JPH0336889Y2 - - Google Patents

Info

Publication number
JPH0336889Y2
JPH0336889Y2 JP6437886U JP6437886U JPH0336889Y2 JP H0336889 Y2 JPH0336889 Y2 JP H0336889Y2 JP 6437886 U JP6437886 U JP 6437886U JP 6437886 U JP6437886 U JP 6437886U JP H0336889 Y2 JPH0336889 Y2 JP H0336889Y2
Authority
JP
Japan
Prior art keywords
ultrasonic
pulse
hot wire
circuit
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6437886U
Other languages
Japanese (ja)
Other versions
JPS62176726U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6437886U priority Critical patent/JPH0336889Y2/ja
Publication of JPS62176726U publication Critical patent/JPS62176726U/ja
Application granted granted Critical
Publication of JPH0336889Y2 publication Critical patent/JPH0336889Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は熱線式流速測定装置、少し詳しくは、
熱線式呼吸流速計のように流体の温度が刻々変化
する流体の流速を測定する場合、温度の変化を補
償して正確な流速測定を可能とした上記装置に関
する。
[Detailed description of the invention] (Industrial field of application) The invention is a hot wire flow rate measuring device.
The present invention relates to the above-mentioned device that compensates for temperature changes and enables accurate flow velocity measurement when measuring the flow velocity of a fluid whose temperature changes moment by moment, such as with a hot-wire respirocurrent meter.

(従来の技術) 熱線式流速測定装置は被測定流体の流路に熱線
を置いて流体によつて放熱した熱線の電気抵抗の
変化を検知して周知のキング(King)の式より
流速を求めるものである。即ち、熱線の出力電圧
Vと流速vとの関係は V2/R=(A+B√)(θ−θa) − 但し、θ…熱線温度、θa…流体温度、R…熱
線の動作抵抗、A,B…流体の性質により定まる
定数 今上記式に於て、v=0(m/s)の時の出力
電圧をV0とすると; V0 2/R=A(θ−θa) − (2)式より V2=V0 2+R・B(θ−θa)・√ √=V2−V0 2/R・B(θ−θa) − ∴v={V2−V0 2/R・B(θ−θa)}2 − (3)式より√とV2とは直線の関係となり、B
及びR,θは定数と考えられるから、式より
V0,V及びθaが判明すれば流速vを算出するこ
とが出来る。
(Prior art) A hot wire flow velocity measuring device places a hot wire in the flow path of the fluid to be measured, detects changes in the electrical resistance of the hot wire radiated by the fluid, and calculates the flow velocity using the well-known King equation. It is something. That is, the relationship between the output voltage V of the hot wire and the flow velocity v is V 2 /R=(A+B√)(θ−θa) − However, θ...hot wire temperature, θa...fluid temperature, R...operating resistance of the hot wire, A, B...Constant determined by the properties of the fluid In the above equation, if the output voltage when v = 0 (m/s) is V 0 ; V 0 2 /R = A (θ - θa) - (2) From the formula, V 2 = V 0 2 + R・B (θ−θa)・√ √=V 2 −V 0 2 /R・B (θ−θa) − ∴v={V 2 −V 0 2 /R・B (θ−θa)} 2 − From formula (3), there is a linear relationship between √ and V 2 , and B
Since and R and θ are considered constants, from Eq.
If V 0 , V and θa are known, the flow velocity v can be calculated.

(考案が解決しようとする問題点) 而して上式に於てはθaが刻々変化するような
流体の場合、次のような不都合を生ずる。例え
ば、呼吸流の流速測定の場合、呼気と吸気とに於
て相当の温度差がありその温度差のために測定流
速値には相応の測定誤差を生み出す。従つて、誤
差をなくすためには、流体の温度を刻々測定して
流速値を補正しなければならない。その手法とし
て温度センサーを流路の中に入れることも考えら
れるが、この方法だと流れが乱れて正確な流体の
移動が阻害されるのみならず空気流による温度セ
ンサーの熱平衡がくずれて指示が正確とならな
い。この点に着目して熱線と低抗線とを同時に補
正する方法が提案された(特開昭56−51618)が、
この提案によつても尚、流体の流れが阻害された
り、複雑な回路構成並びに計算が必要となる問題
点が残されている。
(Problem to be solved by the invention) However, in the above equation, in the case of a fluid where θa changes from moment to moment, the following problem occurs. For example, in the case of measuring the flow rate of respiratory flow, there is a considerable temperature difference between exhaled air and inhaled air, and this temperature difference causes a corresponding measurement error in the measured flow rate value. Therefore, in order to eliminate errors, it is necessary to measure the temperature of the fluid every moment and correct the flow velocity value. One way to do this is to insert a temperature sensor into the flow path, but this method not only disrupts the flow and prevents accurate fluid movement, but also disrupts the thermal equilibrium of the temperature sensor due to the airflow, making it difficult to read instructions. It won't be accurate. Focusing on this point, a method was proposed to correct the heat rays and the low drag rays at the same time (Japanese Patent Laid-Open No. 56-51618).
Even with this proposal, there still remain problems such as obstruction of fluid flow and the need for complicated circuit configurations and calculations.

本考案は上記に鑑みてなされたもので、流体温
度が熱線出力に及ぼす影響を補正するに当つて、
流速がリアルタイムで測定出来且つ非侵襲で流れ
を乱さない装置を提供することを目的としてい
る。
The present invention was developed in view of the above, and in correcting the influence of fluid temperature on hot wire output,
The purpose of this invention is to provide a device that can measure flow velocity in real time, is non-invasive, and does not disturb the flow.

(問題点を解決するための手段〕 上記目的を達成する構成を実施例対応図をもつ
て説明するに、図に於て、 第1図は本考案装置全体の関連を示すシステム
ブロツク図、第2図A,Bは超音波温度計測部
の2様の実施態様を示すブロツク図、第3図は超
音波受信センサを対向関係に配置した例の説明
図、第4図は定温度型熱線流速測定部のブロツク
図、第5図は演算装置に於ける動作を説明するブ
ロツク図である。図より本考案は、超音波温度計
測部、定温度型熱線流速測定部及び演算装置
とより成り、上記超音波温度計測部は超音波
送受信センサ1,2、超音波パルス送信回路3、
超音波パルス受信回路4及び超音波パルス伝幡時
間カウント手段5を含み、上記定温度型熱線流速
測定部は流速計測用の熱線6、ブリツヂ回路
7、熱線温度を一定にする制御回路8及び電流−
電圧変換器9を含み、上記演算装置は前記計測
部より出力される流体温度及び前記測定部よ
り出力される熱線の出力電圧を夫々に取り込んで
その温度下での流速を算出するようにした熱線式
流速測定装置に係わる。
(Means for Solving the Problems) The configuration for achieving the above object will be explained using diagrams corresponding to embodiments. Figures 2A and B are block diagrams showing two embodiments of the ultrasonic temperature measurement section, Figure 3 is an explanatory diagram of an example in which ultrasonic receiving sensors are arranged in a facing relationship, and Figure 4 is a constant temperature type hot wire flow velocity. Figure 5 is a block diagram of the measuring section, and is a block diagram explaining the operation of the arithmetic unit.As shown in the figure, the present invention consists of an ultrasonic temperature measuring section, a constant temperature type hot wire flow velocity measuring section, and an arithmetic device. The ultrasonic temperature measuring section includes ultrasonic transmitting/receiving sensors 1 and 2, an ultrasonic pulse transmitting circuit 3,
The constant temperature type hot wire flow velocity measuring section includes an ultrasonic pulse receiving circuit 4 and an ultrasonic pulse propagation time counting means 5, a hot wire 6 for flow velocity measurement, a bridge circuit 7, a control circuit 8 for keeping the hot wire temperature constant, and a current −
The hot wire includes a voltage converter 9, and the arithmetic unit takes in the fluid temperature outputted from the measuring section and the output voltage of the hot wire outputted from the measuring section, respectively, and calculates the flow velocity at that temperature. Related to type flow rate measuring device.

上記構成に於て、超音波温度計測部は流体の
温度を計測して式中のθaを求めるもの、定温
度型熱線流速測定部は流体の刻々変化する温度
に対応した熱線の出力電圧Vを求めるもの、演算
装置は上記θa及びVを入力して式に従つて
vを演算するもので実質的にはコンピユータの
CPU装置である。
In the above configuration, the ultrasonic temperature measuring section measures the temperature of the fluid to determine θa in the equation, and the constant temperature hot wire flow velocity measuring section measures the output voltage V of the hot wire corresponding to the ever-changing temperature of the fluid. The calculation device inputs the above θa and V and calculates v according to the formula, which is essentially a computer.
It is a CPU device.

以下に夫々を図に採つて更に詳細に説明する。
超音波温度計測部による流体の温度θaの測定
の原理は次の如くである。空気中の音速Cは温度
θa(℃)の関数として C20.067√273+ 331.6+0.61θa(m/s) ∴θa=C−331.6/0.61 − 式からCを測定すればθaが求められる。而
して音速Cを測定するに本考案では超音波パスル
の伝幡時間の測定より求めるようにしている。即
ち、超音波パスルの発信・受信間距離をLとし、
超音波パスルの距離をL間における伝幡時間をt
とすると、 C=L/t(m/s) − となる。従つて、伝幡時間tを測定すれば式に
より音速Cが求められる。
Each will be explained in more detail below with reference to figures.
The principle of measuring the fluid temperature θa by the ultrasonic temperature measuring section is as follows. The speed of sound C in air is a function of temperature θa (°C): C20.067√273+331.6+0.61θa (m/s) ∴θa=C-331.6/0.61 - θa can be found by measuring C from the formula. In the present invention, the sound velocity C is determined by measuring the propagation time of an ultrasonic pulse. That is, let L be the distance between transmitting and receiving ultrasonic pulses,
Let the distance of the ultrasonic pulse be the propagation time between L and t
Then, C=L/t(m/s) −. Therefore, by measuring the propagation time t, the speed of sound C can be determined by the formula.

そしてこの伝幡時間tの測定のために本考案で
は超音波伝幡時間カウント手段5を採択してい
る。該手段5の一つはクロツクパレスカウント方
式、別の一つは超音波パルスの繰返し周波数カウ
ント方式である。前方式を第2図Aについて説明
すると、同図のものはパルス反射型の例を示して
いるが、パルス繰返し周波数発信回路30により
トリガーされたパルス発信回路3から超音波発信
信号が超音波送信センサ1に送られ、このセンサ
1から発射された超音波パルスは流体管路10内
の流体fを横断して相手の管壁に衝突反射された
超音波受信センサ2によりキヤツチされてから超
音波パルス受信回路4にて受信され、更に増幅・
検波される。クロツクパレスは、クロツクパレス
発信器31よりカウンタ33のゲート32に送ら
れると共に前記パルス繰返し周波数発信回路30
のトリガパルスと同期してスタートパルスが送ら
れこのスタートパルスによつてゲート32はゲー
トオープンとなり、上記のクロツクパルスのゲー
トインを許容する。超音波パルスがパルス受信回
路4により受信(増幅・検波)されるとこの受信
パルスがストツプパルスとしてゲート32に入力
されゲートクローズとなす。従つて、超音波パル
スの発射から到着(受信)に至る時限、即ち伝幡
時間tはゲート32のオープンからクローズに至
る時限にカウンタ33に取り込まれたクロツクパ
レスの計数値によつて算出される。後者の方式は
第2図Bの如く、パルス発振回路3よりの発信信
号により送信センサ1から発射された超音波パル
スが前例と同様受信センサ2によりキヤツチされ
パルス受信回路4により受信(増幅・検波)され
これが整形回路34を経て波形整形され再びパル
ス発振回路3を経て閉ループ回路を循環しパルス
繰返し周波数を形成する。従つて、パルス繰返し
周波数カウンタ35をもつて超音波パルスの伝幡
時間tを算出することが出来る。
In order to measure this propagation time t, the present invention employs ultrasonic propagation time counting means 5. One of the means 5 is a clock pulse counting method, and the other is a repeating frequency counting method of ultrasonic pulses. The previous method will be explained with reference to FIG. 2A. The figure shows an example of a pulse reflection type, and an ultrasonic transmission signal is transmitted from the pulse transmission circuit 3 triggered by the pulse repetition frequency transmission circuit 30. The ultrasonic pulses sent to the sensor 1 and emitted from the sensor 1 cross the fluid f in the fluid pipe 10, collide with the other pipe wall, and are reflected by the ultrasonic receiving sensor 2, where they are caught and then converted into ultrasonic waves. It is received by the pulse receiving circuit 4, and further amplified and
Detected. The clock pulse is sent from the clock pulse oscillator 31 to the gate 32 of the counter 33 and also to the pulse repetition frequency oscillator 30.
A start pulse is sent in synchronization with the trigger pulse, and the gate 32 is opened by this start pulse, allowing gate-in of the above-mentioned clock pulse. When the ultrasonic pulse is received (amplified and detected) by the pulse receiving circuit 4, this received pulse is inputted to the gate 32 as a stop pulse to close the gate. Therefore, the time period from emission to arrival (reception) of the ultrasonic pulse, that is, the propagation time t, is calculated by the count value of the clock pulse taken into the counter 33 during the time period from opening to closing of the gate 32. In the latter method, as shown in Fig. 2B, ultrasonic pulses are emitted from the transmitter sensor 1 in response to a signal from the pulse oscillation circuit 3, are caught by the receiver sensor 2 as in the previous example, and are received (amplified and detected) by the pulse receiver circuit 4. ), which passes through the shaping circuit 34 to be shaped into a waveform, passes through the pulse oscillation circuit 3 again, and circulates through the closed loop circuit to form a pulse repetition frequency. Therefore, the propagation time t of the ultrasonic pulse can be calculated using the pulse repetition frequency counter 35.

超音波温度計測部はこのようにして超音波パ
ルスの伝幡時間tから流体の温度θaを求めるも
のである。次に、定温度型熱線式流速測定部は
熱線流速装置に於て、流体によつて熱線の放熱量
が変化する場合熱線の温度を常に一定に保つよう
にすると、流速或は流速変動により熱線に流れる
電流が変化する。この電流を流速信号として検出
するものである。具体的には第4図の如く熱線6
に抵抗ブリツヂ回路7を接続し、熱線6の電流を
電流増幅器60にて取り出し、検知増幅電流に対
応した電流を制御回路8より熱線6に送つて常時
一定の発熱温度を維持する。一方、検知増幅電流
を電流−電圧変換器9により電圧Vとして取り出
し、演算装置に入力し式による演算を行なわ
しめる。
In this manner, the ultrasonic temperature measuring section determines the temperature θa of the fluid from the propagation time t of the ultrasonic pulse. Next, the constant temperature type hot wire flow velocity measuring section is used in a hot wire flow velocity device to maintain the temperature of the hot wire at a constant value when the heat radiation amount of the hot wire changes depending on the fluid. The current flowing through changes. This current is detected as a flow velocity signal. Specifically, as shown in Figure 4, the hot wire 6
A resistor bridge circuit 7 is connected to the hot wire 6, the current of the hot wire 6 is taken out by a current amplifier 60, and a current corresponding to the detection amplification current is sent to the hot wire 6 from a control circuit 8 to maintain a constant heat generation temperature. On the other hand, the detected amplified current is taken out as a voltage V by the current-voltage converter 9, and is input to an arithmetic unit to perform calculations according to the formula.

演算装置の動作は第5図のブロツク図に一例
を示す如くであり、第1図のシステムブロツク図
と照合する時、その動作要領は容易に理解され得
るであろう。なお、流速測定部よりVを取り込
む時Vとvとは式より4乗の関数関係となる
為、信号処理上、Vを一旦直線化器(不図示)を
経て入力するか入力した后に直線化するかいづれ
かを採択するのがよい。また、よく行なわれるよ
うにV信号中のノイズを除去するためのフイルタ
(不図示)も望ましく採択される。演算装置に
付帯して記憶装置、表示装置を併用することは通
常のマイコン技術のそれと同様である。
An example of the operation of the arithmetic unit is shown in the block diagram of FIG. 5, and when compared with the system block diagram of FIG. 1, the operation principle can be easily understood. When taking in V from the flow rate measuring section, V and v have a 4th power functional relationship according to the equation, so in signal processing, V must first be input through a linearizer (not shown) or converted into a straight line after being input. It is better to adopt one of the following. A filter (not shown) for removing noise in the V signal is also preferably employed, as is often done. The use of a storage device and a display device in conjunction with an arithmetic unit is similar to that of ordinary microcomputer technology.

(作用) 本考案装置は以上の如く、超音波温度計測部
に於て、超音波パルスの流体管路10の管壁間の
超音波パルスの伝幡時間tより流体fの温度θa
を求めると共に定温度型熱線流速測定部に於て
上記温度θa下に於ける熱線の出力電圧Vを求め、
温度θa及び出力電圧Vを演算装置に入力して
キングの公式よりその時の流速vを時々刻々と求
めることにより、温度変動による流速vの誤差を
リアルタイムで補償し得るものである。
(Function) As described above, the device of the present invention determines the temperature θa of the fluid f from the propagation time t of the ultrasonic pulse between the tube walls of the fluid conduit 10 in the ultrasonic temperature measurement section.
At the same time, find the output voltage V of the hot wire under the above temperature θa in the constant temperature hot wire flow velocity measuring section,
By inputting the temperature θa and the output voltage V into an arithmetic unit and determining the current flow velocity v from time to time using King's formula, it is possible to compensate for errors in the flow velocity v due to temperature fluctuations in real time.

(実施例) 超音波温度計測部に於ける超音波パルスの発
信・受信を記述説明の発射型に代つて対向型とす
ることが出来る。第3図は対向型の一例で送信セ
ンサ1と受信センサ2とが一直線上に対置した場
合を示す。超音波パルス伝幡時間カウント手段5
の応答性を考慮する時、パルス伝幡時間tが長い
方が望ましいのでこの点反射型が良いが応答性の
速い場合は対向型のものを用いることも出来る。
後者の型に於て超音波パルスは流体fに対して直
交関係となるようにすることが、該パルスの流速
による影響を少なくする意味で望ましくまた流体
を層流とするために管路10に垂直に金網11を
設けることが好ましい。また、前者の反射型、後
者の対向型共に超音波パルスの発信・受信を1つ
のセンサで行うこともできる(不図示)。これに
は周知の1体型センサを使用すればよい。また既
に述べたように直線化器及びフイルタを演算装置
側に不備させることに代つて、これを第4図の
電流−電圧変換器9に後接続することも可能であ
る。
(Embodiment) The transmission and reception of ultrasonic pulses in the ultrasonic temperature measurement unit can be of a facing type instead of the emission type described in the description. FIG. 3 shows an example of the facing type, in which the transmitting sensor 1 and the receiving sensor 2 are placed opposite each other in a straight line. Ultrasonic pulse propagation time counting means 5
When considering the responsiveness, it is desirable that the pulse propagation time t be long, so a reflective type is preferable in this respect, but if the responsiveness is fast, a facing type can also be used.
In the latter type, it is desirable to make the ultrasonic pulse orthogonal to the fluid f in order to reduce the influence of the flow velocity of the pulse, and to make the fluid a laminar flow, it is desirable to make the ultrasonic pulse orthogonal to the fluid f. It is preferable to provide the wire mesh 11 vertically. Furthermore, both the former reflective type and the latter opposing type can transmit and receive ultrasonic pulses with a single sensor (not shown). A well-known one-piece sensor may be used for this purpose. Furthermore, instead of providing the linearizer and filter on the arithmetic unit side as described above, it is also possible to connect them later to the current-voltage converter 9 shown in FIG.

(考案の効果) 本考案は以上説明した所から明らかなように、
流体管路内に温度センサの如き侵襲物をのぞませ
ることなく、超音波温度計測部に於て超音波パ
ルスを流体管路の管壁より発射させて、その伝幡
速度より流体の温度θaを求めると共に、定温度
型熱線流速測定部によつて温度θaの時の熱線の
出力電圧Vを求め、これらを演算装置に入力して
流体の各温度に対応した流速vを算出するもので
あるから、流体温度が熱線出力に及ぼす影響を補
正するに当つて、流速がリアルタイムで測定可能
となること並びに非侵襲で流れを乱さないことの
利益を生み出すもので、呼吸流のように流体の温
度が刻々変化する場合の流速測定に頗る有意義で
ある。
(Effects of the invention) As is clear from the above explanation, the invention has the following effects:
Without introducing an invasive object such as a temperature sensor into the fluid pipe, the ultrasonic temperature measuring unit emits ultrasonic pulses from the wall of the fluid pipe, and determines the fluid temperature θa from the propagation speed. At the same time, the output voltage V of the hot wire at the temperature θa is determined by a constant temperature type hot wire flow velocity measurement unit, and these are input to a calculation device to calculate the flow velocity v corresponding to each temperature of the fluid. Therefore, in compensating for the influence of fluid temperature on the thermal output, it has the advantage of being able to measure the flow velocity in real time and non-invasively without disturbing the flow. This is particularly useful for measuring flow velocity when the flow rate changes from moment to moment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案装置全体の関連を示すシステム
ブロツク図、第2図A,Bは超音波温度計測部
の2様の実施態様を示すブロツク図、第3図は超
音波受信センサを対向関係に配置した例の説明
図、第4図は定温度型熱線流速測定部のブロツク
図、第5図は演算装置に於ける動作を説明するブ
ロツク図である。 符号の説明、……超音波温度計測部、……
定温度型熱線流速測定部、……演算装置、1,
2……は超音波送受信センサ、3……超音波パル
ス送信回路、4……超音波パルス受信回路、5…
…超音波パルス伝幡カウント手段、6……流速計
測用の熱線、7……ブリツヂ回路、8……制御回
路、9……電流−電圧変換器。
Fig. 1 is a system block diagram showing the relationship of the entire device of the present invention, Fig. 2 A and B are block diagrams showing two embodiments of the ultrasonic temperature measuring section, and Fig. 3 shows the ultrasonic receiving sensor in a facing relationship. FIG. 4 is a block diagram of a constant-temperature type hot wire flow velocity measurement section, and FIG. 5 is a block diagram illustrating the operation of the arithmetic unit. Explanation of symbols, ... Ultrasonic temperature measurement section, ...
Constant temperature type hot wire flow velocity measurement unit, ... calculation device, 1,
2... is an ultrasonic transmitting/receiving sensor, 3... is an ultrasonic pulse transmitting circuit, 4... is an ultrasonic pulse receiving circuit, 5... is
...Ultrasonic pulse propagation counting means, 6... Hot wire for measuring flow velocity, 7... Bridge circuit, 8... Control circuit, 9... Current-voltage converter.

Claims (1)

【実用新案登録請求の範囲】 1 超音波温度計測部、定温度型熱線流速測定
部及び演算装置とより成り、上記超音波温
度計測部は超音波送受信センサ1,2、超音
波パルス送信回路3、超音波パルス受信回路4
及び超音波パルス伝幡時間カウント手段5を含
み、上記定温度型熱線流速測定部は流速計測
用の熱線6、ブリツヂ回路7、熱線温度を一定
にする制御回路8及び電流−電圧変換器9を含
み、上記演算装置は前記計測部より出力さ
れる流体の温度及び前記測定部より出力され
る熱線の出力電圧を夫々取り込んでその温度下
での流速を算出するようにした熱線式流速測定
装置。 2 超音波送受信センサ1,2が流体管路10の
片側の管壁に隔置され送信センサ1より発射さ
れた超音波パルスが流体fを横切つて相手の管
壁より反射され受信センサ2によつて受信さ
れ、この発射と受信との時限を超音波パルスの
伝幡時間とする実用新案登録請求の範囲第1項
記載の装置。 3 超音波送受信センサ1,2が流体管路10の
互いに対向する管壁に取着され送信センサ1よ
り発射された超音波パルスが流体fをほゞ直角
に横切つて受信センサ2により受信され、この
発射と受信との時限を超音波パルスの伝幡時間
とする実用新案登録請求の範囲第1項記載の装
置。 4 超音波パルスの伝幡時間カウント手段5がク
ロツク発振器31及びカウンタ33を含み、超
音波発信回路3より発射された超音波パルスが
超音波受信回路4に到着する時限内上記カウン
タ33のゲート32をオープンにしこの間に上
記クロツク発振器31より該ゲート32内に取
り込まれたクロツクパレスの数を求めることに
より上記超音波パルスの伝幡時間を求めるよう
にした実用新案登録請求の範囲第2項もしくは
第3項記載の装置。 5 超音波パルスの伝幡時間カウント手段5が超
音波パルス発信回路3と超音波受信回路4との
間に直列設された整形回路34並びに該受信回
路4に並列設されたパルス周波数カウンタ35
を含み、該受信回路4よりパルス繰返し周波数
を上記カウンタ35によりカウントしてそれよ
り超音波パルスの伝幡時間を求めるようにした
実用新案登録請求の範囲第2項もしくは第3項
記載の装置。 6 超音波送受信センサ1,2が送信と受信とを
1個のセンサで行うものである実用新案登録請
求の範囲第1項記載の装置。
[Scope of Claim for Utility Model Registration] 1. Consists of an ultrasonic temperature measurement section, a constant temperature type hot wire current velocity measurement section, and an arithmetic device, and the ultrasonic temperature measurement section includes ultrasonic transmission/reception sensors 1 and 2, and an ultrasonic pulse transmission circuit 3. , ultrasonic pulse receiving circuit 4
and an ultrasonic pulse propagation time counting means 5, and the constant temperature type hot wire flow velocity measuring section includes a hot wire 6 for measuring flow velocity, a bridge circuit 7, a control circuit 8 for keeping the hot wire temperature constant, and a current-voltage converter 9. A hot wire flow velocity measuring device, wherein the arithmetic unit takes in the temperature of the fluid output from the measuring section and the output voltage of the hot wire output from the measuring section, respectively, and calculates the flow velocity under the temperature. 2 Ultrasonic transmitting/receiving sensors 1 and 2 are spaced apart on one side wall of the fluid pipe 10, and the ultrasonic pulse emitted from the transmitting sensor 1 crosses the fluid f and is reflected from the other pipe wall and reaches the receiving sensor 2. 2. The apparatus according to claim 1, wherein the ultrasonic pulse is transmitted and received, and the time limit between emission and reception is the propagation time of the ultrasonic pulse. 3 Ultrasonic transmitting/receiving sensors 1 and 2 are attached to mutually opposing pipe walls of the fluid conduit 10, and ultrasonic pulses emitted from the transmitting sensor 1 cross the fluid f at approximately right angles and are received by the receiving sensor 2. , the device according to claim 1, wherein the time limit between emission and reception is the propagation time of the ultrasonic pulse. 4. The ultrasonic pulse propagation time counting means 5 includes a clock oscillator 31 and a counter 33, and the gate 32 of the counter 33 is within the time limit in which the ultrasonic pulse emitted from the ultrasonic transmitting circuit 3 arrives at the ultrasonic receiving circuit 4. The propagation time of the ultrasonic pulse is determined by determining the number of clock pulses input into the gate 32 from the clock oscillator 31 during this period when the clock pulse is opened. Apparatus described in section. 5. The ultrasonic pulse propagation time counting means 5 includes a shaping circuit 34 installed in series between the ultrasonic pulse transmitting circuit 3 and the ultrasonic receiving circuit 4, and a pulse frequency counter 35 installed in parallel with the receiving circuit 4.
The apparatus according to claim 2 or 3, wherein the pulse repetition frequency from the receiving circuit 4 is counted by the counter 35 and the propagation time of the ultrasonic pulse is determined from the pulse repetition frequency. 6. The device according to claim 1, wherein the ultrasonic transmitting/receiving sensors 1 and 2 perform transmission and reception with one sensor.
JP6437886U 1986-04-28 1986-04-28 Expired JPH0336889Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6437886U JPH0336889Y2 (en) 1986-04-28 1986-04-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6437886U JPH0336889Y2 (en) 1986-04-28 1986-04-28

Publications (2)

Publication Number Publication Date
JPS62176726U JPS62176726U (en) 1987-11-10
JPH0336889Y2 true JPH0336889Y2 (en) 1991-08-05

Family

ID=30900478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6437886U Expired JPH0336889Y2 (en) 1986-04-28 1986-04-28

Country Status (1)

Country Link
JP (1) JPH0336889Y2 (en)

Also Published As

Publication number Publication date
JPS62176726U (en) 1987-11-10

Similar Documents

Publication Publication Date Title
EP0100584B1 (en) Ultrasonic flowmeter
US4425805A (en) Respiration flowmeter
CA1331052C (en) Speed measurement device
US7124621B2 (en) Acoustic flowmeter calibration method
JPS5948327B2 (en) Flowmeter
US7934432B2 (en) Method for measuring the run time of an ultrasonic pulse in the determination of the flow velocity of a gas in a breathing gas volume flow sensor
WO1988008516A1 (en) Ultrasonic fluid flowmeter
US5583301A (en) Ultrasound air velocity detector for HVAC ducts and method therefor
JP3923330B2 (en) Fluid temperature acoustic measurement arrangement and method
US6098467A (en) Acoustic flow meter wherein false readings are identified dependent on upstream and downstream acoustic transit times
JP2003247985A (en) Acoustic gas meter
JPH0336889Y2 (en)
BRPI0615188B1 (en) METHOD, SYSTEM, AND, ULTRASONIC FLOWMETER
JP3117372B2 (en) Ultrasonic distance measuring device
JP4234838B2 (en) Ultrasonic flow meter
JPH02112741A (en) Acoustic type fluid temperature measuring method
McCartney et al. A corrected ray theory for acoustic velocimetry
JPS6254112A (en) Thickness measuring method for scale in pipe
JP2009058444A (en) Flowmeter for artificial respirator
JPS5897633A (en) Temperature measurement system
JPH0791996A (en) Ultrasonic flowmeter
JP3672997B2 (en) Correlation flowmeter and vortex flowmeter
JP3528436B2 (en) Ultrasonic flow meter and current meter
JPS607209B2 (en) How to measure flow rate using ultrasonic waves
JPH04328423A (en) Ultrasonic wave gas flowmeter