JPH039422B2 - - Google Patents

Info

Publication number
JPH039422B2
JPH039422B2 JP60017806A JP1780685A JPH039422B2 JP H039422 B2 JPH039422 B2 JP H039422B2 JP 60017806 A JP60017806 A JP 60017806A JP 1780685 A JP1780685 A JP 1780685A JP H039422 B2 JPH039422 B2 JP H039422B2
Authority
JP
Japan
Prior art keywords
wave transmitting
ultrasonic
dust
receiving elements
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60017806A
Other languages
Japanese (ja)
Other versions
JPS61175572A (en
Inventor
Masafumi Yoshida
Ichiro Nakahori
Tsugio Mizutani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Kaijo Denki Co Ltd
Original Assignee
Mitsubishi Electric Corp
Kaijo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Kaijo Denki Co Ltd filed Critical Mitsubishi Electric Corp
Priority to JP1780685A priority Critical patent/JPS61175572A/en
Publication of JPS61175572A publication Critical patent/JPS61175572A/en
Publication of JPH039422B2 publication Critical patent/JPH039422B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は超音波を利用した風向風速計に関
し、特に超音波の送波および受波を行なう送受波
素子に於ける先端部分への塵埃付着防止に関する
ものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a wind direction and speed meter that uses ultrasonic waves, and in particular, to prevent dust from adhering to the tip of a wave transmitting/receiving element that transmits and receives ultrasonic waves. It is about prevention.

〔従来の技術〕[Conventional technology]

近年、電子技術の発達に伴なつて、風向および
風速の測定も電子化されている。そして、この風
向および風速の測定には、超音波の伝播速度が風
速に影響されることを利用した超音波式が主流と
なつている。
In recent years, with the development of electronic technology, wind direction and wind speed measurements have also been computerized. The mainstream method for measuring wind direction and wind speed is the ultrasonic method, which utilizes the fact that the propagation speed of ultrasonic waves is affected by wind speed.

第3図は従来一般に用いられているとともに、
気象研究所報告第33巻1号の第1〜19頁に開示さ
れている超音波式風向風速計の一例を示す構成図
である。同図に於いて1a,1bは互いに対向し
て設けられた超音波パルス送受用の送受波素子、
2は信号処理回路であつて、予め定められた一定
時間毎に送受波素子1a,1bに対してパルス信
号を交互に供給することによつて超音波パルスの
発生を行なわせるとともに、対向する送受波素子
1a,1bに於ける超音波受波信号と前記パルス
信号との時間差から風向および風速を演算する信
号処理回路2とによつて構成されている。ただ
し、3a,3bから発生される超音波パルスの進
行方向を示し、Lは送受波素子1a,1b間の距
離を示している。
Figure 3 is commonly used in the past, and
FIG. 2 is a configuration diagram showing an example of an ultrasonic anemometer disclosed in Meteorological Research Institute Report Vol. 33, No. 1, pages 1 to 19. In the figure, 1a and 1b are transceiver elements for transmitting and receiving ultrasonic pulses, which are provided facing each other;
Reference numeral 2 denotes a signal processing circuit which generates ultrasonic pulses by alternately supplying pulse signals to the transceiver elements 1a and 1b at predetermined time intervals, and generates ultrasonic pulses between the opposing transceiver elements 1a and 1b. It is constituted by a signal processing circuit 2 that calculates wind direction and wind speed from the time difference between the ultrasonic reception signals in the wave elements 1a and 1b and the pulse signal. However, it shows the traveling direction of the ultrasonic pulses generated from 3a and 3b, and L shows the distance between the wave transmitting and receiving elements 1a and 1b.

この様に構成された超音波風向風速計に於い
て、信号処理回路2が送受波素子1a,1bに対
して一定時間毎にパルス信号を交互に供給する
と、送受波素子1a,1bからは超音波パルス3
a,3bが対向する送受波素子1b,1aに向つ
て送信されることになる。ここで、超音波は通常
の音波と同じように、常温空気中を340m/secの
速度で伝播する。そして、この超音波は空気の流
れと同じ方向に伝播すると風速分だけ伝播速度が
早くなり、逆方向に伝播する再と風速分だけ遅く
なる。
In the ultrasonic anemometer configured in this way, when the signal processing circuit 2 alternately supplies pulse signals to the wave transmitting/receiving elements 1a, 1b at fixed time intervals, the wave transmitting/receiving elements 1a, 1b transmit ultrasonic pulse signals. sonic pulse 3
a, 3b are transmitted toward the opposing wave transmitting/receiving elements 1b, 1a. Here, like normal sound waves, ultrasonic waves propagate in normal temperature air at a speed of 340 m/sec. When this ultrasonic wave propagates in the same direction as the air flow, its propagation speed increases by the wind speed, and when it propagates in the opposite direction, it slows down by the wind speed.

ここで、第2図に示す超音波方式風向風速計に
於いては、一定時間毎に超音波パルスの伝播方向
が逆向きとなることから、信号処理回路2はこの
2系統を交互に伝播する時間を測定することにな
る。そして、風速をV、超音波の伝播軸成分を
Vx、空気中の音速をC、送受波素子1a,1b
間の距離をLとすると、送受波素子1aから1b
への伝播時間t1はt1=L/C+Vxとなり、送受波素 子1bから1aへの伝播時間t2はt2=L/C−Vxと なる。そして、この2式から風速Vxは、L/2・ t1−t2/t1・t2として求められる。従つて、信号処理回 路2は、伝播時間t1、t2を測定して演算すること
により風速Vxが得られ、この風速VxがVx=
V・Cosθであることから演算によつて真の風速
Vが求められることになる。
In the ultrasonic anemometer shown in FIG. 2, the propagation direction of the ultrasonic pulses reverses at regular intervals, so the signal processing circuit 2 alternately propagates the two systems. You will be measuring time. Then, the wind speed is V, and the propagation axis component of the ultrasonic wave is
Vx, the speed of sound in the air is C, the wave transmitting/receiving elements 1a, 1b
If the distance between them is L, the wave transmitting/receiving elements 1a to 1b
The propagation time t1 from the wave transmitting / receiving element 1b to the wave transmitting/receiving element 1a becomes t2 =L/C-Vx. From these two equations, the wind speed Vx is determined as L/2·t 1 −t 2 /t 1 ·t 2 . Therefore, the signal processing circuit 2 obtains the wind speed Vx by measuring and calculating the propagation times t 1 and t 2 , and this wind speed Vx is expressed as Vx=
Since V·Cosθ, the true wind speed V can be determined by calculation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記構成による超音波式風向風
速計に於いては、送受波素子の先端が風を受ける
確率の高い方向に面し、かつ大気中に露出した状
態となつていることから、汚れが付着して測定誤
差が生ずる原因になるとともに、メンテナンス周
期が短かくなる問題を有している。
However, in the ultrasonic anemometer with the above configuration, the tip of the wave transmitting/receiving element faces a direction where there is a high probability of receiving wind and is exposed to the atmosphere, so dirt may adhere to it. This causes measurement errors and shortens the maintenance cycle.

この発明は上記問題を解決するためになされた
ものであつて、送受波素子の先端への塵埃の付着
を防止した超音波式風向風速計を提供することを
目的とするものである。
The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide an ultrasonic anemometer that prevents dust from adhering to the tip of the wave transmitting/receiving element.

〔問題点を解決するための手段〕[Means for solving problems]

従つて、この発明による超音波式風向風速計
は、送受波装置から離れた位置に設置された加熱
器と、この加熱器による発熱を前記送受波素子の
先端部に伝導し、送受波素子の先端部を加熱する
熱伝導体とを設けたものである。
Therefore, the ultrasonic anemometer according to the present invention includes a heater installed at a position distant from the wave transmitting/receiving device, and heat generated by the heater is conducted to the tip of the wave transmitting/receiving element. It is equipped with a heat conductor that heats the tip.

〔作用〕[Effect]

この様に構成された超音波式風向風速計に於い
ては、送受波素子の先端部を加熱することによ
り、該部分に付着している塵埃に含まれる水分が
蒸発することから、付着している塵埃が容易に剥
離することになる。また、付着している塵埃の含
水量が低くなることから、粘着力が弱くなつて塵
埃の付着量も少なくなるものである。
In the ultrasonic anemometer configured in this way, by heating the tip of the wave transmitting/receiving element, the moisture contained in the dust adhering to that part evaporates. This means that any dust that may be present will be easily peeled off. Furthermore, since the moisture content of the attached dust becomes low, the adhesive strength becomes weaker and the amount of attached dust also decreases.

〔実施例〕〔Example〕

第1図はこの発明による超音波式風向風速計の
一実施例を示す構成図であつて、第1図と同一部
分は同一記号を用いて示してある。同図に於いて
4a,4bは送受波素子1a,1bの先端部近傍
に設けられたヒーター等によつて構成される加熱
器であつて、加熱用の電源5の出力によつて発熱
するように構成されている。そして、第3図との
相異点はこの加熱器4a,4bを設けたことであ
る。
FIG. 1 is a block diagram showing an embodiment of an ultrasonic anemometer according to the present invention, and the same parts as in FIG. 1 are indicated using the same symbols. In the figure, reference numerals 4a and 4b are heaters constructed of heaters etc. provided near the tips of the wave transmitting/receiving elements 1a and 1b, which generate heat by the output of the heating power source 5. It is composed of The difference from FIG. 3 is that heaters 4a and 4b are provided.

この様に構成された超音波式風向風速計に於い
て、送受波素子1a,1bは大気中に配置され、
その先端は風を受ける確率の高いものとなつてい
るために、粉じん等の塵埃が付着することにな
る。そして、この塵埃は含水量が少なければ粘着
力が弱くなることから、付着する塵埃と剥離する
塵埃の差が少ない領域で平衡状態となることか
ら、送受波素子1a,1bの先端に残留する塵埃
の量は少なくなる。
In the ultrasonic anemometer configured in this way, the wave transmitting and receiving elements 1a and 1b are placed in the atmosphere,
Since the tip is likely to be exposed to wind, dust and other dirt will adhere to it. If the moisture content of this dust is low, the adhesion of the dust becomes weak, so that an equilibrium state is reached in an area where there is little difference between the dust that adheres and the dust that peels off. The amount of will decrease.

しかし、送受波素子1a,1bの先端に含水量
の多い塵埃が付着したり、あるいは既に付着して
いる塵埃の含水量が高くなると、塵埃の粘着力が
強くなることから、剥離する量よりも付着する量
の方が多くなることから、送受波素子1a,1b
の先端に付着する塵埃の量が多くなつてしまう。
そして、含水率の高い塵埃が送受波素子1a,1
bの先端に多量に付着すると、伝播する超音波を
著しく減衰させることから、計測不能を引きおこ
す恐れが生ずる。また、この超音波の減衰は、付
着する塵埃の量のみならず、その含水率にも大き
く影響される。
However, if dust with a high moisture content adheres to the tips of the wave transmitting/receiving elements 1a and 1b, or if the moisture content of the already adhered dust becomes high, the adhesion of the dust becomes stronger, so that the amount of dust that is removed is greater than the amount that can be peeled off. Since the amount of adhesion is larger, the wave transmitting/receiving elements 1a and 1b
The amount of dust adhering to the tip will increase.
Then, dust with high moisture content is transferred to the wave transmitting/receiving elements 1a and 1.
If a large amount adheres to the tip of b, it will significantly attenuate the propagating ultrasonic waves, which may cause measurement failure. Furthermore, the attenuation of this ultrasonic wave is greatly influenced not only by the amount of attached dust but also by its moisture content.

ここで、電源5の出力を加熱器4a,4bにそ
れぞれ供給すると、その内部に設けられているヒ
ーター等の発熱体が発熱することによつて加熱器
4a,4bの温度が上昇する。そして、この加熱
器4a,4bはそれぞれ送受波素子1a,1bの
先端部の外周を取り囲むように装着されているた
めに、この加熱器4a,4bが送受波素子1a,
1bを加熱する。加熱器4a,4bによつて送受
波素子1a,1bが加熱されると、その先端部に
付着している塵埃に含まれる水分が蒸発して含水
率が低下することから、粘着力が低下して付着し
ている塵埃が剥離して自然に除去されることにな
る。また、付着している塵埃の粘着力が低下して
いることから、付着する塵埃と剥離する塵埃の差
が少ない領域で平行することになり、これに伴な
つて送受波素子1a,1bの先端に残留する塵埃
の量が少なくなつて、計測に影響を与えなくな
る。更に、加熱器4a,4bによつて送受波素子
1a,1bの先端に残留している塵埃が加熱され
ると、超音波を著しく減衰させる水分が蒸発され
ることから、超音波を利用した風速測定が高精度
に行なえることになる。
Here, when the output of the power source 5 is supplied to the heaters 4a and 4b, the temperatures of the heaters 4a and 4b rise as a heating element such as a heater provided therein generates heat. Since the heaters 4a and 4b are installed so as to surround the outer peripheries of the tips of the wave transmitting and receiving elements 1a and 1b, the heaters 4a and 4b are attached to the wave transmitting and receiving elements 1a and 1b, respectively.
Heat 1b. When the wave transmitting/receiving elements 1a, 1b are heated by the heaters 4a, 4b, the moisture contained in the dust adhering to their tips evaporates and the moisture content decreases, resulting in a decrease in adhesive strength. The attached dust will peel off and be removed naturally. In addition, since the adhesion of the attached dust has decreased, the attached dust and the detached dust become parallel in an area where there is little difference, and as a result, the tips of the wave transmitting/receiving elements 1a and 1b The amount of dust remaining in the area will be reduced and it will no longer affect measurements. Furthermore, when the dust remaining at the tips of the wave transmitting/receiving elements 1a, 1b is heated by the heaters 4a, 4b, the moisture that significantly attenuates the ultrasonic waves is evaporated, so the wind speed using the ultrasonic waves can be reduced. Measurements can be made with high precision.

第2図はこの発明による超音波式風向風速計の
他の実施例を示す構成図であつて、第1図と同一
部分は同一記号を用いて示してある。同図に於い
て4は電源5によつて駆動される加熱器、6a,
6bは加熱器4に於いて発生された発熱を送受波
素子1a,1bの先端部に伝導する熱伝導体であ
る。
FIG. 2 is a block diagram showing another embodiment of the ultrasonic anemometer according to the present invention, and the same parts as in FIG. 1 are indicated using the same symbols. In the figure, 4 is a heater driven by a power source 5, 6a,
6b is a thermal conductor that conducts heat generated in the heater 4 to the tips of the wave transmitting/receiving elements 1a and 1b.

この様に構成された超音波式風向風速計に於い
て、電源5の図示しないスイツチを投入すると、
その出力によつて加熱器4が発熱する。そして、
この加熱器4に於ける発熱は、熱伝導体6a,6
bを介して伝導することにより送受波素子1a,
1bを加熱することになる。従つて、この場合に
於いても、第1図に示した場合と同様に、送受波
素子1a,1bの先端部に付着する塵埃の除去が
行なえるとともに、超音波の伝播を減衰させる水
分含有率が低下する。また、比較的大形の加熱器
を送受波素子1a,1bの先端部から離して設け
ることが出来ることから、この加熱器が測定風の
流れを乱して測定値の精度を低下させる問題が防
止される。
In the ultrasonic anemometer configured in this way, when a switch (not shown) of the power source 5 is turned on,
The heater 4 generates heat due to the output. and,
The heat generated in the heater 4 is generated by the heat conductors 6a, 6.
The wave transmitting/receiving elements 1a,
1b will be heated. Therefore, in this case as well, as in the case shown in FIG. 1, it is possible to remove dust adhering to the tips of the wave transmitting/receiving elements 1a and 1b, and to remove water containing water that attenuates the propagation of ultrasonic waves. rate decreases. In addition, since a relatively large heater can be installed away from the tips of the wave transmitting/receiving elements 1a and 1b, there is no problem that this heater may disturb the flow of the measurement air and reduce the accuracy of the measured values. Prevented.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に、この発明による超音波式風
向風速計は、送受波素子の先端部を熱伝導体を介
して加熱器によつて加熱するものであるために、
送受波素子の先端部への塵埃の付着量およびその
含水量を低下させることが出来るために、塵埃の
付着防止および超音波の伝播に対する減衰が防止
され、しかも測定風の流れを乱すことなく、保守
性および信頼性の高い超音波式風向風速計が得ら
れる優れた効果を有する。
As explained above, in the ultrasonic anemometer according to the present invention, the tip of the wave transmitting/receiving element is heated by the heater via the heat conductor.
Since it is possible to reduce the amount of dust adhering to the tip of the wave transmitting/receiving element and its water content, it is possible to prevent dust from adhering and attenuating the propagation of ultrasonic waves without disturbing the flow of the measurement air. It has the excellent effect of providing an ultrasonic anemometer with high maintainability and reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による超音波式風向風速計の
一実施例を示す構成図、第2図はこの発明による
超音波式風向風速計の他の実施例を示す構成図、
第3図は従来の超音波式風向風速計の一例を示す
構成図である。 1a,1bは送受波素子、2は信号処理回路、
4,4a,4bは加熱器、5は電源。
FIG. 1 is a block diagram showing one embodiment of the ultrasonic anemometer according to the present invention, FIG. 2 is a block diagram showing another embodiment of the ultrasonic anemometer according to the present invention,
FIG. 3 is a configuration diagram showing an example of a conventional ultrasonic anemometer. 1a and 1b are wave transmitting and receiving elements, 2 is a signal processing circuit,
4, 4a, 4b are heaters, and 5 is a power supply.

Claims (1)

【特許請求の範囲】[Claims] 1 所定距離離間して対向配置された送受波素子
から交互に超音波パルスを発生させて他方の送受
波素子で受波することにより超音波パルスの両伝
播時間から風速を求めて出力する超音波式風向風
速計に於いて、前記送受波素子から離れた位置に
設置された加熱器と、この加熱器による発熱を前
記送受波素子の先端部に伝導し前記送受波素子の
先端部を加熱する熱伝導体とを設けたことを特徴
とする超音波式風向風速計。
1. Ultrasonic waves that are output by alternately generating ultrasonic pulses from transceiver elements arranged facing each other with a predetermined distance apart, and receiving the waves with the other transceiver element to determine the wind speed from both propagation times of the ultrasonic pulses. In the type anemometer, there is a heater installed at a position away from the wave transmitting/receiving element, and heat generated by the heater is conducted to the tip of the wave transmitting/receiving element to heat the tip of the wave transmitting/receiving element. An ultrasonic anemometer characterized by being equipped with a heat conductor.
JP1780685A 1985-01-30 1985-01-30 Ultrasonic type anemoscope/anemometer Granted JPS61175572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1780685A JPS61175572A (en) 1985-01-30 1985-01-30 Ultrasonic type anemoscope/anemometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1780685A JPS61175572A (en) 1985-01-30 1985-01-30 Ultrasonic type anemoscope/anemometer

Publications (2)

Publication Number Publication Date
JPS61175572A JPS61175572A (en) 1986-08-07
JPH039422B2 true JPH039422B2 (en) 1991-02-08

Family

ID=11953968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1780685A Granted JPS61175572A (en) 1985-01-30 1985-01-30 Ultrasonic type anemoscope/anemometer

Country Status (1)

Country Link
JP (1) JPS61175572A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5544905A (en) * 1978-09-26 1980-03-29 Toshiba Corp Method of cleaning immersion type detector
JPS5942699U (en) * 1982-09-10 1984-03-19 澤藤 正 piezoelectric earphones

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5544905A (en) * 1978-09-26 1980-03-29 Toshiba Corp Method of cleaning immersion type detector
JPS5942699U (en) * 1982-09-10 1984-03-19 澤藤 正 piezoelectric earphones

Also Published As

Publication number Publication date
JPS61175572A (en) 1986-08-07

Similar Documents

Publication Publication Date Title
EP0418224B1 (en) Transducer device operating with ultrasound for the measurement of the flow velocity of a fluid in a pipe
US4031756A (en) Ultrasonic air movement and temperature measuring apparatus
CA1093672A (en) Ultrasonic air data system
CA2246075A1 (en) Method and apparatus for measuring the thickness of a coated material
CN101750516A (en) Anemometer and method for measuring wind speed and wind direction
US4262545A (en) Acoustic fluid velocity measuring system
JPH01158375A (en) Method and apparatus for determining position and state of object on desired surface using ultrasonic wave
JP3923330B2 (en) Fluid temperature acoustic measurement arrangement and method
FI124644B (en) Method and apparatus for measuring bone density
Mitsuta Sonic anemometer-thermometer for atmospheric turbulence measurements
JPH039422B2 (en)
JP3469405B2 (en) Temperature measurement device
JPS63266377A (en) Acoustic wave surveying system
RU2208224C2 (en) Procedure measuring energy of optical and shf radiation
JPH0545979Y2 (en)
JPS6254112A (en) Thickness measuring method for scale in pipe
JPH08334321A (en) Ultrasonic distance-measuring apparatus
JPH07139982A (en) Ultrasonic flowmeter
JPH0336889Y2 (en)
JPS6145480Y2 (en)
JPH07311184A (en) Sensor and method for measuring ultrasonic propagation time
JPS60179621A (en) Ultrasonic temperature detector
SU571752A1 (en) Thermoanemometer
JPH05172793A (en) Sound characteristic value measuring device
JPS61175571A (en) Ultrasonic type anemoscope/anemometer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees