JPH0394818A - Catalytic converter - Google Patents

Catalytic converter

Info

Publication number
JPH0394818A
JPH0394818A JP1230347A JP23034789A JPH0394818A JP H0394818 A JPH0394818 A JP H0394818A JP 1230347 A JP1230347 A JP 1230347A JP 23034789 A JP23034789 A JP 23034789A JP H0394818 A JPH0394818 A JP H0394818A
Authority
JP
Japan
Prior art keywords
catalyst
rhodium
exhaust gas
palladium
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1230347A
Other languages
Japanese (ja)
Inventor
Eiichi Shiraishi
英市 白石
Kazuo Tsuchiya
一雄 土谷
Tomohisa Ohata
知久 大幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP1230347A priority Critical patent/JPH0394818A/en
Publication of JPH0394818A publication Critical patent/JPH0394818A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the purification capacity when the air-to-fuel ratio is high at high temp. by incorporating rhodium, platinum or palladium into a catalyst on the inlet side of exhaust gas and palladium and rhodium into the catalyst on the outlet side and controlling the volume ratio of both catalysts to (8:1)-(1:3). CONSTITUTION:A soln. of platinum nitrate in dinitrodiamine, a rhodium nitrate soln. and activated alumina are mixed to form alumina carrying platinum and rhodium, the alumina and cerium oxide are then wet-crushed to obtain a slurry, and a monolithic carrier is dipped in the slurry to obtain a catalyst on the inlet side of exhaust gas. Meanwhile, alumina carrying palladium and rhodium is formed from a palladium nitrate soln., a rhodium nitrate soln. and activated alumina, the alumina and cerium oxide are wet-pulverized to obtain a slurry, and a monolithic carrier is dipped in the slurry to obtain a catalyst on the outlet side of exhaust gas. The volume ratio of the inlet-side catalyst to outlet- side catalyst packed in the catalytic converter is controlled to (8:1)-(1:3). Consequently, the purification capacity is improved when the air-to-fuel ratio is high at high temp.

Description

【発明の詳細な説明】 く産業上の利用分野〉 本発明は、自動車の排気ガス浄化を行うための触媒コン
バータ装置に関する. く従来の技術〉 自動車の排気ガス浄化において用いられる触媒は、通常
、炭化水素(HC) 、一酸化炭素(Co)および窒素
酸化物(NO.)を同時に除去する(以下「三元性能」
という)三元触媒が用いられている.近年、省燃費化エ
ンジンの高出力化に伴い浄化性能にすぐれた触媒が強く
求められている.また、現行よりさらに強化された排気
ガス規制、特にHC規制が施行されつつある。このよう
な状況下において従来の三元触媒では性能面で十分とは
言い難い. 通常、自動車は理論空燃比近傍で運転されるが、加速時
には、燃料リンチな雰囲気(以下「リッチ側」又は「リ
ンチ時」という〉となり、多量のHCが排出される問題
がある.そのため、リッチ側の空燃比でHC浄化能を向
上させることが必要となる。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a catalytic converter device for purifying exhaust gas from automobiles. Conventional technology> Catalysts used in automobile exhaust gas purification usually remove hydrocarbons (HC), carbon monoxide (Co), and nitrogen oxides (NO.) at the same time (hereinafter referred to as "ternary performance").
A three-way catalyst is used. In recent years, as fuel-saving engines have increased in output, there has been a strong demand for catalysts with excellent purification performance. Additionally, exhaust gas regulations, particularly HC regulations, are being enforced that are even stricter than the current ones. Under these circumstances, conventional three-way catalysts cannot be said to be sufficient in terms of performance. Normally, automobiles are operated near the stoichiometric air-fuel ratio, but when accelerating, a fuel lynch atmosphere (hereinafter referred to as ``rich side'' or ``lynch time'') is created, and a large amount of HC is emitted. It is necessary to improve the HC purification ability with the air-fuel ratio on the side.

IC, GOをより完全に燃焼させる触媒として、流入
側に酸化用触媒、流出側に還元用触媒を設け、さらにこ
の流出側の前部に白金(Pt) 、後部にロジウム(R
h’)を分けて用いた触媒コンバータ装置が示されてい
るが(特開昭55−164715号)、流入側の触媒に
はRhを含まず、流出側のみに含むものであり、かつ流
入側と流出側の触媒間に拡散室を有するもので、本発明
とは範ちゅうが異なるものである。
As catalysts for more complete combustion of IC and GO, an oxidation catalyst is installed on the inflow side and a reduction catalyst is installed on the outflow side.Furthermore, platinum (Pt) is placed at the front of the outflow side, and rhodium (R) is placed at the rear of the outflow side.
A catalytic converter device is shown (Japanese Patent Application Laid-open No. 164715/1989) that uses Rh') separately, but the catalyst on the inflow side does not contain Rh, but only on the outflow side, and the inflow side catalyst does not contain Rh. It has a diffusion chamber between the catalyst and the catalyst on the outflow side, and is completely different from the present invention.

その他、触媒を流入側と流出側に分割し2たものとして
、高温活性型触媒(チタン、クロム等)を上流に、低温
活性型触媒(責金属)を下流に担持した触媒コンバータ
装置(特開昭49−41772号〉、三元触媒において
流入側・流出側の触媒のウオッシュコート量、責金属量
、セリウム含有量、セル密度を規定した触媒コンバータ
装置(特開昭64−7935号)が示されているが、こ
れらの触媒には具体的記載が少なく実施するには、さら
に検討を必要とするものである。また、熱容量の異なる
複数の触媒を用いた触媒コンバータ装置(実開昭565
071.6号)が示されているが、具体的な値がなく、
またその目的は単にスタートアップ用に小さな触媒を設
けたものであるために、HC..COの燃焼に対しての
効果は不十分である。
In addition, a catalytic converter device (unexamined patent application) in which the catalyst is divided into two parts, one on the inflow side and one on the outflow side, supports a high temperature activated catalyst (titanium, chromium, etc.) upstream and a low temperature activated catalyst (responsible metal) downstream. No. 41772/1982>, a catalytic converter device (Japanese Patent Application Laid-Open No. 7935/1983) which specifies the amount of wash coating, amount of responsible metals, cerium content, and cell density of the catalyst on the inflow and outflow sides of a three-way catalyst is disclosed. However, there are few specific descriptions of these catalysts, and further study is required to implement them.In addition, a catalytic converter device using multiple catalysts with different heat capacities (Japanese Utility Model Application No. 565)
071.6), but there are no specific values,
Also, since its purpose is simply to provide a small catalyst for startup, HC. .. The effect on CO combustion is insufficient.

く発明が解決しようとする課題〉 現行よりさらに強化された排気ガス規制が施行されつつ
ある状況十で、燃料リッチな雰囲気6ごおいて排出され
るHCの多い排気ガスを浄化する性能が高《、かつ安価
な触媒二1ンバータ装置の提示が求められ”(いる。
Problems to be Solved by the Invention In a situation where exhaust gas regulations that are even stricter than the current ones are being enforced, it is possible to improve performance in purifying exhaust gas containing a lot of HC emitted in a fuel-rich atmosphere6. There is a need for an inexpensive catalyst inverter device.

く課題を解決するための手段冫 (l)1つの触媒コンバータ装置内に複数個の排気ガス
浄化用触媒を収納してなる触媒コンバー・タ装置におい
て、排気ガス流入側の触媒(A)が(a)ロジウムと白
金または(bjロジウム、白金およびパラジウムを含有
してなり、排気ガス流出側の触媒(B)がパラジウムお
よびリジウ1、を含有しでなり、かつ排気ガス流入側の
触媒(A)と排気ガス流出側の触媒(B)の体積比( 
(A)H  (B) )が8=1〜1:3であることを
特徴とする触媒コンバータ装置。
Means for Solving the Problems (l) In a catalytic converter device in which a plurality of exhaust gas purifying catalysts are housed in one catalytic converter device, the catalyst (A) on the exhaust gas inflow side is ( a) contains rhodium and platinum or (bj rhodium, platinum and palladium, the exhaust gas outflow side catalyst (B) contains palladium and rhizium 1, and the exhaust gas inflow side catalyst (A) and the volume ratio of the catalyst (B) on the exhaust gas outflow side (
A catalytic converter device characterized in that (A)H (B) ) is 8=1 to 1:3.

本発明者らの知見によるとHC酸化能においてPdは不
飽和IC, Ptは飽和HCの浄化能がすぐれている。
According to the findings of the present inventors, in terms of HC oxidation ability, Pd has an excellent ability to purify unsaturated IC, and Pt has an excellent ability to purify saturated HC.

この特性を最高に発揮させるため、上記のごとく触媒を
組み合せを行った結果、触媒体積比が排気ガス流入側と
流出側で8:1〜1:3の範囲の場合、空燃比がリッチ
時の浄化能の同上化、特に00浄化能の向上化が可能と
なった。
In order to maximize this characteristic, as a result of combining catalysts as described above, when the catalyst volume ratio is in the range of 8:1 to 1:3 on the exhaust gas inflow side and exhaust gas outflow side, when the air-fuel ratio is rich, It has become possible to improve the purification ability, especially the 00 purification ability.

本発明の他の効果として、従来のptおよびRhを含有
する触媒1個を触媒コンバータに収納する場合に比べそ
の流出側のptをPdに置換しうるちのである, Pd
はptより安価であるためコスト低下につながる。さら
に排気流入側の触媒のptの一部をPdに置換した1・
リメタル(Pt, Pd, Rh)触媒でも、上記性能
向上が示されさらにコスト低下となる。
Another effect of the present invention is that compared to the conventional case where one catalyst containing PT and Rh is housed in a catalytic converter, PT on the outflow side can be replaced with Pd.
Since it is cheaper than PT, it leads to cost reduction. Furthermore, 1.
Remetallic (Pt, Pd, Rh) catalysts also show the above performance improvements and further reduce costs.

また、この排気流入側の触媒と排気流出側の触媒の体積
比が8:J〜1:3である。
Further, the volume ratio of the catalyst on the exhaust inflow side and the catalyst on the exhaust outflow side is 8:J to 1:3.

この体積比が1=3より流入側が小になるとNO.浄化
能の低下をきたし、また、体積比が8:1より流入側か
大εなるこりフチ側でのIC浄化能の向上が少なくなる
のである。
If this volume ratio becomes smaller than 1=3 on the inflow side, NO. This results in a decrease in the purification ability, and furthermore, there is less improvement in the IC purification ability on the inlet side or on the edge side where the volume ratio is greater than 8:1.

止記、パラジウム、ロジウムまたは白金は金属酸化物に
担持されてなりこの金属酸化物には、活性アル藁ナ、α
−アル累ナ、シリカ、チタニア、シリカーアルくナ、酸
化鉄、酸化二・ノケル、アルカリ金属酸化物、アルカリ
土類金属酸化物、希土類酸化物等があげられる。
However, palladium, rhodium or platinum is supported on a metal oxide, and this metal oxide contains activated alumina, α
- Aluminum, silica, titania, silica-alkuna, iron oxide, di-nokel oxide, alkali metal oxides, alkaline earth metal oxides, rare earth oxides, and the like.

また、酸化セリウム(以下「セリア」という)は少なく
とも排気流入側の触媒に含有してなり、好ましくは、排
気流入側および流出側の雨方の触媒に含有されているも
のである。
Further, cerium oxide (hereinafter referred to as "ceria") is contained at least in the catalyst on the exhaust gas inflow side, and preferably in the rain side catalyst on the exhaust gas inflow side and the exhaust gas outflow side.

く実施例〉 以下、実施例により、本発明をさらに詳細に説明するが
、本発明の趣旨に反しない限り、これらのものに限定さ
れることはないことはいうまでもない. 実施例1 ジニトロジアンミン白金の硝酸水溶液(Pt含量:10
0g/リットル)41.7mlと硝酸ロジウム水溶液(
Rh含量:50g/リソトル)16.7m6を純水で5
 O 0m7!に希釈した水溶液に活性アルミナ500
gを入れ、混合した後、150℃で3時間乾燥し、40
0℃で2時間焼或を行い、白金、ロジウム担持アル短ナ
を得た。ついで白金、ロジウム担持アルミナ500gと
セリア250gを湿式粉砕しスラリーを得た。このスラ
リーに前記同10.85Aのモノリス担体を浸し、余分
のスラリーを吹き飛ばした後150゜Cで3時間乾燥し
、400℃で2時間焼威し、流入側用の完或触媒を得た
. この得られた触媒には1リットル当りptが0.83g
 Rhが0. 1 7 g担持されていた(以下、触媒
1リットル当りの重量をr g / l Jと記述する
.)次に、硝酸パラジウム水溶液(Pd含量=100g
/リットル)41.7o+/と硝酸ロジウム水溶液(R
h含量:50g/リフトル)16.7n+j!を純水で
500IIlNに希釈した水溶液に活性アルξナ500
gを入れ、混合した後、150℃で3時間乾燥し、40
0℃で2時間焼戒を行ないパラジウム、ロジウム担持ア
ルミナを得た。
EXAMPLES The present invention will be explained in more detail with reference to Examples below, but it goes without saying that the invention is not limited to these unless it goes against the spirit of the invention. Example 1 Nitric acid aqueous solution of dinitrodiammine platinum (Pt content: 10
0g/liter) and 41.7ml of rhodium nitrate aqueous solution (
Rh content: 50g/lysotol) 16.7m6 with pure water
O 0m7! activated alumina 500 in an aqueous solution diluted with
After mixing, dry at 150℃ for 3 hours,
Calcining was performed at 0° C. for 2 hours to obtain platinum and rhodium supported alumina. Next, 500 g of alumina supporting platinum and rhodium and 250 g of ceria were wet-pulverized to obtain a slurry. The same 10.85A monolithic carrier was immersed in this slurry, the excess slurry was blown off, and the carrier was dried at 150°C for 3 hours and burned at 400°C for 2 hours to obtain a complete catalyst for the inflow side. The resulting catalyst has a pt of 0.83 g per liter.
Rh is 0. (Hereinafter, the weight per liter of catalyst is expressed as r g / l J.) Next, a palladium nitrate aqueous solution (Pd content = 100 g
/liter) 41.7o+/ and rhodium nitrate aqueous solution (R
h content: 50g/riftle) 16.7n+j! Add 500% active alumina to an aqueous solution diluted to 500IIN with pure water.
After mixing, dry at 150℃ for 3 hours,
Burning was performed at 0°C for 2 hours to obtain palladium and rhodium-supported alumina.

ついでパラジウム、ロジウム担持アルミナ500gとセ
リ7250gを湿式粉砕しスラリーを得た。
Next, 500 g of alumina supporting palladium and rhodium and 7250 g of seri were wet-pulverized to obtain a slurry.

このスラリーに0.8!M!のモノリス担体を浸し、余
分のスラリーを吹き飛ばした後、150℃で3時間乾燥
し、400℃で2時間焼威し、流出側用の完或触媒を得
た。
0.8 for this slurry! M! After immersing the monolithic carrier in the slurry and blowing off the excess slurry, it was dried at 150°C for 3 hours and burned at 400°C for 2 hours to obtain a complete catalyst for the outflow side.

この得られた触媒には1リントル当りPdが0.83g
/1、Rhが0.17g/ffi担持されていた。
The resulting catalyst contained 0.83 g of Pd per liter.
/1, Rh was supported at 0.17 g/ffi.

実施例2 排気流入側の触媒の白金およびロジウムに替え白金、パ
ラジウムおよびロジウムを各々0. 4 2 g/lo
.42g/lおよび0.17g/j!にした以外は実施
例1と同様にして触媒を得た.実施例3〜5 排気流入側および流出側の触媒容量を種々変えた以外は
実施例1と同様にして触媒を得た。結果は表1に示した
Example 2 In place of platinum and rhodium in the catalyst on the exhaust inlet side, platinum, palladium, and rhodium were each added at 0.00%. 4 2 g/lo
.. 42g/l and 0.17g/j! A catalyst was obtained in the same manner as in Example 1 except that. Examples 3 to 5 Catalysts were obtained in the same manner as in Example 1, except that the catalyst capacities on the exhaust gas inflow side and exhaust gas outflow side were varied. The results are shown in Table 1.

但し、触媒1リットル当りのパラジウム、ロジウムおよ
び白金の量は同一である. 比較例l 実施例1において排気流出側の触媒のパラジウムおよび
ロジウムを白金およびロジウムに替え、各々0.83g
/7!、0.11g/l世持した以外は実施例1と同様
にして触媒を得た。また排気ガス流入側の触媒は実施例
1と同様にして得た。
However, the amounts of palladium, rhodium, and platinum per liter of catalyst are the same. Comparative Example 1 In Example 1, palladium and rhodium in the catalyst on the exhaust outlet side were replaced with platinum and rhodium, and 0.83 g each was used.
/7! A catalyst was obtained in the same manner as in Example 1, except that 0.11 g/l was maintained. Further, the catalyst on the exhaust gas inflow side was obtained in the same manner as in Example 1.

比較例2 実施例1において、排気流入側の触媒の白金およびロジ
ウムをパラジウムおよびロジウムに替え各々0.83g
//!、0.17g/It担持した以外は実施例1と同
様にして触媒を得た.また、排気ガス流出側の触媒は、
実施例1と同様にして得た。
Comparative Example 2 In Example 1, platinum and rhodium in the catalyst on the exhaust inflow side were replaced with palladium and rhodium, each 0.83 g.
//! A catalyst was obtained in the same manner as in Example 1 except that 0.17 g/It was supported. In addition, the catalyst on the exhaust gas outflow side is
Obtained in the same manner as in Example 1.

比較例3および4 実施例1において排気ガス流入側および流出側の触媒体
積を種々変えた以外は実施例Iと同様にして触媒を得た
。結果は表1に示した..但し触媒1リットル当りのパ
ラジウム、ロジウムおよび白金の量は実施例1と同一量
である。
Comparative Examples 3 and 4 Catalysts were obtained in the same manner as in Example I, except that the volume of the catalyst on the exhaust gas inflow side and the exhaust gas outflow side was varied. The results are shown in Table 1. .. However, the amounts of palladium, rhodium, and platinum per liter of catalyst were the same as in Example 1.

実施例6 実施例工〜5および比較例1〜4で得られた触媒につい
て、エンジン耐久走行後の高温下で空燃比がリンチ側時
の}Ic, COおよびNoについて触媒性能を調べた
. (耐久条件) 耐久走行は、市販の電子制御方式のエンジンを使用し、
各触媒コンバータを装着し行った.入口温度が850℃
、耐久時間は100Hrで行った。
Example 6 The catalyst performance of the catalysts obtained in Examples 5 to 5 and Comparative Examples 1 to 4 was investigated with respect to }Ic, CO, and No when the air-fuel ratio was on the Lynch side at high temperatures after engine endurance running. (Durability conditions) Durability running uses a commercially available electronically controlled engine.
Each catalytic converter was installed. Inlet temperature is 850℃
The durability time was 100 hours.

(高温下での空燃比がリッチ時の性能)次に高温で空燃
比がリンチ時の触媒性能は触媒入口温度を400℃にて
以下の条件で行った。エンジンの空燃比(Air/Fu
el又はA/F)を15から14まで連続的に変化させ
た(外部発振機でIHzのサイン波型シグナルをエンジ
ンのコントロール部に導入し、空燃比を±1.OA/F
,IHzで振動させた)′.そして、空燃比がリッチ゛
時であるA/Fが14.4の浄化率(Conv.)を表
2に示した。
(Performance when the air-fuel ratio is rich at high temperature) Next, the performance of the catalyst when the air-fuel ratio is rich at high temperature was measured at a catalyst inlet temperature of 400° C. under the following conditions. Engine air-fuel ratio (Air/Fu
el or A/F) was continuously varied from 15 to 14 (an IHz sine wave signal was introduced into the engine control section using an external oscillator, and the air-fuel ratio was adjusted to ±1.OA/F).
, vibrated at IHz)′. Table 2 shows the purification rate (Conv.) at A/F of 14.4 when the air-fuel ratio is rich.

く発明の効果〉 表2より本発明に係る実施例1〜5の触媒は、比較例1
〜4に比べて、高温での空燃比がリッチ時の浄化能、特
にHC浄化能に顕著な効果があり、さらに本発明に係る
排気ガス流入側と流出側の触媒容量比の範囲内であれば
上記触媒性能がさらに向上し、また高価なptをptよ
り安価なPdに代替しても上記の高性能が示され、コス
トの低限を図ることができる。
Effects of the Invention> Table 2 shows that the catalysts of Examples 1 to 5 according to the present invention are as follows: Comparative Example 1
-4, it has a remarkable effect on the purification ability when the air-fuel ratio is rich at high temperatures, especially the HC purification ability, and furthermore, even within the range of the catalyst capacity ratio on the exhaust gas inflow side and the outflow side according to the present invention. In this case, the catalyst performance is further improved, and even when expensive PT is replaced with Pd, which is cheaper than PT, the above-mentioned high performance is exhibited, and costs can be kept to a low limit.

表2耐久走行後の空燃比リッチの性能Table 2 Performance of rich air-fuel ratio after endurance running

Claims (1)

【特許請求の範囲】[Claims] (1)1つの触媒コンバータ装置内に複数個の排気ガス
浄化用触媒を収納してなる触媒コンバータ装置において
、排気ガス流入側の触媒(A)が(a)ロジウムと白金
または(b)ロジウム、白金およびパラジウムを含有し
てなり、排気ガス流出側の触媒(B)がパラジウムおよ
びロジウムを含有してなり、かつ排気ガス流入側の触媒
(A)と排気ガス流出側の触媒(B)の体積比((A)
:(B))が8:1〜1:3であることを特徴とする触
媒コンバータ装置。
(1) In a catalytic converter device in which a plurality of exhaust gas purifying catalysts are housed in one catalytic converter device, the catalyst (A) on the exhaust gas inflow side is made of (a) rhodium and platinum, or (b) rhodium, The catalyst (B) on the exhaust gas outflow side contains platinum and palladium, the catalyst (B) on the exhaust gas outflow side contains palladium and rhodium, and the volume of the catalyst (A) on the exhaust gas inflow side and the catalyst (B) on the exhaust gas outflow side. Ratio ((A)
:(B)) is 8:1 to 1:3.
JP1230347A 1989-09-07 1989-09-07 Catalytic converter Pending JPH0394818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1230347A JPH0394818A (en) 1989-09-07 1989-09-07 Catalytic converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1230347A JPH0394818A (en) 1989-09-07 1989-09-07 Catalytic converter

Publications (1)

Publication Number Publication Date
JPH0394818A true JPH0394818A (en) 1991-04-19

Family

ID=16906428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1230347A Pending JPH0394818A (en) 1989-09-07 1989-09-07 Catalytic converter

Country Status (1)

Country Link
JP (1) JPH0394818A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002020140A1 (en) * 2000-09-07 2002-03-14 Honda Giken Kogyo Kabushiki Kaisha Device for clarifying exhaust gas from internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002020140A1 (en) * 2000-09-07 2002-03-14 Honda Giken Kogyo Kabushiki Kaisha Device for clarifying exhaust gas from internal combustion engine
US7157405B2 (en) 2000-09-07 2007-01-02 Honda Giken Kogyo Kabushiki Kabushiki Kaisha Device for clarifying exhaust gas from internal combustion engine

Similar Documents

Publication Publication Date Title
JP3291086B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH05168860A (en) Purifying method of exhaust gas
US5294421A (en) Method for catalytically purifying exhaust gas
JP3328322B2 (en) Exhaust gas purification method
JPH05261287A (en) Method for purifying exhaust gas and catalyst therefor
JPH08281106A (en) Catalyst for purifying exhaust gas and its production
JPH07171399A (en) Production of exhaust gas purifying catalyst
JP3555694B2 (en) Exhaust gas purification device
JPH08299793A (en) Catalyst for purification of exhaust gas and its production
JPH0394818A (en) Catalytic converter
JP4330666B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH0578378B2 (en)
JPH03154619A (en) Catalytic converter device
JP3551346B2 (en) Exhaust gas purification equipment
JP2786933B2 (en) Exhaust gas purification catalyst
JP2001079405A (en) Exhaust gas cleaning catalyst, exhaust gas cleaning catalyst carrying honeycomb structure and exhaust gas cleaning method
JPH03101813A (en) Catalyst converter device
JP2001000840A (en) Exhaust gas purifying device
JPH08182928A (en) Nitrogen oxide occlusion composition and exhaust gas purification
JPH06165920A (en) Exhaust gas purifying method
JPH04267950A (en) Catalyst for purifying exhaust gas
JP3527759B2 (en) Method for purifying exhaust gas containing nitrogen oxides
JPH0573463B2 (en)
JPH078755A (en) Exhaust gas purification device
JP3311370B2 (en) Exhaust purification catalyst system