JPS58199586A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS58199586A
JPS58199586A JP8269682A JP8269682A JPS58199586A JP S58199586 A JPS58199586 A JP S58199586A JP 8269682 A JP8269682 A JP 8269682A JP 8269682 A JP8269682 A JP 8269682A JP S58199586 A JPS58199586 A JP S58199586A
Authority
JP
Japan
Prior art keywords
laser
layer
resonator
resonators
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8269682A
Other languages
Japanese (ja)
Inventor
Naohisa Inoue
直久 井上
Kazuhiko Mori
和彦 森
Masaharu Matano
俣野 正治
Maki Yamashita
山下 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Tateisi Electronics Co
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateisi Electronics Co, Omron Tateisi Electronics Co filed Critical Tateisi Electronics Co
Priority to JP8269682A priority Critical patent/JPS58199586A/en
Publication of JPS58199586A publication Critical patent/JPS58199586A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures

Abstract

PURPOSE:To unify longitudinal mode of a semiconductor laser by providing in parallel a plurality of laser resonators of different resonance lengths in the vicinity of one light waveguide. CONSTITUTION:N type GaAlAs layer 2, P type GaAs layer 3, P type AlGaAs layer 4 and P type GaAs layer 5 are sequentially laminated on an N type GaAs substrate 1 in a semiconductor laser, striped electrodes 20, 21 are aligned in parallel in the vicinity on the upper surface. Thus, resonators corresponding to the electrodes 20, 21 are formed on the layer 3. The laser lights which are generated from two resonators are electromagnetically operated to each other, the laser resonator of long side is oscillated in sole longitudinal mode of the laser resonator of short side, and the longitudinal modes of the output lights obtained from both the laser resonators becomes sole mode.

Description

【発明の詳細な説明】 この発明は、半導体レーザに係シ、特に縦モードを単一
化する半導体レーザに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to semiconductor lasers, and particularly to a semiconductor laser that unifies longitudinal modes.

1− 従来の半導体レーザとしては、例えば第1図に示すよう
なものが知られている。第1図において、この半導体レ
ーザは、利得導波形の一種で、n−G□A8基板1上に
、エピタキシャル成長法によって、n−ktG込B層2
、p−G、AS層3、p−AtG、As層4およびp−
G亀As層5を順次積層形成し、この半導体結晶にスト
ライプ電極6と下部電極7を設けたものである。ストラ
イプ電極6はp−G、A8層3を通過する電流の流域を
ストライプ電極6の下方向のみに制限するもので、p−
G、AS層3にはストライブ電極6に沿って高密度のキ
ャリアが注入される。p GtAa層3は、レーザ動作
を行なう活性層で、禁制帯幅および屈折率がp−GtA
S層3とは異なるn−AtG、As層2、p−AtG、
As層4で挾まれ、ダブルへテロ構造になっている。つ
まり、n Atq、As層2、p AtGLAB層4の
禁制帯幅はp−GLAa層3のよ如も大きく、これら接
合面に形成されるポテンシャル障壁によって、上記注入
キャリアはp−GLAS層3内に閉じ込められ、電子−
正孔の再結合による誘導放出光(レーザ光)2− が効率良く発生する。この発光領域はストライプ電極6
に沿って形成される。また、n−AtG、A8層2、p
−AtG□A8層4の屈折率はI)−GえA8層3のよ
シも小さくしであるので、p −G、1 Aal 3は
コアとなり光導波路を形成し、上記レーザ光はこの光導
波路内に閉じ込められる。ストライプ電極6両端側の半
導体結晶端面は結晶の臂開面で構成され、これが反射鏡
面となっている。これによってストライプ電極6に沿っ
た光導波路内に一定の共振器長tを有したレーザ共振器
が形成され、縦方向に伝播するレーザ光が共振増幅され
る。
1- As a conventional semiconductor laser, one shown in FIG. 1, for example, is known. In FIG. 1, this semiconductor laser is a type of gain-guided type semiconductor laser, and an n-ktG-containing B layer 2 is grown on an n-G□A8 substrate 1 by epitaxial growth.
, p-G, AS layer 3, p-AtG, As layer 4 and p-
G-As layers 5 are sequentially laminated, and striped electrodes 6 and lower electrodes 7 are provided on this semiconductor crystal. The stripe electrode 6 limits the region of current passing through the p-G, A8 layer 3 only to the downward direction of the p-G, A8 layer 3.
High-density carriers are injected into the G, AS layer 3 along the stripe electrode 6. The p-GtAa layer 3 is an active layer that performs laser operation, and has a forbidden band width and a refractive index of p-GtA.
n-AtG different from S layer 3, As layer 2, p-AtG,
It is sandwiched between As layers 4 and has a double heterostructure. In other words, the forbidden band widths of the n Atq, As layer 2 and the p AtGLAB layer 4 are as large as that of the p-GLAa layer 3, and due to the potential barrier formed at these junction surfaces, the injected carriers are transferred into the p-GLAS layer 3. , the electron-
Stimulated emission light (laser light) 2- is efficiently generated by recombination of holes. This light emitting region is the stripe electrode 6
formed along the Also, n-AtG, A8 layer 2, p
Since the refractive index of the -AtG□A8 layer 4 is smaller than that of the I) -GeA8 layer 3, p -G,1 Aal 3 becomes the core and forms an optical waveguide, and the laser beam is guided through this optical waveguide. Trapped within the wave channel. The end faces of the semiconductor crystal on both ends of the stripe electrode 6 are constituted by open arms of the crystal, which serve as reflective mirror surfaces. As a result, a laser resonator having a constant resonator length t is formed in the optical waveguide along the stripe electrode 6, and the laser light propagating in the longitudinal direction is resonantly amplified.

ところで、このよう々利得導波形半導体レーザでは、レ
ーザ共振器の反射鏡面を結晶の臂開面によって形成して
いるために、共振器長tが光波の波長よりも非常に大き
いものになっている。つまり、複数の光波がこの共振器
に存在しうることになシ、縦モードが多モード化する。
By the way, in such a gain waveguide semiconductor laser, since the reflective mirror surface of the laser resonator is formed by the arm-opening plane of the crystal, the resonator length t is much larger than the wavelength of the light wave. . In other words, since a plurality of light waves can exist in this resonator, the longitudinal mode becomes multimode.

このことは光通信の光源としては甚だ不都合で、縦モー
ドの単一化が要語されている。なお、水平横モードの単
一化はストライプ電極6の幅を狭くすることで、また垂
直横モードの単一化はp−G、AS層3の厚さを小さく
することでそれぞれ確保しているととは周知の通シであ
る。
This is extremely inconvenient as a light source for optical communications, and unification of the longitudinal mode is required. Note that the unification of the horizontal transverse mode is ensured by narrowing the width of the stripe electrode 6, and the unification of the vertical transverse mode is ensured by reducing the thickness of the p-G and AS layers 3. To is a well-known rule.

縦モードを単一化するには、共振器長tを短くすれば良
いが、反射鏡面が結晶の臂開面によっているため、簡単
ではない。そこで、光導波路内に回折格子等の周期構造
を形成し、特定の波長の光を選択するD F B (D
istributed Feed Back)レーザや
DBR(Distributed Bragg Ref
lec−tor)レーザが開発されている。しかし、こ
れらのレーザでは、数ミクロンオーダのピッチ間隔で回
折格子等の周期構造を作成しなければならず、このよう
なものを精度良く作成することは困難で、まだ作成でき
るピッチ間隔にも限界があるなどの欠点があった。
In order to unify the longitudinal mode, it is sufficient to shorten the resonator length t, but this is not easy because the reflecting mirror surface is formed by the arm-opening plane of the crystal. Therefore, D F B (D
Distributed Feed Back) laser and DBR (Distributed Bragg Ref
(lec-tor) lasers have been developed. However, with these lasers, periodic structures such as diffraction gratings must be created at pitch intervals on the order of several microns, and it is difficult to create such structures with high precision, and there are still limits to the pitch intervals that can be created. There were drawbacks such as:

この発明は、このような従来の問題点に鑑みなされたも
ので、その目的とするところは、共振器1 長の異なるレーザ共振器を充分に近接させることによυ
、簡単に縦モードを単一化できる半導体レーザを提供す
ることである。
This invention was made in view of these conventional problems, and its purpose is to bring laser resonators with different lengths close enough to each other to achieve
An object of the present invention is to provide a semiconductor laser in which longitudinal modes can be easily unified.

以下、この発明の実施例を添付図面に基づいて詳細に説
明する。なお、半導体レーザの結晶組成は第1図と同様
であるので、同一符号を付してその説明を省略する。
Embodiments of the present invention will be described in detail below with reference to the accompanying drawings. Incidentally, since the crystal composition of the semiconductor laser is the same as that shown in FIG. 1, the same reference numerals are given and the explanation thereof will be omitted.

第2図は、この発明に係る半導体レーザを示す概略図で
、この半導体レーザは、第1図に示した半導体結晶の上
面に、2本のストライプ電極20゜21を充分に近接し
て並設し、一方のストライプ電極21が属する半導体結
晶の一端面をAZ−1350Jホトレジストをマスク材
料としてフレオン(CC1t Ft )を用いたりアク
ティブ・イオン自エツチング法によシエッチングして、
短いストライプ電極21を形成するとともに、その結晶
端面を鏡面状に形成しである。その結果、長いストライ
プ電極20と短いストライプ電極21にそれぞれ対応し
たレーザ共振器が光導波路で、S不p−GaAB層3に
形成される。々お、電極20 、21他方側の反射鏡面
22.23と電極20の一方側の反射鏡面(図示せず)
は結晶の臂開面によっている。
FIG. 2 is a schematic diagram showing a semiconductor laser according to the present invention, in which two stripe electrodes 20° and 21 are arranged in parallel sufficiently close to each other on the upper surface of the semiconductor crystal shown in FIG. Then, one end face of the semiconductor crystal to which one stripe electrode 21 belongs is etched using AZ-1350J photoresist as a mask material using Freon (CC1tFt) or by active ion self-etching.
A short stripe electrode 21 is formed, and its crystal end face is formed into a mirror surface. As a result, laser resonators corresponding to the long stripe electrodes 20 and the short stripe electrodes 21 are formed in the S Nop-GaAB layer 3 as optical waveguides. The reflective mirror surfaces 22 and 23 on the other side of the electrodes 20 and 21 and the reflective mirror surface on one side of the electrode 20 (not shown)
is due to the open plane of the crystal.

5− このように共振器長の異ガる2つのレーザ共振器を1つ
の光導波路に充分に近接して並設する構成としたので、
これら2つのレーザ共振器で発生したレーザ光は光導波
路を介して電磁波的相互作用を行なう。つまシ、この発
明が対象とする利得導波形レーザでは、前述したように
、接合面に平行な横方向への光閉じ込めは行なっては・
ら、2つのレーザ共振器が近接して並設されると、互い
の光波エネルギの交換を行ない、互いに他のレーザ共振
器に対して影響を与える。この相互作用の内容は、良く
知られているように、他方のレーザ共振器のレーザ発振
を助長したシ、あるいは抑制して停止させたシするもの
である。この相互作用の強さは、各レーザ共振器の間隙
および発振波長、つt、b位相に関係する。そして、こ
の発明に係る半導体レーザのように、共振器長の短い方
のレーザ共振器の共振器長を単−縦モードで共振するよ
うに適宜なものとし、かつ2つのレーザ共振器を充分に
相互作用を行える程度に近接して並設すると、両レーザ
共振器は位相が一致したところで強6− く共振する結果、長い方のレーザ共振器は短い方なお、
この実施例では、半導体レーザとしてAzGtAs系の
もので説明したが、この発明はこれに限定されるもので
はなく、InGtASP系のものであっても良い。また
、エツチングは反射鏡面が得られれば良いのであるから
、この実施例で示したように結晶端面金てについてエツ
チングする必要はガい。さらに、この発明はストライプ
電極形の半導体レーザだけでなく、他の利得導波形レー
ザにも適用できることは勿論である。
5- Since the two laser resonators with different resonator lengths are arranged in parallel sufficiently close to one optical waveguide,
The laser beams generated by these two laser resonators interact electromagnetically through the optical waveguide. Finally, in the gain waveguide laser to which this invention is directed, as mentioned above, optical confinement in the lateral direction parallel to the junction surface is not allowed.
When two laser resonators are arranged in close proximity to each other, they exchange light wave energy with each other, and each laser resonator influences the other laser resonators. As is well known, the content of this interaction is that the laser oscillation of the other laser resonator is encouraged or suppressed and stopped. The strength of this interaction is related to the gap between each laser resonator, the oscillation wavelength, and the t and b phases. As in the semiconductor laser according to the present invention, the resonator length of the laser resonator with the shorter resonator length is set appropriately so as to resonate in a single longitudinal mode, and the length of the two laser resonators is set sufficiently. When placed close enough to allow interaction, both laser resonators resonate strongly when their phases match, resulting in the longer laser resonator resonating with the shorter one.
Although this embodiment has been described using an AzGtAs-based semiconductor laser, the present invention is not limited thereto, and an InGtASP-based semiconductor laser may be used. Further, since it is sufficient to perform etching as long as a reflective mirror surface is obtained, there is no need to perform etching on the crystal end face metal as shown in this embodiment. Furthermore, it goes without saying that the present invention can be applied not only to stripe electrode type semiconductor lasers but also to other gain waveguide type lasers.

以上詳細に説明したように、この発明に係る半導体レー
ザは、共振器長の異なる複数のレーザ共振器を1つの光
導波路に充分に近接して並設したので、各共振器の発振
モードが短い方のレーザ共振器の縦モードに一致し、簡
単に出力光の縦モードを単一化することができる。さら
に、レーザ共振器を複数設けたので、出力光の高出力化
が計れ、ビデオディスク等の情報処理の分舒への用途が
新たに開かれるという効果も得られる。
As explained in detail above, in the semiconductor laser according to the present invention, a plurality of laser resonators having different cavity lengths are arranged in parallel sufficiently close to one optical waveguide, so that the oscillation mode of each resonator is short. This corresponds to the longitudinal mode of the other laser resonator, and the longitudinal mode of the output light can be easily unified. Furthermore, since a plurality of laser resonators are provided, the output light can be increased in output power, and new applications for the distribution of information processing for video discs and the like can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半導体レーザを示す概略図、第2図はこ
の発明の一実施例を示す概略図である。 1・・・・・・・・・n−G□As基板2・・・・・・
・・・n−AtG□As/頓3・・・・・・・・・p−
GユA8(光導波路)4・・・・・・・・・p−AtG
、As層5・・・・・・・・・p−G2LA8層7・・
・・・・・・・下部電極 20・・・・・・長いストライプを極 21・・・・・・短いストライプ電極 特許出願人   立石電機株式会社
FIG. 1 is a schematic diagram showing a conventional semiconductor laser, and FIG. 2 is a schematic diagram showing an embodiment of the present invention. 1......n-G□As substrate 2...
・・・n-AtG□As/ton3・・・・・・・・・p-
GyuA8 (optical waveguide) 4・・・・・・・・・p-AtG
, As layer 5... p-G2LA8 layer 7...
......Lower electrode 20...Long stripe pole 21...Short stripe electrode Patent applicant Tateishi Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)  半導体結晶内の光導波路にストライプ構造に
よって形成される帯状の発光領域が半導体結晶の両端面
を反射鏡面としてレーザ共振器を形成する半導体ンーザ
であって、共振器長の異麦る上記レーザ共振器を上記光
導波路に複数形成し、かつこれらレーザ共振器を互に充
分に電磁波的結合ができる程度に近接して並設し、この
結合によシ共振器長の長いレーザ共振器の発振モードが
共振器長の短いレーザ共振器の発振モードに従うように
構成したことを特徴とする半導体レーザ。
(1) A semiconductor laser in which a band-shaped light emitting region formed by a stripe structure in an optical waveguide in a semiconductor crystal forms a laser resonator with both end faces of the semiconductor crystal being reflective mirror surfaces, and the above-mentioned laser resonator has a different resonator length. A plurality of laser resonators are formed in the optical waveguide, and these laser resonators are arranged in parallel close enough to each other to enable sufficient electromagnetic coupling, and this coupling allows the laser resonator with a long resonator length to be A semiconductor laser characterized in that the oscillation mode is configured to follow the oscillation mode of a laser resonator having a short resonator length.
(2)上記各レーザ共振器の反射鏡面はエツチングによ
って形成されていることを特徴とする特許請求の範囲第
1項記載の半導体レーザ。
(2) The semiconductor laser according to claim 1, wherein the reflective mirror surface of each of the laser resonators is formed by etching.
JP8269682A 1982-05-17 1982-05-17 Semiconductor laser Pending JPS58199586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8269682A JPS58199586A (en) 1982-05-17 1982-05-17 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8269682A JPS58199586A (en) 1982-05-17 1982-05-17 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS58199586A true JPS58199586A (en) 1983-11-19

Family

ID=13781568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8269682A Pending JPS58199586A (en) 1982-05-17 1982-05-17 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS58199586A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042887A (en) * 1983-08-19 1985-03-07 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser device of high output single mode
JPS60161692A (en) * 1984-01-13 1985-08-23 シーメンス、アクチエンゲゼルシャフト Semiconductor laser diode
US5228050A (en) * 1992-02-03 1993-07-13 Gte Laboratories Incorporated Integrated multiple-wavelength laser array

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042887A (en) * 1983-08-19 1985-03-07 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser device of high output single mode
JPH0510838B2 (en) * 1983-08-19 1993-02-10 Nippon Telegraph & Telephone
JPS60161692A (en) * 1984-01-13 1985-08-23 シーメンス、アクチエンゲゼルシャフト Semiconductor laser diode
JPH0560278B2 (en) * 1984-01-13 1993-09-01 Siemens Ag
US5228050A (en) * 1992-02-03 1993-07-13 Gte Laboratories Incorporated Integrated multiple-wavelength laser array

Similar Documents

Publication Publication Date Title
Lang et al. Theory of grating-confined broad-area lasers
US7457340B2 (en) High coherent power, two-dimensional surface-emitting semiconductor diode array laser
EP0450668A2 (en) Semiconductor laser array having power and high beam quality
US7262435B2 (en) Single-transverse-mode laser diode with multi-mode waveguide region and manufacturing method of the same
AU4992999A (en) High power laterally antiguided semiconductor light source with reduced transverse optical confinement
JPH0715087A (en) Single wavelength semiconductor laser
Mawst et al. Antiresonant reflecting optical waveguide‐type, single‐mode diode lasers
US6885686B2 (en) High coherent power, two-dimensional surface-emitting semiconductor diode array laser
JPS60124887A (en) Distributed feedback type semiconductor laser
JPH0431195B2 (en)
JPS58199586A (en) Semiconductor laser
JP2000357841A (en) Semiconductor laser element, semiconductor laser module, rare earth element added optical fiber amplifier and fiber laser
JP3595677B2 (en) Optical isolator, distributed feedback laser and optical integrated device
JPS63150981A (en) Semiconductor laser
JP3151755B2 (en) Distributed feedback semiconductor laser
JPH0440875B2 (en)
JPH0268975A (en) Semiconductor laser
JPH08316566A (en) Semiconductor laser device
JPH07106694A (en) Semiconductor laser
JPH0230195B2 (en)
Bedford et al. Semiconductor unstable resonators with laterally finite mirrors
JPH05206567A (en) Semiconductor laser
CN115864135A (en) DFB laser chip with gradually-changed ridge waveguides at two ends
JPS6347278B2 (en)
Hunsperger et al. Distributed-Feedback Lasers