JPH0394134A - Intake pressure detecting device for internal combustion engine - Google Patents

Intake pressure detecting device for internal combustion engine

Info

Publication number
JPH0394134A
JPH0394134A JP23034589A JP23034589A JPH0394134A JP H0394134 A JPH0394134 A JP H0394134A JP 23034589 A JP23034589 A JP 23034589A JP 23034589 A JP23034589 A JP 23034589A JP H0394134 A JPH0394134 A JP H0394134A
Authority
JP
Japan
Prior art keywords
intake pressure
intake
detection
piping
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23034589A
Other languages
Japanese (ja)
Inventor
Shinpei Nakaniwa
伸平 中庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP23034589A priority Critical patent/JPH0394134A/en
Publication of JPH0394134A publication Critical patent/JPH0394134A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To suppress the detection response delay by predicting and setting the variation quantity of intake pressure in the pressure propagation time corresponding to length of a piping, in the case on intake pressure sensor is connected to an intake passage through the piping, and correcting a detection value of the intake pressure. CONSTITUTION:In the case an intake pressure sensor 9 is allowed to communicate and connected to an intake passage through a piping 9a, the variation quantity of intake pressure in the propagation time of pressure corresponding to length of the piping 9a for allowing the sensor 9 and an intake manihold 5 to communicate and connecting them is predicted and set in a control unit 11. Also, by correcting a detection value of the intake pressure, based on this detection delay prediction quantity, the generation of a detection response delay of the sensor 9 can be suppressed even if the piping 9a becomes long and the propagation time of the pressure becomes long.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は内燃機関の吸気圧力検出装置に関し、詳しくは
、内燃機関の吸気通路と吸気圧カセンサとを連通接続す
る配管の長さによる応答遅れを補正し得る装置に関する
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an intake pressure detection device for an internal combustion engine, and more specifically, a response delay due to the length of piping that communicates and connects an intake passage of an internal combustion engine with an intake pressure sensor. The present invention relates to a device capable of correcting.

く従来の技術〉 内燃機関の電子制御装置として、吸気圧力PBを検出す
るセンサを備え、この吸気圧カセンサで検出した吸気圧
力PBと、クランク角センサ等から検出した機関回転速
度とに基づいて基本燃料供給量を設定して機関への燃料
供給を制御する装置が、一般にDジェトロ方式と呼ばれ
て広く知られている(特開昭58−150040号公報
等参照)。
Conventional technology> An electronic control device for an internal combustion engine is equipped with a sensor that detects the intake pressure PB, and based on the intake pressure PB detected by the intake pressure sensor and the engine rotation speed detected by a crank angle sensor, etc. A device that controls the fuel supply to an engine by setting the fuel supply amount is generally known as the D-JETRO system (see Japanese Patent Laid-Open No. 58-150040, etc.).

く発明が解決しようとする課題〉 ところで、上記のように吸気圧カセンサを設ける場合、
車室内等に設置されるコントロールユニットを構或する
基板上に前記吸気圧カセンサを一体に備え、内燃機関の
吸気マニホールドから配管を延設させて前記コントロー
ルユニット上のセンサまで吸気圧力を導くように構成し
、センサの設置及び配線の簡略化を図る場合がある。こ
の場合、吸気圧力は略音速で前記配管を伝播してセンサ
で検出されるため、配管の長さが短い場合には応答遅れ
が無視できる程度で特に対策を必要としないが、上記の
ように車室内まで配管を延設させるとなると、その長さ
が例えば2〜4mにも達し、かかる配管長さによる伝播
時間がセンサの検出応答性を損なう原因となることがあ
った。
Problems to be Solved by the Invention> By the way, when providing the intake pressure sensor as described above,
The intake pressure sensor is integrally provided on a board constituting a control unit installed in a vehicle interior, etc., and piping is extended from the intake manifold of the internal combustion engine to guide the intake pressure to the sensor on the control unit. In some cases, the sensor may be configured to simplify sensor installation and wiring. In this case, the intake pressure propagates through the piping at approximately the speed of sound and is detected by the sensor, so if the piping is short, the response delay is negligible and no special measures are required. When the piping is extended into the vehicle interior, the length thereof reaches, for example, 2 to 4 m, and the propagation time due to the length of the piping may impair the detection response of the sensor.

前記伝播時間は、音速を略340m/sとすると、とな
るから、例えば配管長さlが2mのときには5.9ms
の伝播時間を要し、また、配管長さ2が3.4mのとき
には10msの伝播時間を要することになり、第6図に
示すように配管が長くなると吸気圧力の変化時にそれだ
け応答遅れが大きくなり、配管長さlを長く設定した場
合には何らかの応答遅れ対策を施すことが過渡検出性能
を確保する上から必要となっていた。
The propagation time is 5.9 ms when the speed of sound is approximately 340 m/s, so for example, when the pipe length l is 2 m.
Furthermore, when the pipe length 2 is 3.4 m, a propagation time of 10 ms is required.As shown in Figure 6, the longer the pipe, the greater the response delay when the intake pressure changes. Therefore, when the piping length l is set long, it is necessary to take some measure against response delay in order to ensure transient detection performance.

本発明は上記問題点に鑑みなされたものであり、吸気圧
力を検出するセンサが比較的長い配管によって吸気通路
と連通される場合に、前記配管内の伝播時間による応答
遅れを補償することができる検出装置を提供することを
目的とする。
The present invention has been made in view of the above problems, and when a sensor for detecting intake pressure is communicated with an intake passage through a relatively long pipe, it is possible to compensate for the response delay due to the propagation time in the pipe. The purpose is to provide a detection device.

〈課題を解決するための手段〉 そのため本発明では、第1図に示すように、吸気絞り弁
下流側の吸気通路と配管を介して連通接続され機関の吸
気圧力に対応する検出信号を出力する吸気圧力検出手段
と、この吸気圧力検出手段から出力される検出信号の所
定単位時間における変化割合を演算する変化割合演算手
段と、前記配管の長さによって定まる圧力伝播時間と前
記変化割合とに基づいて検出遅れ誤差量を予測設定する
検出遅れ誤差量設定手段と、この検出遅れ誤差量設定手
段で予測設定された検出遅れ誤差量に基づいて前記吸気
圧力検出手段による検出信号を補正し、該補正結果を最
終検出値とする遅れ補正手段と、を含んで内!A機関の
吸気圧力検出装置を構或するようにした。
<Means for Solving the Problems> Therefore, in the present invention, as shown in FIG. 1, the intake throttle valve is connected to the intake passage downstream of the intake throttle valve via piping and outputs a detection signal corresponding to the intake pressure of the engine. an intake pressure detection means, a change rate calculation means for calculating a change rate in a predetermined unit time of a detection signal output from the intake pressure detection means, and a pressure propagation time determined by the length of the piping and the change rate based on the change rate. a detection delay error amount setting means for predicting and setting a detection delay error amount, and correcting the detection signal by the intake pressure detection means based on the detection delay error amount predicted and set by the detection delay error amount setting means; Including a delay correction means that uses the result as the final detected value! The intake pressure detection device for engine A was constructed.

〈作用〉 かかる構或において、吸気圧力検出手段は、配管を介し
て吸気絞り弁下流側の吸気通路と連通接続され機関の吸
気圧力に対応する検出信号を出力する。そして、変化割
合演算手段は、前記検出信号の所定単位時間における変
化割合を演算し、検出遅れ誤差量設定手段は、前記変化
割合と前記配管の長さによって定まる圧力伝播時間とに
基づいて、前記配管内の伝播によって検出が遅れる変化
分に相当する検出遅れ誤差量を予測設定する。
<Operation> In this structure, the intake pressure detection means is connected to the intake passage on the downstream side of the intake throttle valve via piping, and outputs a detection signal corresponding to the intake pressure of the engine. The change rate calculation means calculates the change rate of the detection signal in a predetermined unit time, and the detection delay error amount setting means calculates the change rate of the detection signal based on the change rate and the pressure propagation time determined by the length of the piping. A detection delay error amount corresponding to a change in detection delay due to propagation in the piping is predicted and set.

遅れ補正手段は、前記検出遅れ誤差量に基づいて吸気圧
力検出手段による検出信号を補正して、その補正結果を
最終検出植とする。
The delay correction means corrects the detection signal by the intake pressure detection means based on the detection delay error amount, and uses the correction result as the final detection signal.

〈実施例〉 以下に本発明の実施例を説明する。<Example> Examples of the present invention will be described below.

一実施例のシステム構成を示す第2図において、内燃機
関1には、エアクリーナ2,吸気ダク1・3,スロット
ルチャンバ4及び吸気マニホールド5を介して空気が吸
入される。エアクリーナ2には、吸気(大気)温度TA
(”C)を検出する吸気温度センサ6が設けられている
。スロットルチャンバ4には、図示しないアクセルペダ
ルと連動してスロットルチャンバ4の開口面積を可変制
御するスロットル弁(吸気絞り弁)7が設けられていて
、吸入空気流量Qを制御する。
In FIG. 2 showing the system configuration of one embodiment, air is taken into an internal combustion engine 1 via an air cleaner 2, intake ducts 1 and 3, a throttle chamber 4, and an intake manifold 5. The air cleaner 2 has an intake air (atmospheric) temperature TA.
An intake air temperature sensor 6 is provided to detect ("C).The throttle chamber 4 includes a throttle valve (intake throttle valve) 7 that variably controls the opening area of the throttle chamber 4 in conjunction with an accelerator pedal (not shown). is provided to control the intake air flow rate Q.

前記スロットル弁7には、その間度TVOを検出するポ
テンショメー夕と共に、その全閉位置(アイドル位置)
でONとなるアイドルスイ・ノチ8Aを含むスロットル
センサ8が付設されている。
The throttle valve 7 has a potentiometer for detecting the TVO and a fully closed position (idle position).
A throttle sensor 8 including an idle switch 8A that is turned ON is attached.

スロットル弁7下流の吸気マニホールド5には、吸気圧
力PBを検出する吸気圧力検出手段としての吸気圧カセ
ンサ9が配管9aを介して連通接続されて設けられると
共に、各気筒毎に電磁式の燃料噴射弁10が設けられて
いる。
The intake manifold 5 downstream of the throttle valve 7 is provided with an intake pressure sensor 9, which serves as an intake pressure detection means for detecting the intake pressure PB, and is connected to the intake manifold 5 through a pipe 9a. A valve 10 is provided.

前記燃料噴射弁10は、後述するマイクロコンピュータ
を内蔵したコントロールユニッ目1から機関回転に同期
したタイミングで出力される駆動パルス信号によって開
弁駆動し、図示しない燃料ポンプから圧送されプレッシ
ャレギーレークにより所定圧力に制御された燃料を吸気
マニホールド5内に噴射供給する。即ち、燃料噴射弁1
0による燃料供給量は、燃料噴射弁10の開弁駆動時間
で制御されるようになっている。
The fuel injection valve 10 is driven to open by a drive pulse signal output from a control unit 1 having a built-in microcomputer, which will be described later, in synchronization with engine rotation, and is fed under pressure from a fuel pump (not shown) to a predetermined level by a pressure leg rake. Pressure-controlled fuel is injected and supplied into the intake manifold 5. That is, fuel injection valve 1
The amount of fuel supplied at 0 is controlled by the valve opening driving time of the fuel injection valve 10.

更に、機関1の冷却ジャケット内の冷却水温度Twを検
出ずる水温センサ12が設けられると共に、排気通路1
3内で排気中の酸素濃度を検出することによって吸入混
合気の空燃比を検出ずる酸素センサ14が設けられてい
る。
Furthermore, a water temperature sensor 12 is provided to detect the cooling water temperature Tw in the cooling jacket of the engine 1, and the exhaust passage 1
An oxygen sensor 14 is provided within the engine 3 to detect the air-fuel ratio of the intake air-fuel mixture by detecting the oxygen concentration in the exhaust gas.

コントロールユニット11は、クランク角センサ15か
ら出力される1゜毎又は2゜毎のクランク単位角度信号
POSを一定時間カウントして、又は、所定クランク角
位置毎に出力されるクランク基準角度信号REF(4気
筒の場合180゜毎)の周1リ1を計測して機関回転速
度Nを検出する。
The control unit 11 counts the crank unit angle signal POS every 1° or every 2° outputted from the crank angle sensor 15 for a certain period of time, or the crank reference angle signal REF( In the case of a four-cylinder engine, the engine rotational speed N is detected by measuring one circumference (every 180 degrees).

コントロールユニット11ば、前記吸気圧カセンサ9に
よって検出される吸気圧力PBに基づいて基本燃料噴射
量TpPBを演算すると共に、この基本燃料噴射量Tp
PBに機関運転状態に応じた各種補正を施して最終的な
燃料噴射量Tiを演算し、この燃料噴射量Tiに基づい
て燃料噴射弁10を開駆動制御する。
The control unit 11 calculates the basic fuel injection amount TpPB based on the intake pressure PB detected by the intake pressure sensor 9, and also calculates the basic fuel injection amount TpPB.
The final fuel injection amount Ti is calculated by applying various corrections to PB according to the engine operating state, and the fuel injection valve 10 is controlled to open based on this fuel injection amount Ti.

ここで、前記コンl・ロールユニット11によって行わ
れる吸気圧力PBのサンプリング処理及び燃料噴射量T
iの演算設定を、第3図〜第5図のフローチャ−1・に
示すプログラムに従って説明する。
Here, the sampling process of the intake pressure PB and the fuel injection amount T performed by the control unit 11 and the fuel injection amount T
The calculation settings for i will be explained according to the program shown in flowchart 1 of FIGS. 3 to 5.

尚、本実施例において、変化割合演算手段,検出遅れ誤
差量設定手段,遅れ補正手段としての機能は、前記第3
図〜第5図のフローチャートに示すようにソフトウェア
的に備えられている。
In this embodiment, the functions of the change rate calculation means, the detection delay error amount setting means, and the delay correction means are performed by the third
The software is provided as shown in the flowcharts of FIGS.

第3図のフローヂャーl・に示すプログラムは、4ms
毎に実行されるものであり、まず、ステップ1(図中で
はS1としてある。以下同様)では、吸気圧カセンサ9
から吸気圧力PBに対応して出力される検出信号(セン
サ出力)に基づいて吸気圧力PBをマップ変換によって
求める。
The program shown in flowchart 1 in Figure 3 is 4ms.
First, in step 1 (indicated as S1 in the figure, the same applies hereinafter), the intake pressure sensor 9
The intake pressure PB is determined by map conversion based on the detection signal (sensor output) output corresponding to the intake pressure PB.

そして、次のステップ2では、今回ステップ1で求めら
れた吸気圧力PBと、前回実行時にやはりステップ1で
求められた吸気圧力PBとの偏差を演算し、この偏差を
本プログラム実行周期である4ms当たり(単位時間当
たり)の変化割合ΔPBにセットする。
Then, in the next step 2, the deviation between the intake pressure PB obtained in step 1 this time and the intake pressure PB also obtained in step 1 during the previous execution is calculated, and this deviation is calculated for 4 ms, which is the execution cycle of this program. Set the change rate ΔPB of the hit (per unit time).

次のステップ3では、以下の式に従って検出遅れ誤差量
に相当する補正値PBhosを演算する。
In the next step 3, a correction value PBhos corresponding to the detection delay error amount is calculated according to the following equation.

ここで、伝播時間は、略音速で伝播する圧力が吸気圧カ
センサ9と吸気マニホールド5とを連通接続する配管9
a内を伝播する時間であり、配管9aの長さlを音速(
ξ340m/s)で除算することで求められる。
Here, the propagation time is defined as the pressure propagating at approximately the speed of sound in the piping 9 that communicates and connects the intake pressure sensor 9 and the intake manifold 5.
It is the time for propagation in a, and the length l of the pipe 9a is the speed of sound (
ξ340m/s).

上記式で演算される補正値PBhosにおいて、ΔPB
/4msでlms当たりの吸気圧力PBの変化割合が求
められるから、これに前記伝播時間を乗算すれば、伝播
時間、換言すれば、配管9aの長さに応じた応答遅れ時
間における吸気圧力PBの変化量が求められるものであ
り、最新の変化割合ΔPBから伝播時間における変化量
を予測設定し、この変化量が吸気マニホールド5におけ
る最新の吸気圧力PBに対する吸気圧カセンサ9の検出
遅れ誤差に相当するものであると推定する。
In the correction value PBhos calculated by the above formula, ΔPB
Since the rate of change of the intake pressure PB per lms is calculated by /4ms, by multiplying this by the propagation time, the propagation time, in other words, the change rate of the intake pressure PB during the response delay time corresponding to the length of the pipe 9a is calculated. The amount of change is calculated, and the amount of change in the propagation time is predicted and set from the latest change rate ΔPB, and this amount of change corresponds to the detection delay error of the intake pressure sensor 9 with respect to the latest intake pressure PB in the intake manifold 5. presume that it is a thing.

そして、次のステップ4では、今回ステップ1で求めた
吸気圧力PBに前記ステップ3で求めた補正値PBho
sを換算して補正し、最終的な吸気圧力PBsを設定す
る。
In the next step 4, the correction value PBho obtained in step 3 is added to the intake pressure PB obtained in step 1.
s is converted and corrected, and the final intake pressure PBs is set.

このように、吸気圧カセンサ9と吸気マニホールド5と
を連通接続する配管9aの長さに応じた伝播時間におけ
る吸気圧力PBの変化量を予測設定し、この検出遅れ予
測量に基づいて吸気圧力PBの検出値を補正するように
すれば、例えば吸気圧カセンサ9aを車室内に設置する
などして前記配管9aが長くなり伝播時間が長くなって
も、かかる伝播時間による応答遅れ分を補償して、過渡
運転時の検出応答性を確保することができ、引いては、
吸気圧力PBに基づく燃料噴射量設定の過渡時の精度を
向上させることができる。
In this way, the amount of change in the intake pressure PB during the propagation time is predicted and set according to the length of the pipe 9a that communicates and connects the intake pressure sensor 9 and the intake manifold 5, and the intake pressure PB is adjusted based on the predicted amount of detection delay. By correcting the detected value, even if the piping 9a becomes longer and the propagation time becomes longer due to, for example, installing the intake pressure sensor 9a in the passenger compartment, the response delay due to the propagation time can be compensated for. , it is possible to ensure detection responsiveness during transient operation, and as a result,
It is possible to improve the accuracy during transient times of setting the fuel injection amount based on the intake pressure PB.

次に上記のように過渡時の検出遅れ分が補正された吸気
圧力PBsに基づく燃料噴射量の設定処理を、第4図の
フローチャートに示すプログラムに従って説明する。
Next, the process of setting the fuel injection amount based on the intake pressure PBs with the transient detection delay corrected as described above will be explained according to the program shown in the flowchart of FIG.

このプログラムは、10ms毎に実行されるようになっ
ており、まず、ステップ11では以下の式に従q 10 って基本燃料噴射量TpPBを演算する。
This program is executed every 10 ms, and first, in step 11, the basic fuel injection amount TpPB is calculated based on q 10 according to the following equation.

T  p  P  13’−KCONDX  P  B
sXKQCYLXKTAここで、KCONDは燃料噴射
弁IOの噴射特性に基づく定数、KQCYLは体積効率
補正係数であり吸気圧力PBsと機関回転速度Nとに基
づいて設定される。また、KTAは吸気温度センサ6に
よって検出される吸気温度TAに基づき設定される吸気
温度補正係数である。
T p P 13'-KCONDX P B
sXKQCYLXKTA Here, KCOND is a constant based on the injection characteristics of the fuel injection valve IO, and KQCYL is a volumetric efficiency correction coefficient, which is set based on the intake pressure PBs and the engine rotation speed N. Furthermore, KTA is an intake air temperature correction coefficient that is set based on the intake air temperature TA detected by the intake air temperature sensor 6.

次のステップ12では、前記ステップ11で演算した基
本燃料噴射量’rp PBに対して下弐に示すように各
種の補正を施して最終的な燃料噴射量Tiを演算する。
In the next step 12, the basic fuel injection amount 'rpPB calculated in step 11 is subjected to various corrections as shown in Figure 2 to calculate the final fuel injection amount Ti.

T i+−Tp PBXLMDXCOEF+Ts上記演
算式において、LMDは酸素センサ14によって検出さ
れる機関吸入混合気の空燃比を目標空燃比(理論空燃比
)にフィードバック補正するための補正係数、COEF
は水温センサ12によって検出される冷却水温度Twを
主として設定される各種補正係数、Tsは燃料噴射弁1
0の駆動電源であるバッテリ(図示省略)の電圧変化に
よる燃11 料噴射弁10の無効噴射時間の変化を補正するための補
正分である。
T i+-Tp PBXLMDXCOEF+Ts In the above equation, LMD is a correction coefficient, COEF, for feedback correcting the air-fuel ratio of the engine intake air-fuel mixture detected by the oxygen sensor 14 to the target air-fuel ratio (stoichiometric air-fuel ratio).
are various correction coefficients that are mainly set based on the cooling water temperature Tw detected by the water temperature sensor 12, and Ts is the fuel injection valve 1.
This is a correction amount for correcting a change in the invalid injection time of the fuel injection valve 10 due to a voltage change of a battery (not shown) which is a driving power source of the fuel injection valve 10.

このようにして10ms毎に更新設定される燃料噴射量
Tiに相当する駆動パルス信号が、第5図のフローチャ
ートに従って各燃料噴射弁10に出力される。第5図の
フローチャートに示すプログラムは、クランク角センサ
15から基準角度信号REFが出力される毎に実行され
るものであり、ステップ21で最新に設定された燃料噴
射量Tiに相当するパルス巾をもつ駆動パルス信号を、
各気筒の吸気行程にタイミングを合わせるように気箇別
に燃料噴射弁10に出力する。
A drive pulse signal corresponding to the fuel injection amount Ti, which is updated every 10 ms in this way, is output to each fuel injection valve 10 according to the flowchart of FIG. The program shown in the flowchart of FIG. 5 is executed every time the reference angle signal REF is output from the crank angle sensor 15, and in step 21, the pulse width corresponding to the latest set fuel injection amount Ti is set. A drive pulse signal with
The fuel is output to the fuel injection valve 10 separately so as to match the timing with the intake stroke of each cylinder.

〈発明の効果〉 以上説明したように本発明によると、内燃機関の吸気圧
力を検出するセンサが、吸気通路に対して配管を介して
連通接続される場合に、配管の長さによって定まる圧力
伝播時間と、吸気圧力の単位時間当たりの変化割合とに
基づいて検出応答遅れ分を予測設定して検出値を補正す
るようにしたので、吸気圧力の過渡時におけるセンサの
検出応12 答遅れが発生することを抑止でき、例えば該吸気圧力に
基づく燃料供給制御の過渡応答性を改善できるという効
果がある。
<Effects of the Invention> As explained above, according to the present invention, when a sensor that detects the intake pressure of an internal combustion engine is connected to the intake passage via piping, pressure propagation determined by the length of the piping is prevented. Since the detected value is corrected by predicting the detection response delay based on time and the rate of change of intake pressure per unit time, a delay in the sensor's detection response occurs when the intake pressure is transient. This has the effect that, for example, the transient response of fuel supply control based on the intake pressure can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示すブロック図、第2図は本発
明の一実施例を示すシステム概略図、第3図〜第5図は
それぞれ同上実施例における制御内容を示すフローチャ
ート、第6図は吸気圧カセンサの応答遅れ特性を配管の
長さ別に示ずタイムチャ−1・である。
FIG. 1 is a block diagram showing the configuration of the present invention, FIG. 2 is a system schematic diagram showing an embodiment of the present invention, FIGS. 3 to 5 are flow charts showing control details in the above embodiment, and FIG. The figure does not show the response delay characteristics of the intake pressure sensor according to the length of the piping, but is a time chart 1.

Claims (1)

【特許請求の範囲】 吸気絞り弁下流側の吸気通路と配管を介して連通接続さ
れ機関の吸気圧力に対応する検出信号を出力する吸気圧
力検出手段と、 該吸気圧力検出手段から出力される検出信号の所定単位
時間における変化割合を演算する変化割合演算手段と、 前記配管の長さによって定まる圧力伝播時間と前記変化
割合とに基づいて検出遅れ誤差量を予測設定する検出遅
れ誤差量設定手段と、 該検出遅れ誤差量設定手段で予測設定された検出遅れ誤
差量に基づいて前記吸気圧力検出手段による検出信号を
補正し、該補正結果を最終検出値とする遅れ補正手段と
、 を含んで構成したことを特徴とする内燃機関の吸気圧力
検出装置。
[Scope of Claims] An intake pressure detection means that is connected to an intake passage on the downstream side of an intake throttle valve via piping and outputs a detection signal corresponding to the intake pressure of the engine; and a detection output from the intake pressure detection means. a change rate calculating means for calculating a change rate of a signal in a predetermined unit time; and a detection delay error amount setting means for predicting and setting a detection delay error amount based on the pressure propagation time determined by the length of the piping and the change rate. , delay correction means for correcting the detection signal by the intake pressure detection means based on the detection delay error amount predicted and set by the detection delay error amount setting means, and making the correction result a final detected value. An intake pressure detection device for an internal combustion engine, characterized in that:
JP23034589A 1989-09-07 1989-09-07 Intake pressure detecting device for internal combustion engine Pending JPH0394134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23034589A JPH0394134A (en) 1989-09-07 1989-09-07 Intake pressure detecting device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23034589A JPH0394134A (en) 1989-09-07 1989-09-07 Intake pressure detecting device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH0394134A true JPH0394134A (en) 1991-04-18

Family

ID=16906395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23034589A Pending JPH0394134A (en) 1989-09-07 1989-09-07 Intake pressure detecting device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0394134A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008092844A (en) * 2006-10-11 2008-04-24 Gex Corp Aquarium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008092844A (en) * 2006-10-11 2008-04-24 Gex Corp Aquarium

Similar Documents

Publication Publication Date Title
KR900006875B1 (en) Control system for internal combustion engines
JPH0363654B2 (en)
JPH09287507A (en) Throttle valve controller for internal combustion engine
JPS6088831A (en) Method of controlling operation characteristic quantity for operation control means of internal-combustion engine
JPH09189247A (en) Fuel injection control device of internal combustion engine
JP2745898B2 (en) Output control device for internal combustion engine
US10458355B2 (en) Engine control device and engine control method
JP3483394B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0394134A (en) Intake pressure detecting device for internal combustion engine
JPH0932537A (en) Control device of internal combustion engine
JP2655145B2 (en) Control device for internal combustion engine
JP2841001B2 (en) Air-fuel ratio feedback control device for internal combustion engine
JPH09287494A (en) Controller for internal combustion engine having electronically controlled throttle
JP3551706B2 (en) Engine intake control device
JPH02271041A (en) Intake-air temperature detecting device of internal combustion engine
JPH09324691A (en) Fuel control unit for combustion engine
JP3028851B2 (en) Fuel injection control device
JPH09287506A (en) Throttle valve controller for internal combustion engine
JP3387404B2 (en) Engine control device
JP3303614B2 (en) Idle speed control device for internal combustion engine
JPH1030479A (en) Air-fuel ratio controller of internal combustion engine
JPH02264135A (en) Fuel feed control device for internal combustion engine
JPH03179230A (en) Intake pressure detector for internal combustion engine
JP2561248B2 (en) Fuel cut control device for internal combustion engine
JP2503057Y2 (en) Mixed fuel supply system for internal combustion engine