JPH07106694A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH07106694A
JPH07106694A JP25071593A JP25071593A JPH07106694A JP H07106694 A JPH07106694 A JP H07106694A JP 25071593 A JP25071593 A JP 25071593A JP 25071593 A JP25071593 A JP 25071593A JP H07106694 A JPH07106694 A JP H07106694A
Authority
JP
Japan
Prior art keywords
ridge
semiconductor laser
wide
ridge portion
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25071593A
Other languages
Japanese (ja)
Inventor
Norihiro Iwai
則広 岩井
Tetsuro Ijichi
哲朗 伊地知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP25071593A priority Critical patent/JPH07106694A/en
Publication of JPH07106694A publication Critical patent/JPH07106694A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a structure of ridge stripe type semiconductor laser having high electrical and thermal reliability and generating a fundamental transverse- mode oscillation. CONSTITUTION:A ridge stripe is provided with a plurality of wide parts W1, W3 and the resonator plane is designed to have a wide part. The wide parts ensure reliability in contact and the optical density is lowered by increasing the area of resonator resulting in the enhancement of thermal reliability.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信の光源として利
用できる半導体レーザの構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a semiconductor laser which can be used as a light source for optical communication.

【0002】[0002]

【従来の技術】光通信等の光源として使用する半導体レ
ーザは、しきい値電流、動作電流が低いこと等のほか、
光ファイバーとの結合損失を抑制する必要から、基本横
モードで発振することが必要とされる。この様な要求を
満足する構造として、埋め込み型、内部ストライプ型
等、種々の半導体レーザが提案されているが、リッジ導
波路型半導体レーザは低しきい値、低動作電流化が図れ
るとともに結晶成長が一回で済み、不純物の拡散等制御
が困難な工程が不要である等の利点がある。このリッジ
導波路型半導体レーザは、リッジ部の両側を絶縁物で埋
め込むことにより電流狭窄を行う構造であり、しきい値
電流を小さくするためにはリッジ部の幅をできるだけ狭
くする必要がある。また更に、リッジ導波路型半導体レ
ーザの発振モードは、リッジ幅やリッジ部直下の活性層
の実効屈折率等の影響を受けるため、発振モードを基本
横モードとするためにはリッジ幅をかなり狭くすること
が必要であり、例えば、リッジ部直下の活性層の実効屈
折率が周辺部よりも0.5%高い場合は、リッジ幅を
2.5μm以下とする必要がある。
2. Description of the Related Art A semiconductor laser used as a light source for optical communication has a low threshold current and low operating current.
Since it is necessary to suppress the coupling loss with the optical fiber, it is necessary to oscillate in the fundamental transverse mode. Various semiconductor lasers such as a buried type and an internal stripe type have been proposed as structures that satisfy such requirements. However, the ridge waveguide type semiconductor laser can achieve a low threshold value, a low operating current, and crystal growth. However, there is an advantage that a process that is difficult to control such as diffusion of impurities is unnecessary. This ridge waveguide type semiconductor laser has a structure in which current is confined by embedding both sides of the ridge portion with an insulator, and it is necessary to make the width of the ridge portion as narrow as possible in order to reduce the threshold current. Furthermore, since the oscillation mode of the ridge waveguide type semiconductor laser is affected by the ridge width and the effective refractive index of the active layer immediately below the ridge portion, the ridge width is considerably narrowed in order to make the oscillation mode the basic transverse mode. For example, when the effective refractive index of the active layer directly under the ridge is 0.5% higher than that of the peripheral portion, the ridge width needs to be 2.5 μm or less.

【0003】ところが、このようにリッジ幅を狭くする
と、リッジ頭部の面積が小さくなるため電極との接触抵
抗が増加するとともに、必然的に共振器面の面積が小さ
くなる結果、共振器面の光密度の増加により共振器面の
温度が上昇し、COD(Catastrophic O
ptical Damage)を生じる等素子の寿命が
低下するという問題点があった。
However, when the ridge width is narrowed in this way, the area of the ridge head becomes small, so that the contact resistance with the electrode increases and the area of the resonator surface inevitably becomes small. As the optical density increases, the temperature of the cavity surface rises, and COD (Catastrophic O
There is a problem that the life of the device is shortened due to the occurrence of optical damage.

【0004】また、EDFA(エルビウム・ドープ・フ
ァイバー・アンプ)の励起用光源として用いられる半導
体レーザには、EDFAの励起波長範囲が狭いことから
精密な波長制御が要求されるが、従来の半導体レーザは
注入電流や温度変化による波長のシフトが大きくEDF
Aの励起効率が低下するという問題があった。
Further, a semiconductor laser used as a pumping light source for an EDFA (erbium-doped fiber amplifier) requires precise wavelength control because the pumping wavelength range of the EDFA is narrow. Has a large wavelength shift due to injection current and temperature changes
There is a problem that the excitation efficiency of A is lowered.

【0005】[0005]

【発明が解決しようとする課題】本発明は、レーザ光を
基本横モード発振とすることが出来る構造であって、リ
ッジ頭部における接触抵抗を低下させるとともに、共振
器面における発熱を低減することができる半導体レーザ
の構造を提供することを目的とするものである。また、
本発明は同時に出射ビームの波長選択性を高めることを
も目的とするものである。
SUMMARY OF THE INVENTION The present invention has a structure capable of causing a laser beam to oscillate in a fundamental transverse mode, and reduces the contact resistance at the ridge head and heat generation at the resonator surface. It is an object of the present invention to provide a structure of a semiconductor laser capable of achieving the above. Also,
Another object of the present invention is also to increase the wavelength selectivity of the emitted beam.

【0006】[0006]

【課題を解決するための方法】本発明は、上記問題点に
鑑みてなされたものであって、両側の半導体層を活性層
の直上までエッチングすることにより設けられたリッジ
部を有し、このリッジ部の両側を半導体層との屈折率差
が大きい材料で埋め込まれたリッジ導波路型半導体レー
ザにおいて、上記リッジ部にキャビティー方向に沿って
複数の幅広部と幅狭部が設けられているとともに、共振
器面がリッジ部の幅広部に設けられていることを特徴と
する半導体レーザ装置であり、更には、該幅広部と幅狭
部が、λ/2あるいはλ/2の整数倍(λは発振波長)
の周期で繰り返して形成されていることを特徴とする半
導体レーザ装置である。
The present invention has been made in view of the above problems, and has a ridge portion provided by etching the semiconductor layers on both sides to directly above the active layer. In a ridge waveguide type semiconductor laser in which both sides of a ridge portion are filled with a material having a large refractive index difference with a semiconductor layer, a plurality of wide portions and narrow portions are provided in the ridge portion along the cavity direction. At the same time, the semiconductor laser device is characterized in that the resonator surface is provided in the wide portion of the ridge portion, and further, the wide portion and the narrow portion are λ / 2 or an integral multiple of λ / 2 ( (λ is the oscillation wavelength)
The semiconductor laser device is characterized in that the semiconductor laser device is repeatedly formed in a cycle.

【0007】[0007]

【実施例】以下、本発明の内容を実施例に基づいて説明
する。図1は、本発明の実施例の構成を示す断面図であ
り、図2は、該実施例におけるリッジ部分の形状を示す
平面図である。
EXAMPLES The contents of the present invention will be described below based on examples. FIG. 1 is a sectional view showing the configuration of an embodiment of the present invention, and FIG. 2 is a plan view showing the shape of a ridge portion in the embodiment.

【0008】図1中、1はn型GaAs基板であり、2
は膜厚1.5μmのn型InGaPクラッド層、3は膜
厚9nmのInGaAs井戸層と膜厚30nmのGaA
s障壁層からなる量子井戸活性層であり、4は膜厚2μ
mのp型InGaPクラッド層、5は膜厚0.8μmの
高キャリア濃度p型GaAsコンタクト層、6はSiN
x 膜(x は自然数)、7はp側電極、8はn側電極であ
り、9はp型InGaPクラッド層4を活性層の直上
0.5μmの距離に至るまでエッチングすることにより
形成されたリッジ部である。
In FIG. 1, 1 is an n-type GaAs substrate, and 2 is
Is an n-type InGaP cladding layer with a thickness of 1.5 μm, 3 is an InGaAs well layer with a thickness of 9 nm, and GaA with a thickness of 30 nm.
s barrier layer is a quantum well active layer, and 4 is a film thickness 2 μ
m is a p-type InGaP clad layer, 5 is a high carrier concentration p-type GaAs contact layer having a film thickness of 0.8 μm, and 6 is SiN.
x film (x is a natural number), 7 is a p-side electrode, 8 is an n-side electrode, and 9 is formed by etching the p-type InGaP cladding layer 4 to a distance of 0.5 μm directly above the active layer. It is a ridge.

【0009】ここで、リッジ部9の形状は図2に示すよ
うに、リソグラフィー技術を用いたエッチングにより、
キャビティー方向に沿って幅w1の幅広部と幅w2の幅
狭部がそれぞれ複数形成されており、また、これに対応
してSiNx 膜6に幅w3の幅広部と幅w4の幅狭部が
設けられており、共振器面はリッジ部9の幅広部に形成
されている。
Here, the shape of the ridge portion 9 is, as shown in FIG. 2, formed by etching using a lithography technique.
A plurality of wide portions having a width w1 and a plurality of narrow portions having a width w2 are formed along the cavity direction, and correspondingly, a wide portion having a width w3 and a narrow portion having a width w4 are formed in the SiNx film 6. The resonator surface is provided in the wide portion of the ridge portion 9.

【0010】このような構成とすることにより、リッジ
頭部のオーミック接点幅がw3−w4だけ広くなるた
め、この部分の接触抵抗を低減することができるもので
あり、更に共振器面の面積も同様に、w1−w2だけ広
くなるため、共振器面における光密度が小さくなり共振
器面の温度上昇を抑制できるものである。
With such a structure, the ohmic contact width of the ridge head portion is widened by w3-w4, so that the contact resistance of this portion can be reduced, and the area of the resonator surface is also reduced. Similarly, since the width is increased by w1-w2, the light density on the resonator surface is reduced, and the temperature rise on the resonator surface can be suppressed.

【0011】また、この場合、活性層3のリッジ下部全
体に電流注入が行われて光放出が行われるが、光の伝搬
を生じるのはw2の部分のみであり、w1−w2の部分
においては、光の伝搬方向に利得と損失が共存するため
光の伝搬は殆ど生じない。このためw2を十分小さい値
としておけば、w1を相当大きい値としても基本横モー
ド発振を得ることが可能となるものである。例えば、本
実施例においては、w2を2.5μmとした場合、w1
は10μmまで広くしても基本横モード発振が得られ
る。
In this case, current is injected into the entire lower portion of the ridge of the active layer 3 to emit light, but light is propagated only in the w2 portion, and in the w1-w2 portion. Since light and gain coexist in the light propagation direction, light propagation hardly occurs. Therefore, if w2 is set to a sufficiently small value, fundamental transverse mode oscillation can be obtained even if w1 is set to a considerably large value. For example, in this embodiment, when w2 is 2.5 μm, w1
, A fundamental transverse mode oscillation can be obtained even if the width is increased to 10 μm.

【0012】なお、リッジ部の形状は必ずしも図2の様
に句形である必要はなく、複数の幅広部と幅狭部を有す
るのであれば波型や鋸刃状等任意の形状でも同様の効果
を得ることができるものであり、また、各幅広部、幅狭
部は必ずしも周期形状である必要は無い。また、本発明
は、リッジ導波路型半導体レーザであれば適用すること
が出来るものであり、本実施例の説明に用いた材料のみ
に限定されるものではなく、活性層がバルクの半導体で
形成されている場合、電流狭搾に他の誘電体やポリイミ
ドを用いる場合も同様の効果が得られる。
The shape of the ridge portion does not necessarily have to be a phrase shape as shown in FIG. 2, and any shape such as a corrugated shape or a sawtooth shape may be used as long as it has a plurality of wide portions and narrow portions. The effect can be obtained, and the wide portions and the narrow portions do not necessarily have to have a periodic shape. Further, the present invention can be applied to any ridge waveguide type semiconductor laser, and is not limited to the materials used in the description of the present embodiment, and the active layer is formed of a bulk semiconductor. In that case, the same effect can be obtained when another dielectric or polyimide is used for current narrowing.

【0013】次に、上記構成に加えて、各幅広部の形
状、及び、各幅狭部の形状をそれぞれ統一するととも
に、幅広部と幅狭部の繰り返し周期Tをλ/2あるいは
λ/2の整数倍の周期で同一形状の幅広部と幅狭部が繰
り返す周期形状とすることにより出射ビームの波長選択
性を高めることが可能である。すなわち、リッジ部9の
形状をλ/2あるいはλ/2の整数倍の周期の繰り返し
形状とすることで、光の伝搬路からクラッド層に染み出
した光に対して、リッジ部9の形状変化に対応した周期
的な実効的屈折率変化を感じさせることが出来、リッジ
部9の周期形状は分布帰還レーザにおけるグレーティン
グと同様の働きをすることとなり、これにより出射ビー
ムに波長選択性をもたせることができるものである。
Next, in addition to the above configuration, the shape of each wide portion and the shape of each narrow portion are unified, and the repetition period T of the wide portion and the narrow portion is λ / 2 or λ / 2. It is possible to enhance the wavelength selectivity of the emitted beam by forming a periodic shape in which the wide portion and the narrow portion having the same shape are repeated at an integer multiple of the period. That is, by changing the shape of the ridge portion 9 to λ / 2 or a repeating shape with a cycle of an integral multiple of λ / 2, the shape of the ridge portion 9 changes with respect to the light leaked into the cladding layer from the light propagation path. It is possible to feel a periodical effective refractive index change corresponding to the above, and the periodic shape of the ridge portion 9 functions similarly to the grating in the distributed feedback laser, and thereby the emitted beam has wavelength selectivity. Is something that can be done.

【0014】[0014]

【発明の効果】上記した説明から明かなように、本発明
の構成を採用したリッジ導波路型半導体レーザは、基本
横モード発振を保持しつつ、リッジ頭部の接触抵抗を低
減するとともに共振器面の温度上昇に基づく素子の信頼
性の低下を防止できる利点があり、また、リッジ部9の
形状変化をλ/2あるいはλ/2の整数倍の周期形状と
することで出射ビームの基本縦モードを制御することが
できるという利点がある。
As is apparent from the above description, the ridge waveguide type semiconductor laser adopting the structure of the present invention reduces the contact resistance of the ridge head and maintains the resonator while maintaining the fundamental transverse mode oscillation. There is an advantage that it is possible to prevent the reliability of the element from being lowered due to the temperature rise of the surface, and the basic length of the outgoing beam is changed by changing the shape of the ridge portion 9 to λ / 2 or a periodic shape of an integral multiple of λ / 2. The advantage is that the modes can be controlled.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例で製造される半導体レーザの構
造を示す断面図である。
FIG. 1 is a cross-sectional view showing the structure of a semiconductor laser manufactured in an example of the present invention.

【図2】本発明の実施例におけるリッジ部の形状を示す
平面図である。
FIG. 2 is a plan view showing the shape of a ridge portion according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1はn型GaAs基板 2はn型InGaPクラッド層 3は量子井戸活性層 4はp型InGaPクラッド層 5はp型GaAsコンタクト層 6はSiNx 膜 7はp側電極 8はn側電極 9はリッジ部 1 is an n-type GaAs substrate 2 is an n-type InGaP clad layer 3 is a quantum well active layer 4 is a p-type InGaP clad layer 5 is a p-type GaAs contact layer 6 is a SiNx film 7 is a p-side electrode 8 is an n-side electrode 9 is a ridge Department

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 両側の半導体層を活性層の直上までエッ
チングすることにより設けられた凸形状のリッジ部を有
し、このリッジ部の両側を半導体層との屈折率差が大き
い材料で埋め込まれたリッジ導波路型半導体レーザにお
いて、上記リッジ部にキャビティー方向に沿って複数の
幅広部と幅狭部が設けられているとともに、共振器面が
リッジ部の幅広部に設けられていることを特徴とする半
導体レーザ。
1. A ridge portion having a convex shape is provided by etching the semiconductor layers on both sides to just above the active layer, and both sides of the ridge portion are filled with a material having a large difference in refractive index from the semiconductor layer. In the ridge waveguide type semiconductor laser described above, the ridge portion is provided with a plurality of wide portions and narrow portions along the cavity direction, and the resonator surface is provided in the wide portion of the ridge portion. Characteristic semiconductor laser.
【請求項2】 リッジ部の幅広部と幅狭部がλ/2ある
いはλ/2の整数倍周期(λは発振波長)で繰り返して
設けられていることを特徴とする請求項1に記載の半導
体レーザ。
2. The wide portion and the narrow portion of the ridge portion are repeatedly provided at λ / 2 or an integral multiple period of λ / 2 (λ is an oscillation wavelength). Semiconductor laser.
JP25071593A 1993-10-06 1993-10-06 Semiconductor laser Pending JPH07106694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25071593A JPH07106694A (en) 1993-10-06 1993-10-06 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25071593A JPH07106694A (en) 1993-10-06 1993-10-06 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPH07106694A true JPH07106694A (en) 1995-04-21

Family

ID=17211977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25071593A Pending JPH07106694A (en) 1993-10-06 1993-10-06 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH07106694A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183821A (en) * 2003-12-22 2005-07-07 Sony Corp Semiconductor light emitting device
CN111641103A (en) * 2020-06-09 2020-09-08 厦门市三安光电科技有限公司 Laser diode and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183821A (en) * 2003-12-22 2005-07-07 Sony Corp Semiconductor light emitting device
JP4599836B2 (en) * 2003-12-22 2010-12-15 ソニー株式会社 Semiconductor laser element
CN111641103A (en) * 2020-06-09 2020-09-08 厦门市三安光电科技有限公司 Laser diode and manufacturing method thereof
CN111641103B (en) * 2020-06-09 2022-07-01 厦门市三安光电科技有限公司 Laser diode and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US7457340B2 (en) High coherent power, two-dimensional surface-emitting semiconductor diode array laser
JP2008135786A (en) High power semiconductor laser diode
US4803691A (en) Lateral superradiance suppressing diode laser bar
KR19990072352A (en) Self-pulsation type semiconductor laser
US6885686B2 (en) High coherent power, two-dimensional surface-emitting semiconductor diode array laser
US4348763A (en) Multiple stripe leaky mode laser
KR100278546B1 (en) Semiconductor laser device
JPS59119783A (en) Semiconductor light emitting device
JPH05167197A (en) Optical semiconductor device
US4768200A (en) Internal current confinement type semiconductor light emission device
JPH07106694A (en) Semiconductor laser
US4592061A (en) Transverse junction stripe laser with steps at the end faces
US6734464B2 (en) Hetero-junction laser diode
JPS63228795A (en) Distributed feedback type semiconductor laser
JPH0319292A (en) Semiconductor laser
US6782025B2 (en) High power distributed feedback ridge waveguide laser
JP5163355B2 (en) Semiconductor laser device
KR20040101270A (en) A laser diode with an amplification section that has a varying index of refraction
JPS58225681A (en) Semiconductor laser element
JPH0268975A (en) Semiconductor laser
WO2001054240A1 (en) High power distributed feedback ridge waveguide laser
JP3761130B2 (en) Surface emitting laser device
JPS58199586A (en) Semiconductor laser
KR100364772B1 (en) Semiconductor laser
JPH04372185A (en) Semiconductor laser