活性領域内に注入される。
In the structure of this embodiment, carriers injected from the p-type ohmic contact on each Zn diffusion region are injected into the active region through the Zn diffusion region.

活性領域水平横方向は高抵抗A A O.05 G a
 O,95 A s層27ではさまれBH構造をしてい
る。特に本実施例において第1励起領域l9と第1非励
起領域20はI X 1 0 1acm−3のp形活性
層でありその屈折率は活性層の屈折率n.=3.555
からp形濃度による屈折率の減少量を加味すると実効的
な屈折率n harf”’ 3. 5 5 0になって
いる。これに対して埋込み層である高抵抗A I! o
.o s G a o.o 5 A S層27の屈折率
n b=3. 5 3 4であるので屈折率差Δn=1
.6X.10−2となり安定な基本横モード発振を維持
する。一方第2励起領域2lと第2非励起領域22は8
 X l O ”cm−3のp形活性層であり実効的な
屈折率はn ,,,,= 3. 5 4 3になるので
屈折率差Δn=9X10−3となりストライプ幅3μm
の活性領域は安定な基本横モード発振を高出まで維持し
つづける事ができる。
The active region has high resistance in the horizontal and lateral directions A A O. 05 Ga
It has a BH structure sandwiched between O,95A s layers 27. In particular, in this embodiment, the first excitation region l9 and the first non-excitation region 20 are p-type active layers of I x 10 1 acm-3, and their refractive index is equal to the refractive index of the active layer n. =3.555
When the amount of decrease in refractive index due to p-type concentration is taken into account, the effective refractive index becomes 3.550.On the other hand, the high resistance A I!o which is a buried layer
.. o s G a o. o 5 A refractive index n b of the S layer 27 = 3. 5 3 4, so the refractive index difference Δn=1
.. 6X. 10-2, maintaining stable fundamental transverse mode oscillation. On the other hand, the second excitation region 2l and the second non-excitation region 22 are 8
Since it is a p-type active layer of X l O '' cm-3 and the effective refractive index is n,,,,= 3.5 4 3, the refractive index difference Δn=9X10-3, and the stripe width is 3 μm.
The active region can continue to maintain stable fundamental transverse mode oscillation up to high output.

ところで本発明の構造では第1励起領域19と第2励起
領域21に連なって各々同一p形ドーパントをもつ第1
非励起領域20と第2非励起領域22が形戊されている
。励起領域にキャリアを注入してレーザ発振をさせると
各非励起領域はレーザ発振に対して200cm−’の損
失をもち吸収領域になる。よって本発明の構造では活性
領域19に連なって吸収領域20があり活性領域21に
連なって吸収領域22が形成されている。
By the way, in the structure of the present invention, the first excitation region 19 and the second excitation region 21 are connected to each other and each has the same p-type dopant.
A non-excited region 20 and a second non-excited region 22 are formed. When carriers are injected into the excitation region to cause laser oscillation, each non-excitation region becomes an absorption region with a loss of 200 cm-' relative to the laser oscillation. Therefore, in the structure of the present invention, an absorption region 20 is formed continuous to the active region 19, and an absorption region 22 is formed continuous to the active region 21.

従って本発明の構造ではストライプ状活性領域の共振器
の長て方向に非励起領域の光吸収領域を有しており、こ
れは共振器内に可飽和吸収体を導入した事と等価になる
。このような場合に出現する現象と各種パラメータとの
関係はジュルナル・オブ−7プライドフィシックス( 
Journal of AppliedPhysics
) 1 9 8 5年58巻l689頁〜l692頁に
ウエノ(M.Ueno)とラング( R.Lang)に
より「半導体レーザにおける自励振動と双安定の発生条
件J (Condition for Self−su
stained pulsation andbist
ability in semiconductor 
lasers)の表題で発表されている。これによれば
励起領域(領域1)と吸収領域(領域2)との長さの比
を(1−h):hとし励起領域の吸収領域に対する微分
利得係数の比をg 1/ g 2 1各領域のキャリア
自然寿命の比をτ1/τ2とすると、規格化した非飽和
吸収の太き一17一 いる。
Therefore, in the structure of the present invention, the striped active region resonator has a non-excited light absorption region in the longitudinal direction of the resonator, which is equivalent to introducing a saturable absorber into the resonator. The relationship between the phenomena that appear in such cases and various parameters is explained in the Journal of -7 Pride Physics (
Journal of Applied Physics
) 1985, Vol. 58, pp. 1689-1692, M. Ueno and R. Lang, ``Condition for Self-sustained Oscillation and Bistability Generation in Semiconductor Lasers J.
stained pulsation and bist
ability in semiconductor
It was announced under the title of ``Lasers''. According to this, the length ratio of the excitation region (region 1) and the absorption region (region 2) is (1-h):h, and the ratio of the differential gain coefficient of the excitation region to the absorption region is g 1 / g 2 1 If the ratio of carrier natural lifetimes in each region is τ1/τ2, then the normalized non-saturated absorption thickness is 171.

本発明の実施例によれば光吸収領域での損失αはa= 
− 2 0 0cm−’程度でありr’=4 0cm−
’, h=0.4とするとβ=−2.0となる。光吸収
領域部分は非励起領域となるのでキャリアの自然寿命τ
2は比較的長くτ2=4μm〜5μm、一方活性領域で
はτ.=1.5μm〜2.0μmであるのでτ1/τ2
=0、2〜0.375であり、g+/g2=0.8〜1
.0と予想されるので、上記の双安定発生条件を充分に
みたし、各々双安定動作が安定に生じる。
According to the embodiment of the present invention, the loss α in the light absorption region is a=
-200cm-' and r'=40cm-
', h=0.4, then β=-2.0. The light absorption region becomes a non-excited region, so the natural lifespan of carriers τ
2 is relatively long τ2 = 4 μm to 5 μm, while in the active region τ. = 1.5 μm to 2.0 μm, so τ1/τ2
=0, 2~0.375, g+/g2=0.8~1
.. Since it is expected to be 0, the above-mentioned conditions for bistable occurrence are fully satisfied, and each bistable operation occurs stably.

更に本発明の構造では斜面31とこれに隣接して光導波
路26とを有し、これは次の様な光機能動作をする。
Further, the structure of the present invention has a slope 31 and an optical waveguide 26 adjacent thereto, which performs the following optical function operation.

まず本発明の構造において各励起領域19,21をレー
ザ発振が生じない程度に励起しておく。この状態におい
て斜面31に光を入射すると、光は−18 斜面31で反射され直角にまがり光導波路26内に注入
される。光導波路26は活性層と高抵抗埋込み層との間
の屈折率差に基づく正の屈折率分布をもっているので光
は光導波路内にとじこもって進行する。光導波路26は
素子内ではV字切れこみ端面25を有しており共振器の
長て方向の中心線に対して45度と135度とをなす乗
直面になっているので、光導波路26を進行した光はこ
の端面25で反射され進行方向に対して左右両方向に二
分されて直角にまがり中心線に垂直に進行しはじめる。
First, in the structure of the present invention, each excitation region 19, 21 is excited to such an extent that laser oscillation does not occur. When light is incident on the slope 31 in this state, the light is reflected by the -18 slope 31, curves at a right angle, and is injected into the optical waveguide 26. Since the optical waveguide 26 has a positive refractive index distribution based on the refractive index difference between the active layer and the high-resistance buried layer, light travels while being confined within the optical waveguide. The optical waveguide 26 has a V-shaped notch end face 25 within the device, and is a square plane that forms angles of 45 degrees and 135 degrees with respect to the center line in the longitudinal direction of the resonator. The traveling light is reflected by this end face 25, divided into two in both left and right directions with respect to the traveling direction, turns at right angles, and begins to travel perpendicular to the center line.

本発明の構造では、第2図に示したごとく進行方向には
各々第1非励起領域20と第2非励起領域22とがある
ので進行した光はこれらの非励起領域で吸収されこの領
域のキャリアを励起する事になる。その結果非励起領域
でのバンドギャップが等価的に広がり損失が減少し、第
1励起領域19と第1非励起領域20および第2,励起
領域2lと第2非励起領域22で各々形威される共振器
でレーザ発振が開始される。
In the structure of the present invention, as shown in FIG. 2, there are a first non-excited region 20 and a second non-excited region 22 in the traveling direction, so the traveling light is absorbed by these non-excited regions and is absorbed by these non-excited regions. It will stimulate your career. As a result, the band gap in the non-excited region is equivalently widened, and the loss is reduced, which is reflected in the first excited region 19 and the first non-excited region 20, and in the second excited region 2l and the second non-excited region 22, respectively. Laser oscillation is started in the resonator.

更に本発明の構造では、各励起領域と共に各非励起領域
はバンドギャップ幅が異なっておりこれは光機能動作を
著しく高めている。すなわち外部から斜面3lに入射す
る光の波長が第1と第2非励起領域のバンドギャップよ
り広い場合には光は第1と第2非励起領域で吸収され双
安定動作が生じ第1励起領域19のレーザ発振により波
長λ1と第2,励起領域2]のレー→ノ゛発振による波
長λ2とが各領域から放射される。
Furthermore, in the structure of the present invention, each excitation region as well as each non-excitation region has a different bandgap width, which significantly enhances the optical functional operation. That is, when the wavelength of light incident on the slope 3l from the outside is wider than the bandgap between the first and second non-excited regions, the light is absorbed by the first and second non-excited regions, resulting in bistable operation and the first excited region. A wavelength λ1 due to the laser oscillation of 19 and a wavelength λ2 due to the ray→no oscillation of the second excitation region 2 are emitted from each region.

これに対して入射する光の波長が第1非励起領域20の
バンドギャップより広く第2非励起領域22より狭い場
合入射光は第1非励起領域では吸収されて双安定動作が
生じ波長λ1のレーザ発振が第1励起領域l9で生じる
のに対し第2非励起領域は光が透過し注入発振波長λ。
On the other hand, if the wavelength of the incident light is wider than the bandgap of the first non-excited region 20 and narrower than the second non-excited region 22, the incident light is absorbed in the first non-excited region, resulting in bistable operation and the wavelength λ1. Laser oscillation occurs in the first excitation region l9, whereas light passes through the second non-excitation region and the injection oscillation wavelength is λ.

のレーザ光が第2励起領域2lから放出される。入射す
る光の波長λ。が第1非励起領域のバンドギャップより
狭い場合には第1と第2の励起領域からλ。のレーザ光
が放出される。
laser light is emitted from the second excitation region 2l. Wavelength λ of incident light. λ from the first and second excited regions if is narrower than the bandgap of the first non-excited region. of laser light is emitted.

以上の如く本発明の構造は波長の異なる双安定レーザ発
振をし各レーザ発振光を同一面より放出するばかりでな
く波長選択性をもっている。
As described above, the structure of the present invention not only performs bistable laser oscillation with different wavelengths and emits each laser oscillation light from the same surface, but also has wavelength selectivity.

本発明の第2の構造(第5図)では各活性領域で発振し
たレーザ光は共振器長て方向に進行していくが各励起領
域の端面ば共振器の長て方向に対して45度をなす傾斜
端面となっており、その傾斜面はその内側に第2の光導
波路35をはさむ位置にあるため、この傾斜端面に入射
した光はここで反射され進行方向が90度変換し第2の
光導波路35内へ入射する(第6図)。この光導波路は
その端面においてV字切れこみがありV字状の切れこみ
の各辺が共振器の長て方向に対して45度の角度をなし
ているので光はここで反射され進向方向が90度変換し
第2光導波路の共振器方向へ進行していく。この第2光
導波路35の端面は共振器外部方向に45度傾いた斜面
36となってし・るのでレーザ光はこの斜面36で直角
に曲げられ基板側に垂直に進行する。この斜面36に隣
接して基板に穴37があるので光はこの穴37を通って
基板裏面から放射される面発光レーザとなる。
In the second structure of the present invention (Fig. 5), the laser light oscillated in each active region travels in the longitudinal direction of the resonator, but the end face of each excitation region is at an angle of 45 degrees with respect to the longitudinal direction of the resonator. Since the inclined surface is located at a position sandwiching the second optical waveguide 35 on the inside thereof, the light incident on this inclined end surface is reflected here, the traveling direction is changed by 90 degrees, and the second optical waveguide 35 is formed. into the optical waveguide 35 (FIG. 6). This optical waveguide has a V-shaped notch on its end face, and each side of the V-shaped notch forms an angle of 45 degrees with respect to the longitudinal direction of the resonator, so the light is reflected here and in the direction of propagation. is converted by 90 degrees and proceeds toward the resonator of the second optical waveguide. The end face of the second optical waveguide 35 is a slope 36 inclined at 45 degrees toward the outside of the resonator, so the laser beam is bent at a right angle by the slope 36 and travels perpendicularly toward the substrate. Since there is a hole 37 in the substrate adjacent to this slope 36, light passes through this hole 37 and becomes a surface emitting laser emitted from the back surface of the substrate.

この素子の上部から垂直に入射した光によって波21一 長選択性をうけた光が素子下部に垂直に光が放出掖 される事になる。一介に光情報処理として重要な光論理
回路等では光機能素子を集積化しそれを他段階につみ重
ねて使用する方法が考えられているが、本第2の構造は
特にこの点で有効である。
The light that is vertically incident from the upper part of the element undergoes one-length selectivity of the wave 21, and is emitted vertically to the lower part of the element. For optical logic circuits, etc., which are important for optical information processing, methods have been considered in which optical functional elements are integrated and stacked on other stages, and this second structure is particularly effective in this respect. .

以上の如く本発明の構造では安定な双安定動作をするの
でメモリ効果をもつとともに光スイ、ツチンダ機能とし
て利用する事ができ光論理回路のキーエレメントになる
As described above, the structure of the present invention performs stable bistable operation, so it has a memory effect and can be used as an optical switching and switching function, making it a key element of optical logic circuits.

〔発明の効果〕〔Effect of the invention〕

本発明の構造は前記カワク千等の試作したレーザの如く
キャリア注入の相違により吸収領域を設けたものではな
く、光の吸収をする領域を形成したものであるばかりか
、面発光型双安定半導体レーザであり、構造も全く異な
っている。
The structure of the present invention is not one in which an absorption region is provided due to the difference in carrier injection as in the laser prototyped by Sen. Kawak et al., but a region that absorbs light is formed. It is a laser and has a completely different structure.

本発明の構造では (1)双安定動作が可能であり更にその許容範囲が広く
制御性再現性において従来にくらべて比類なくすぐれて
いる。
The structure of the present invention (1) is capable of bistable operation, has a wide tolerance range, and is unparalleled in terms of controllability and reproducibility compared to conventional structures.

(2)双安定動作の生じる閾値の近傍まで電圧をか−2
2 けておけば垂直な入射光により高速なスイッチング動作
ができる。さらに入射光の光強度に対応して、異なる波
長のレーザ発振が任意個できる。
(2) Increase the voltage to near the threshold where bistable operation occurs -2
2, high-speed switching operation can be achieved by vertically incident light. Furthermore, laser oscillations with different wavelengths can be performed in arbitrary numbers depending on the light intensity of the incident light.

(3)入射する光の波長の制御により任意の波長のレー
ザ発振が可能である。
(3) Laser oscillation of any wavelength is possible by controlling the wavelength of incident light.

(4)面発光型であり多段階につみ重ねて使用できる。(4) It is a surface emitting type and can be used by stacking it in multiple stages.

(5)励起領域自体正の屈折率ガイディング機構を持ち
、さらに共振器内に光ガイド機構を持ち安定な基本横モ
ード発振をする。
(5) The excitation region itself has a positive refractive index guiding mechanism, and further has a light guiding mechanism within the resonator to achieve stable fundamental transverse mode oscillation.

等の利点を有する。It has the following advantages.

本実施例はAj2GaAs/GaAsダブルヘテロ接合
結晶材料について説明したが、その他の結晶材料例えば
InGaP/AI2InP,InGaAsP/InGa
P,InGaAsP/InP,A4GaAsSb/Ga
AsSb等数多くの結晶材料の半導体レーザにも本発明
は適用できる。
Although this example describes the Aj2GaAs/GaAs double heterojunction crystal material, other crystal materials such as InGaP/AI2InP, InGaAsP/InGa
P, InGaAsP/InP, A4GaAsSb/Ga
The present invention can also be applied to semiconductor lasers made of many crystalline materials such as AsSb.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例の斜視図、第2図は第1
図の上面図、第3図と第4図は第1図のA−A’,B−
B’断面図、第5図は第2の実施例の斜視図、第6図は
第5図の上面図、第7図は第5図のc−c’断面図、第
8図は第1の実施例の製造過程においてZn拡散用の窓
を8 1 0 2膜にあけたときの斜視図、第9図は従
来の双安定半導体レーザの模式図である。 図において 10・・・・・・n形G a A s基板、11・・・
・・・n形A j7 o.tG a o.a A s第
1クラッド層、1 2 − − n形A 4 o.os
G a O,9 5 A S活性層、1 3 − − 
n形A j’ 0.4 G a o.aAs第2クラッ
ド層、14・・・・・・SiCh膜、15・・・・・・
Zn拡散窓、16・・・・・・Zn拡散窓、17・・・
・・Zn拡散窓、18・・・・・・Zn拡散窓、l9・
・・・・・第1励起領域、20・・・・・・第l非励起
領域、21・・・・・・第2励起領域、22・・・・・
・第2非励起領域、23・・・・・第l傾斜端面、24
・・・・・・第2傾斜端面、25・・・・・V字切れこ
み端面、26・・・・・・光導波路、27・・・・・高
抵抗A Il o.o s G a O.9 2 A 
s層、2 8 ・・・− p形オーミックコンタクト、
29・・・・・・p形オーミ、ソクコンタクl−、30
・・・・・・n形オーミックコンタクト、31・・・・
・・45度斜面、32・・・・・・第3傾斜端面、33
・・・・・第4傾斜端面、34・・・・・・V字切れこ
み端面、35・・・・・第2光導波路、36・・・・・
・45度斜面、37・・・・穴、 をそれぞれ示す。
FIG. 1 is a perspective view of the first embodiment of the present invention, and FIG. 2 is a perspective view of the first embodiment of the present invention.
The top view of the figure, Figures 3 and 4 are A-A', B- of Figure 1.
B' sectional view, FIG. 5 is a perspective view of the second embodiment, FIG. 6 is a top view of FIG. 5, FIG. 7 is a c-c' sectional view of FIG. FIG. 9 is a perspective view when a window for Zn diffusion is opened in the 8102 film in the manufacturing process of the embodiment, and FIG. 9 is a schematic diagram of a conventional bistable semiconductor laser. In the figure, 10... n-type GaAs substrate, 11...
...n type A j7 o. tG ao. a As first cladding layer, 1 2 − − n type A 4 o. os
G a O, 9 5 AS active layer, 1 3 − −
n-type A j' 0.4 G a o. aAs second cladding layer, 14... SiCh film, 15...
Zn diffusion window, 16...Zn diffusion window, 17...
...Zn diffusion window, 18...Zn diffusion window, l9.
...First excitation region, 20...Lth non-excitation region, 21...Second excitation region, 22...
- Second non-excited region, 23...l-th inclined end surface, 24
...Second inclined end face, 25...V-shaped notch end face, 26...Optical waveguide, 27...High resistance A Il o. o s G a O. 9 2 A
s layer, 2 8 ...- p-type ohmic contact,
29...p type ohmi, sokukontaku l-, 30
...N-type ohmic contact, 31...
...45 degree slope, 32...Third slope end surface, 33
... Fourth inclined end surface, 34 ... V-shaped notch end surface, 35 ... Second optical waveguide, 36 ...
・45 degree slope, 37...hole, are shown respectively.

Claims (2)

【特許請求の範囲】[Claims] (1)活性層を該活性層よりもバンドギャップの広い半
導体層で挟みこんだダブルヘテロ接合構造を少くとも含
んでいる多層構造を有し、共振器の長て方向に連なって
該活性層内に該活性層よりも小さいバンドギャップを有
する非励起領域と励起領域とから構成され、かつ互いに
バンドギャップが異なる2個のストライプ状領域を平行
に具備し、該2個のストライプ状領域よりも広いバンド
ギャップを有する活性層をもつダブルヘテロ接合構造か
らなる光導波路を該2個のストライプ状領域の共振器長
て方向でかつ両者の間に具備し、その全体を該活性層よ
りもバンドギャップの広い半導体層で埋込んだ埋込み構
造とし、該光導波路の一方の端面は素子中央に位置しか
つそのストライプ長て方向に進行する光が進行方向に対
して90度の左右両方向に反射するような傾斜面を有し
、該2個のストライプ状領域の素子中央付近に位置する
端面は前記光導波路の端面から左右両方向に反射された
光を各々のストライプ状領域のストライプの長て方向に
反射するような傾斜領域を具備し、該光導波路の他方の
端面は素子表面に対して垂直面をなし、かつその垂直面
に対向して、素子底面に対し45度の斜面を有し、この
斜面は、素子表面に垂直な方向からの入射光を直角に反
射して該光導波路内に光を入射させる反射面となり、該
2個のストライプ状領域の各々において励起領域の全長
と非励起領域の全長の比を(1−h):h(0<h<1
)とし、かつ該非励起領域全体の損失αを共振器損失Γ
を用いて規格化した損失βをβ=hα/Γとしたとき励
起領域の微分利得係数g_aと非励起領域の微分利得係
数g_bとの比g_a/g_bおよびキャリア自然寿命
の比τ_a/τ_bがg_aτ_a/(g_bτ_b)
<−β/(1−β)なる関係を有している事を特徴とす
る双安定半導体レーザ。
(1) It has a multilayer structure including at least a double heterojunction structure in which an active layer is sandwiched between semiconductor layers with a wider bandgap than the active layer, and the active layer is continuous in the longitudinal direction of the resonator. is composed of a non-excited region and an excited region having a band gap smaller than that of the active layer, and has two parallel stripe-like regions having different band gaps, and is wider than the two stripe-like regions. An optical waveguide consisting of a double heterojunction structure having an active layer with a bandgap is provided in the cavity length direction of the two striped regions and between them, and the entire optical waveguide is provided with a bandgap smaller than that of the active layer. It has a buried structure filled with a wide semiconductor layer, and one end face of the optical waveguide is located at the center of the element, and the light traveling in the stripe length direction is reflected in both left and right directions at 90 degrees with respect to the traveling direction. The end face, which has an inclined surface and is located near the center of the element of the two striped regions, reflects the light reflected in both left and right directions from the end face of the optical waveguide in the longitudinal direction of the stripe of each striped region. The other end face of the optical waveguide forms a plane perpendicular to the element surface, and opposite to the perpendicular plane, has a slope at an angle of 45 degrees with respect to the bottom face of the element, and this slope is , serves as a reflecting surface that reflects incident light from a direction perpendicular to the element surface at right angles and allows the light to enter the optical waveguide, and in each of the two striped regions, the total length of the excitation region and the total length of the non-excitation region The ratio of (1-h):h(0<h<1
), and the loss α of the entire non-excited region is the resonator loss Γ
When the loss β normalized using is β=hα/Γ, the ratio g_a/g_b of the differential gain coefficient g_a in the excitation region to the differential gain coefficient g_b in the non-excitation region and the ratio τ_a/τ_b of the carrier natural lifetime are g_aτ_a /(g_bτ_b)
A bistable semiconductor laser characterized by having a relationship of <-β/(1-β).
(2)請求項1記載の双安定半導体レーザにおいて、該
光導波路の共振器長て方向でかつ素子の他方の端面近傍
に第2の光導波路を具備し、該2個のストライプ状領域
において素子中央付近に位置し傾斜面を有する端面に対
峙する他方の端面は各々ストライプの長て方向に進行す
る光が該第2の光導波路の方向に反射するようにストラ
イプの長て方向に対して傾斜面をもち、該第2の光導波
路においてその素子内部に位置する端面は該2個のスト
ライプ状領域の端面から反射された各々の光をストライ
プの長て方向に反射するように傾斜領域を具備し、該第
2の光導波路の他方の端面は素子垂直な面に対して45
度をなす斜面を具備した状態において、該第2の光導波
路とこの斜面とが接する活性層を垂直方向に含みレーザ
発振光に対して透明な層表面を出すように該素子に穴を
形成した事を特徴とする双安定半導体レーザ。
(2) In the bistable semiconductor laser according to claim 1, a second optical waveguide is provided in the cavity length direction of the optical waveguide and near the other end face of the element, and the element is provided in the two striped regions. The other end face located near the center and facing the end face having an inclined surface is inclined with respect to the longitudinal direction of the stripe so that light traveling in the longitudinal direction of the stripe is reflected in the direction of the second optical waveguide. The end face of the second optical waveguide located inside the element has an inclined region so as to reflect each light reflected from the end face of the two striped regions in the longitudinal direction of the stripe. However, the other end face of the second optical waveguide is at an angle of 45° with respect to a plane perpendicular to the element.
A hole is formed in the element so as to include an active layer in the vertical direction in which the second optical waveguide and the inclined surface are in contact with each other and expose a layer surface that is transparent to the laser oscillation light. A bistable semiconductor laser characterized by:
JP23367889A 1989-09-07 1989-09-07 Bistable semiconductor laser Pending JPH0395524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23367889A JPH0395524A (en) 1989-09-07 1989-09-07 Bistable semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23367889A JPH0395524A (en) 1989-09-07 1989-09-07 Bistable semiconductor laser

Publications (1)

Publication Number Publication Date
JPH0395524A true JPH0395524A (en) 1991-04-19

Family

ID=16958824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23367889A Pending JPH0395524A (en) 1989-09-07 1989-09-07 Bistable semiconductor laser

Country Status (1)

Country Link
JP (1) JPH0395524A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010049937A1 (en) 2010-05-24 2011-11-24 Mitsubishi Electric Corp. generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010049937A1 (en) 2010-05-24 2011-11-24 Mitsubishi Electric Corp. generator

Similar Documents

Publication Publication Date Title
US4257011A (en) Semiconductor laser device
US4658402A (en) Optical bistable semiconductor laser producing lasing light in direction normal to semiconductor layers
EP0935319B1 (en) Surface-emitting laser device
US4792962A (en) A ring-shaped resonator type semiconductor laser device
JPH0395524A (en) Bistable semiconductor laser
US4768200A (en) Internal current confinement type semiconductor light emission device
WO2020105095A1 (en) Optical semiconductor device and method of manufacturing optical semiconductor device
JPS5897888A (en) Semiconductor laser
JPS5911690A (en) Semiconductor laser device
JPS59227177A (en) Semiconductor laser
JPH0231478A (en) Surface light-emitting type bistable semiconductor laser
JPH02222592A (en) Surface emitting type bistable semiconductor laser
JPS6370471A (en) Semiconductor laser
US20010053166A1 (en) Semiconductor laser and fabricating method of the same
JPH02118622A (en) Plane light-emitting type bistable semiconductor laser
JPH03240285A (en) Bistable semiconductor laser
JPH0685389A (en) Semiconductor laser element and manufacture thereof
JPS63241978A (en) Distributed feedback semiconductor laser
JPS61212082A (en) Integrated semiconductor laser
JPH07106694A (en) Semiconductor laser
JPS6342869B2 (en)
CN118099931A (en) Photonic crystal laser with adjustable wavelength and preparation method thereof
JPH0231480A (en) Surface light-emitting type bistable semiconductor laser
JP2683092B2 (en) Semiconductor laser device
JPH01312880A (en) Surface emitting bistable semiconductor laser