JPH039516A - Epitaxial growth method of compound semiconductor mixed crystal - Google Patents
Epitaxial growth method of compound semiconductor mixed crystalInfo
- Publication number
- JPH039516A JPH039516A JP1144390A JP14439089A JPH039516A JP H039516 A JPH039516 A JP H039516A JP 1144390 A JP1144390 A JP 1144390A JP 14439089 A JP14439089 A JP 14439089A JP H039516 A JPH039516 A JP H039516A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- mixed crystal
- growth
- substrate
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 46
- 239000004065 semiconductor Substances 0.000 title claims abstract description 16
- 150000001875 compounds Chemical class 0.000 title claims abstract description 11
- 238000000034 method Methods 0.000 title claims description 13
- 239000000203 mixture Substances 0.000 claims abstract description 43
- 239000000758 substrate Substances 0.000 claims abstract description 30
- 239000012808 vapor phase Substances 0.000 claims description 7
- 230000001902 propagating effect Effects 0.000 abstract description 3
- 239000007789 gas Substances 0.000 description 12
- 238000001947 vapour-phase growth Methods 0.000 description 8
- 239000002994 raw material Substances 0.000 description 6
- 235000012431 wafers Nutrition 0.000 description 5
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 239000012159 carrier gas Substances 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Led Devices (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、半導体ウェーハ上へのエピタキシャル成長技
術に関し、特に化合物半導体単結晶つ工−ハ上に■−■
族混晶を気相成長させる場合に利用して効果的な技術に
関する6
[従来の技術]
発光ダイオードのような化合物半導体デバイスの基板と
して混晶エピタキシャルウェーハが使用されることがあ
る。この場合、ウェーハの性質は素子の特性に影響を与
える。特に、化合物半導体デバイスは結晶中の転位密度
が高いと、デバイスの寿命が短くなったり発光強度が弱
くなったりするので転位密度が低いことが望まれる。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an epitaxial growth technique on a semiconductor wafer, particularly on a compound semiconductor single crystal wafer.
6. Related to effective techniques for vapor phase growth of group mixed crystals [Prior Art] Mixed crystal epitaxial wafers are sometimes used as substrates for compound semiconductor devices such as light emitting diodes. In this case, the properties of the wafer affect the characteristics of the device. In particular, a compound semiconductor device is desired to have a low dislocation density because if the dislocation density in the crystal is high, the device life will be shortened or the emission intensity will be weakened.
従来、化合物半導体基板上に、基板結晶と格子定数の大
きく異なる混晶のエピタキシャル層を成長させるときは
、基板と混晶との間に、組成比が徐々に変化する組成勾
配層を形成して格子不整合を緩和し、転位の発生を抑え
るようにしていた。Conventionally, when growing an epitaxial layer of a mixed crystal whose lattice constant is significantly different from that of the substrate crystal on a compound semiconductor substrate, a composition gradient layer in which the composition ratio gradually changes is formed between the substrate and the mixed crystal. The lattice mismatch was alleviated and the generation of dislocations was suppressed.
一方、発光ダイオードの輝度のバラツキを小さくする目
的で組成勾配層の中に組成比が不連続的に変化する領域
を設けるようにした技術が提案されている(特開昭61
−291491号)。On the other hand, a technique has been proposed in which a region in which the composition ratio changes discontinuously is provided in a composition gradient layer for the purpose of reducing variations in luminance of a light emitting diode (Japanese Patent Laid-Open No. 61
-291491).
[発明が解決しようとする課題]
しかしながら、GaAs基板上にGaAsP混晶エピタ
キシャル層を成長させるような場合、組成勾配層を設け
たり、この組成勾配層の中に勾配不連続領域を設けたと
しても、エピタキシャル層の転位密度が2元系化合物と
同程度までに低減するものは得られないことが分かった
。[Problems to be Solved by the Invention] However, when growing a GaAsP mixed crystal epitaxial layer on a GaAs substrate, even if a composition gradient layer is provided or a gradient discontinuous region is provided in this composition gradient layer, It was found that it was not possible to obtain an epitaxial layer in which the dislocation density was reduced to the same extent as that of a binary compound.
本発明は上記のような背景の下になされたもので、その
目的とするところは、化合物半導体基板上に格子定数の
異なる混晶エピタキシャル層を成長させる場合に、転位
密度を十分に低減できるような気相成長技術を提供する
ことにある。The present invention was made against the above-mentioned background, and its purpose is to sufficiently reduce dislocation density when growing mixed crystal epitaxial layers with different lattice constants on a compound semiconductor substrate. Our goal is to provide a vapor phase growth technology that is effective.
[課題を解決するための手段]
上記目的を達成するためこの発明は、半導体l結晶基板
上に、該基板結晶と格子定数の異なる混晶のエピタキシ
ャル層を気相成長させるにあたり、」1記基板上に組成
比が徐々に変化する組成勾配層を形成した後、混晶の成
長を一時中断し、しかる後、組成一定層の成長を行なう
か、混晶の成長中断を上記組成一定層の成長時に少なく
とも1回行なうようにした。なお、成長中断時間は、成
長した混晶が分解しない程度の時間(数分〜数10分)
を設定する。[Means for Solving the Problems] In order to achieve the above object, the present invention provides a method for vapor phase growing an epitaxial layer of a mixed crystal having a lattice constant different from that of the substrate crystal on a semiconductor crystal substrate. After forming a composition gradient layer on top of which the composition ratio gradually changes, the growth of the mixed crystal is temporarily interrupted, and then a constant composition layer is grown, or the growth of the mixed crystal is interrupted and the growth of the constant composition layer is continued. I tried to do it at least once at a time. The growth interruption time is a time that does not decompose the grown mixed crystal (several minutes to several tens of minutes).
Set.
また、エピタキシャル成長の中断時には反応管内への原
料ガスの導入を停止してキャリアガスのみ流すようにし
1反応管内の温度は成長時と同一に保つようにする。Furthermore, when epitaxial growth is interrupted, the introduction of raw material gas into the reaction tube is stopped and only the carrier gas is allowed to flow, so that the temperature within each reaction tube is kept the same as during growth.
さらに、成長させる混晶がリンやヒ素のような揮発性元
素を含む場合には、それらの元素を含む水素化物ガスを
成長中断中流しておくようにするとよい。Furthermore, when the mixed crystal to be grown contains volatile elements such as phosphorus and arsenic, it is preferable to keep a hydride gas containing these elements flowing during the growth interruption.
成長用基板としては、面方位が(001)面もしくはそ
れと等価な面から0.5〜10°傾いたものを使用する
のが表面平滑性を向上させる上で望ましい。In order to improve surface smoothness, it is desirable to use a growth substrate whose plane orientation is tilted by 0.5 to 10 degrees from the (001) plane or an equivalent plane.
さらに、成長用基板自身の有する転位を混晶エピタキシ
ャル層へ伝搬させないために、基板と組成勾配層との間
に基板と同一組成のバッファ層を設けるのがよい。Furthermore, in order to prevent dislocations of the growth substrate itself from propagating to the mixed crystal epitaxial layer, it is preferable to provide a buffer layer having the same composition as the substrate between the substrate and the composition gradient layer.
[実施例コ
第3図には、本発明に係る気相エピタキシャル成長方法
に使用する気相成長装置の一例を示す。[Example 3] FIG. 3 shows an example of a vapor phase growth apparatus used in the vapor phase epitaxial growth method according to the present invention.
この気相成長装置は5円筒状をなす石英製の反応管1と
、この反応管1を外部から加熱する電気炉2とからなり
、電気炉2は反応管1の軸方向温度分布を制御できるよ
うに構成されている。この気相成長装置によりG a
A s P、を気相エピタキシャル成長させる場合、反
応管1内には、上流側(図では左側)に材料源であるガ
リウム3を収納した原料ボート4を配置し、下流側に気
相成長をさせるGaAs基板5を配置する。This vapor phase growth apparatus consists of a cylindrical quartz reaction tube 1 and an electric furnace 2 that heats the reaction tube 1 from the outside.The electric furnace 2 can control the axial temperature distribution of the reaction tube 1. It is configured as follows. With this vapor phase growth apparatus, Ga
When performing vapor phase epitaxial growth of A s P, a raw material boat 4 containing gallium 3, which is a material source, is placed on the upstream side (left side in the figure) in the reaction tube 1, and vapor phase growth is performed on the downstream side. A GaAs substrate 5 is placed.
一方、反応管1の上流端には、原料ボート4をバイパス
してガスを基板5の上流に供給するための第1のガス導
入管6aが接続されている。また。On the other hand, a first gas introduction pipe 6a is connected to the upstream end of the reaction tube 1 to bypass the raw material boat 4 and supply gas upstream of the substrate 5. Also.
反応管1の上流端には原料ボート4にガスを供給するた
めの第2のガス導入管6bと第3のガス導入管6Cが接
続されている。A second gas introduction pipe 6b and a third gas introduction pipe 6C for supplying gas to the raw material boat 4 are connected to the upstream end of the reaction tube 1.
そして、ガス導入管6b、6cの管路途中にはそれぞれ
AsCR,とPCQ3の入ったバブラ8a。In the middle of the gas introduction pipes 6b and 6c, there are bubblers 8a containing AsCR and PCQ3, respectively.
8bが介装されている。ガス導入管6b、6cには、H
2ガスが導入され、バブラ8a、8b内へH2ガスを吹
き込むことによってAsCQ、とPCQ3との混合ガス
をH、をキャリアとして反応管1内に供給できろように
構成されている。また、バブラ8a、8bは温度制御可
能な恒温槽(図示省略)に入れ、温度を制御することに
よってAsCQ、、PCQ、の蒸発量を制御するように
しである。8b is interposed. The gas introduction pipes 6b and 6c have H
By introducing H2 gas into the bubblers 8a and 8b, a mixed gas of AsCQ and PCQ3 can be supplied into the reaction tube 1 using H as a carrier. Further, the bubblers 8a and 8b are placed in a constant temperature bath (not shown) whose temperature can be controlled, and by controlling the temperature, the amount of evaporation of AsCQ, PCQ, is controlled.
なお、7a、7b、7cは流量制御用のマスフローコン
トローラ、9は反応管1の下流端に接続された排気管で
ある。Note that 7a, 7b, and 7c are mass flow controllers for flow rate control, and 9 is an exhaust pipe connected to the downstream end of the reaction tube 1.
第4図に反応管1の温度分布を示す。電気炉2により原
料ボート部4の温度が870’C1GaAS基板5の温
度が790℃となるように制御する。FIG. 4 shows the temperature distribution in the reaction tube 1. The temperature of the raw material boat section 4 is controlled by the electric furnace 2 so that the temperature of the 870'C1 GaAS substrate 5 is 790°C.
上記装置を用いて、反応管1内に面方位が(100)而
から2″傾いたGaAs基板をセットしてから、マスフ
ローコントローラ7b、7cで、AsCQ、とPCQ、
のモル比PCQ、/ CPCQ。Using the above apparatus, a GaAs substrate with a plane orientation tilted 2" from (100) is set in the reaction tube 1, and then the mass flow controllers 7b and 7c control AsCQ, PCQ,
The molar ratio of PCQ, /CPCQ.
+AsCQ、)を0から0.38まで徐々に変えて反応
管1内に供給し、クロライドCVD法により第1図に示
すごと<GaAs基板5上に先ず3μmのGaAsバッ
ファWJ51を成長させた後、50μmのGaAs P
組成勾配層52を形成した。+AsCQ, ) was gradually changed from 0 to 0.38 and supplied into the reaction tube 1, and as shown in FIG. 50 μm GaAs P
A composition gradient layer 52 was formed.
それから、弁10a〜10dを切り換えてAsCQ、□
とpcI2.の供給を停止し、代わりにキャリアガスた
るH2ガスのみ流してGaAsP混晶層の成長を約10
分間停止させた。しかる後、組成勾配層52の上にG
a A s o、、2 PG、、、の組成一定層53を
50μm成長させた。Then, switch the valves 10a to 10d to AsCQ, □
and pcI2. The supply of the GaAsP mixed crystal layer was stopped, and instead only H2 gas, which is a carrier gas, was flowed to grow the GaAsP mixed crystal layer for about 10 min.
It was stopped for a minute. After that, G is applied on top of the composition gradient layer 52.
A constant composition layer 53 of a Aso, 2 PG, . . . was grown to a thickness of 50 μm.
組成一定層53の成長時には、A s CQ 、および
PCQ、をそれぞれ1 、7 X 10−’mol/分
と1゜I X 10−’mol/分の割合で流した。During the growth of the constant composition layer 53, A s CQ and PCQ were flowed at a rate of 1 and 7×10-' mol/min and 1°I×10-' mol/min, respectively.
上記方法により得られたウェーハについてエピタキシャ
ル成長層の転位密度を測定した結果、転位密度は9 X
10 ’(1m−2であり、本発明を適用しなかった
場合の転位密度2X10’〜3 X 10’am弓に比
べて大幅に転位密度が低下することが分かった・
第1図に混晶エピタキシャル層を成長させたつ工−ハの
断面構造を、また第2図には気相成長時のエピタキシャ
ル層の厚みの変化を示す。As a result of measuring the dislocation density of the epitaxial growth layer of the wafer obtained by the above method, the dislocation density was 9
10' (1m-2), and it was found that the dislocation density was significantly reduced compared to the dislocation density of 2X10' to 3X10'am arch when the present invention was not applied. Figure 1 shows a mixed crystal. FIG. 2 shows the cross-sectional structure of the process in which the epitaxial layer was grown, and also shows changes in the thickness of the epitaxial layer during vapor phase growth.
上記実施例では、組成勾配層52と組成一定層53との
境界(符号A)で成長の一時中断を行なったが1組成一
定層の成長の際に1回または2回以上成長と中断を繰り
返すようにしてもよい(第3図、第4図符号B、C参照
)。なお、ここで組成一定層の成長の際とは組成一定層
の開始直前(符号Aの時点)を含むものである。In the above embodiment, the growth was temporarily interrupted at the boundary (symbol A) between the composition gradient layer 52 and the constant composition layer 53, but the growth and interruption were repeated once or twice or more during the growth of one constant composition layer. (See symbols B and C in FIGS. 3 and 4). Note that the term "during the growth of the constant composition layer" includes the time immediately before the growth of the constant composition layer (time point A).
また、本発明はG a A s P以外の3元系、4元
系混品のエピタキシャル成長に利用できる。Furthermore, the present invention can be used for epitaxial growth of ternary and quaternary mixtures other than GaAsP.
[発明の効果]
以上説明したようにこの発明は、半導体単結晶基板上に
、該基板結晶と格子定数の異なる混晶のエピタキシャル
層を気相成長させるにあたり、上記基板上に組成比が徐
々に変化する組成勾配層を形成した後、混晶の成長を一
時中断し、しかる後、組成一定層の成長を行なうか、混
晶の成長中断を上記組成一定層の成長の際に少なくとも
1回行なうようにしたので1組成勾配層で発生した転位
が成長中断により消滅もしくはその上の成長層へ伝搬す
るのを抑止され、組成一定の混晶エピタキシャル層表面
の転位密度が大幅に低減されるという効果がある。[Effects of the Invention] As explained above, in the present invention, in vapor phase growing an epitaxial layer of a mixed crystal having a lattice constant different from that of the substrate crystal on a semiconductor single crystal substrate, the composition ratio is gradually changed on the substrate. After forming the changing composition gradient layer, the growth of the mixed crystal is temporarily interrupted, and then a constant composition layer is grown, or the growth of the mixed crystal is interrupted at least once during the growth of the constant composition layer. As a result, the dislocations generated in the one-composition gradient layer are eliminated or prevented from propagating to the growth layer above it due to growth interruption, and the dislocation density on the surface of the mixed crystal epitaxial layer with a constant composition is significantly reduced. There is.
第1図は混晶エピタキシャル層を成長させたつ工−ハの
構造の一例を示す断面図、
第2図は本発明方法による気相成長時のエピタキシャル
層の厚みの時間的変化を示すグラフ、第3図は本発明に
係る化合物半導体の気相エピタキシャル成長方法に使用
する気相成長装置の一例を示す縦断正面図、
第4図はその反応管の温度分布を示すグラフである。
1・・・・反応管、2・・・・電気炉、4・・・・原料
ボート、5・・・・基板。FIG. 1 is a cross-sectional view showing an example of the structure of a process for growing a mixed crystal epitaxial layer. FIG. FIG. 3 is a longitudinal sectional front view showing an example of a vapor phase growth apparatus used in the vapor phase epitaxial growth method of compound semiconductors according to the present invention, and FIG. 4 is a graph showing the temperature distribution of the reaction tube. 1...Reaction tube, 2...Electric furnace, 4...Raw material boat, 5...Substrate.
Claims (2)
異なる混晶のエピタキシャル層を気相成長させるにあた
り、上記基板上に組成比が徐々に変化する組成勾配層を
形成した後、混晶の成長を一時中断し、しかる後、組成
の一定な層の成長を行なうようにしたことを特徴とする
化合物半導体混晶のエピタキシャル成長方法。(1) In vapor phase growing an epitaxial layer of a mixed crystal having a lattice constant different from that of the substrate crystal on a semiconductor single crystal substrate, a composition gradient layer whose composition ratio gradually changes is formed on the substrate, and then a mixed crystal layer is formed on the substrate. 1. A method for epitaxial growth of a compound semiconductor mixed crystal, characterized in that the growth of the crystal is temporarily interrupted, and then a layer having a constant composition is grown.
混晶組成勾配層を形成し、その上に混晶組成一定層を気
相成長させるにあたり、混晶の成長中断を上記組成一定
層の成長の際に少なくとも1回行なうようにしたことを
特徴とする化合物半導体混晶のエピタキシャル成長方法
。(2) When forming a mixed crystal composition gradient layer in which the composition ratio gradually changes on a semiconductor single crystal substrate, and growing a constant mixed crystal composition layer on top of the layer in a vapor phase, the growth of the mixed crystal is interrupted when the composition remains constant. 1. A method for epitaxial growth of a compound semiconductor mixed crystal, characterized in that the epitaxial growth method is performed at least once during the growth of a layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1144390A JPH039516A (en) | 1989-06-07 | 1989-06-07 | Epitaxial growth method of compound semiconductor mixed crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1144390A JPH039516A (en) | 1989-06-07 | 1989-06-07 | Epitaxial growth method of compound semiconductor mixed crystal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH039516A true JPH039516A (en) | 1991-01-17 |
Family
ID=15361031
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1144390A Pending JPH039516A (en) | 1989-06-07 | 1989-06-07 | Epitaxial growth method of compound semiconductor mixed crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH039516A (en) |
-
1989
- 1989-06-07 JP JP1144390A patent/JPH039516A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3929017B2 (en) | Semiconductor layer growth method | |
JPS62119196A (en) | Method for growing compound semiconductor | |
JPH0666274B2 (en) | (III) -Method for forming group V compound semiconductor | |
JPH0864791A (en) | Epitaxial growth method | |
JP2007201336A (en) | Forming method of semiconductor laminated body | |
JPS59208822A (en) | Semiconductor structure and method of producing same | |
JP2018093112A (en) | Method for manufacturing nitride semiconductor template, nitride semiconductor template, and nitride semiconductor device | |
JP2001044123A (en) | Method for growing semiconductor layer | |
JP2004111848A (en) | Sapphire substrate, epitaxial substrate using it, and its manufacturing method | |
JP4127348B2 (en) | Manufacturing method of electronic device | |
KR20020065892A (en) | Method of fabricating group-ⅲ nitride semiconductor crystal, method of fabricating gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor light-emitting device, and light source using the semiconductor light-emitting device | |
JP2004307253A (en) | Method for manufacturing semiconductor substrate | |
JPH039516A (en) | Epitaxial growth method of compound semiconductor mixed crystal | |
JPS61106497A (en) | Method for growing epitaxial film of gallium phosphide and arsenide | |
JP3101753B2 (en) | Vapor growth method | |
JPH01179788A (en) | Method for growing iii-v compound semiconductor on si substrate | |
JP2002053397A (en) | Nitride crystal and method for producing the same | |
JPS63129616A (en) | Semiconductor device and manufacture thereof | |
JPS63174314A (en) | Method for doping iii-v compound semiconductor crystal | |
US6197441B1 (en) | Cubic nitride semiconductor device and fabrication method of the same | |
JPH0312398A (en) | Epitaxial growth method for compound semiconductor | |
KR20230149989A (en) | Gallium nitride single crystal separation method | |
JPH03119721A (en) | Crystal growth | |
JPH0316993A (en) | Vapor-phase epitaxial growth of compound semiconductor | |
JPH01215012A (en) | Structure and manufacture of semiconductor crystal layer |