JPH0393229A - Purification of semiconductor wafer - Google Patents

Purification of semiconductor wafer

Info

Publication number
JPH0393229A
JPH0393229A JP22968989A JP22968989A JPH0393229A JP H0393229 A JPH0393229 A JP H0393229A JP 22968989 A JP22968989 A JP 22968989A JP 22968989 A JP22968989 A JP 22968989A JP H0393229 A JPH0393229 A JP H0393229A
Authority
JP
Japan
Prior art keywords
cleaning
treatment
wax
wafer
removal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22968989A
Other languages
Japanese (ja)
Inventor
Hisashi Muraoka
久志 村岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PURE RETSUKUSU KK
Original Assignee
PURE RETSUKUSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PURE RETSUKUSU KK filed Critical PURE RETSUKUSU KK
Priority to JP22968989A priority Critical patent/JPH0393229A/en
Publication of JPH0393229A publication Critical patent/JPH0393229A/en
Pending legal-status Critical Current

Links

Landscapes

  • Detergent Compositions (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PURPOSE:To improve cleaning efficiency by cleaning a semiconductor wafer with an aqueous solution of specific component after its treatment with a liquid whose main agent is a specific alkylether. CONSTITUTION:After organic substances deposited on a semiconductor silicon wafer are removed with a liquid whose main agent is either one of triethylene glycolmonoalkylether and tetraethylene glycolmonoalkylether, the wafer is cleaned with an aqueous solution containing an organic strong alkali and peroxide hydrogen. Cleaning wafers in this way removes organic substances and Cu readily.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は有機物の付着した半導体用のシリコンウェーハ
に対して化学的に超清浄な表面(本明細書では有害金属
元素がそれぞれ多くともおおよそ10I0原子程度であ
って、自然酸化膜以外の有機質吸着膜やくもりのような
異質構造が実質的に観察されない表面をいう)とする処
理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention provides a chemically ultra-clean surface for semiconductor silicon wafers to which organic substances have adhered (in this specification, each harmful metal element is approximately 10 I0 The present invention relates to a surface treatment method in which organic adsorbed films other than natural oxide films and foreign structures such as clouds are not substantially observed.

〔従来の技術及び発明が解決しようとする課題〕半導体
デバイス製造に関連するウェーハ処理においては、ウエ
ーハに有機物を付着させそしてその有機物を完全に除去
し、同時にウエーハを超清浄化することが必要な工程が
ある。ひとつはシリコンウェーハを鏡面研磨する工程で
ある。
[Prior art and problems to be solved by the invention] In wafer processing related to semiconductor device manufacturing, it is necessary to attach organic substances to the wafer, completely remove the organic substances, and at the same time ultra-clean the wafer. There is a process. One is the process of mirror polishing silicon wafers.

LSIの微細加工が投影露光方式をとるようになって以
来、シリコンの鏡面研磨では厳しい平坦度・平行度が要
求されるようになった。そ,こて、適当な接着力を持つ
ワックスでウエーハの裏面をマウント板に張付け、一方
定盤の上に接着した研磨布の面にシリカ微粒子を主或分
とするアルカリ性の研磨液を流しつつ、マウント板のウ
ェーハの研磨面を加圧して押しつけ、両者を夫々独立に
回転することにより精密な研磨加工を行っている.研磨
後はウェーハをマウント板から剥がし、裏面に付着した
ワックスは通常パラフィン系の為塩素化炭化水素溶剤に
しかよく溶けないので、一般にはトリクロロエチレンが
除去剤として使われ沸点に近い温度で超音波・蒸気洗浄
等を行っている.この種の溶剤は化学的に不安定で微粒
子が発生してウェーハ表面を汚し、また残存研磨剤の除
去も完全でないので、微粒子除去効果の優れたアンモニ
ア十過酸化水素十水(RCA法のSC−1と略称されて
いる)処理液によるウェーハ洗浄を引続いて施すことが
広く行われている。しかしこの洗浄液はCu . Zn
 , Co . Ni等の化学的汚染に対して錯化作用
により洗浄効果があるが、Fe.Aj2等の化学的汚染
に対しては洗浄力が弱いことが知られている。従って通
常はこれらに対して洗浄力の極めて強い稀フッ酸処理を
洗浄工程に加えている。
Since the projection exposure method was adopted for microfabrication of LSIs, strict flatness and parallelism have been required for mirror polishing of silicon. Then, using a trowel, attach the back side of the wafer to the mounting plate using wax with appropriate adhesive strength, while pouring an alkaline polishing liquid containing mainly silica particles onto the surface of the polishing cloth adhered to the surface plate. , the polishing surface of the wafer on the mount plate is pressed against it, and both parts are rotated independently to perform precise polishing. After polishing, the wafer is peeled off from the mounting plate, and the wax attached to the back side is usually paraffin-based and dissolves well only in chlorinated hydrocarbon solvents, so trichlorethylene is generally used as a removal agent and it is treated with ultrasonic waves at a temperature close to its boiling point. Steam cleaning etc. are being carried out. This type of solvent is chemically unstable and generates fine particles that contaminate the wafer surface, and the remaining polishing agent cannot be completely removed. It is widely practiced to subsequently perform wafer cleaning with a processing solution (abbreviated as -1). However, this cleaning solution contains Cu. Zn
, Co. Although it has a cleaning effect on chemical contamination such as Ni due to its complexing action, it has a cleaning effect on chemical contamination such as Ni. It is known that cleaning power is weak against chemical contamination such as Aj2. Therefore, dilute hydrofluoric acid treatment, which has extremely strong cleaning power, is usually added to the cleaning process.

さて、現在市販されているシリコンメーカ各社のメモリ
ーデバイス用のウェーハに対して、その表面の不純物を
微量の高純度の酸で処理して面上の小面積に濃縮し、全
反射蛍光X線分析やSIMS分析等を行うと、おおよそ
10同原子/dの検出感度でNa+ K, Ca. F
e.^l. Cu, Cr, Zn等が検出される.特
に各社ウエー八に共通した汚染レベルの高い元素はAN
とCuでおおよそ1011原子/ cd以上が検出され
ている。この^lはフッ酸処理と後記の酸系処理の組合
わせで1010原子/ c+i以下に低減出来たが、こ
こで検出されたく1〜5)XIO”原子/ cd程度の
Cuについては、Cu除去に有効とされるSC−1ある
いは塩酸+過酸化水素+水(RCA法のSC−2と称せ
られるもの)、さらに王水等でも1010原子/ cd
程度までに確実に低減することは難しかった。上記のC
u以外の元素についてはそれぞれここに示した何れかの
処理液による洗浄を追加して101o原子/ cd以下
に下げることが出来た。しかし半導体デバイス製造プロ
セスでは、Cuはシリコン中での拡散速度が早くまた結
晶欠陥へ折.出し易いので、デバイス構造のキーになる
部分の少数担体寿命を低下させ、絶縁膜の耐圧を劣化さ
せ、電荷保持特性を低下させる.即ち、デバイス性能や
歩留りに悪い影響を与える代表的な不純物である。清浄
化ウェーハの表面不純物濃度の次世代即ち4〜16メガ
ビッ} DRAMの時代の目標は10I0原子/d以下
と考えられるが、シリコン鏡面研磨工程で従来の洗浄方
式ではCuについてその達或が難しい。
Now, impurities on the surface of wafers for memory devices from various silicon manufacturers currently on the market are treated with a trace amount of high-purity acid to concentrate them in a small area on the surface, and then analyzed by total internal reflection fluorescence X-ray analysis. Or SIMS analysis, etc., detects Na+K, Ca. F
e. ^l. Cu, Cr, Zn, etc. are detected. In particular, the elements with high contamination levels that are common to each company's Way8 are AN.
Approximately 1011 atoms/cd or more have been detected for Cu and Cu. This ^l could be reduced to 1010 atoms/c+i or less by a combination of hydrofluoric acid treatment and acid treatment described below, but for Cu of about 1 to 5) XIO'' atoms/cd that was not detected here, Cu removal SC-1 or hydrochloric acid + hydrogen peroxide + water (referred to as SC-2 of the RCA method), which is effective in
It was difficult to reliably reduce the amount to a certain extent. C above
For elements other than u, we were able to reduce them to 101o atoms/cd or less by additionally washing them with one of the treatment solutions shown here. However, in the semiconductor device manufacturing process, Cu has a high diffusion rate in silicon and is susceptible to crystal defects. Because it is easy to remove, it reduces the lifetime of minority carriers in key parts of the device structure, deteriorates the withstand voltage of the insulating film, and lowers the charge retention characteristics. That is, it is a typical impurity that adversely affects device performance and yield. The next generation target for the surface impurity concentration of cleaned wafers, that is, 4 to 16 megabits in the DRAM era, is thought to be 10I0 atoms/d or less, but it is difficult to achieve this for Cu using conventional cleaning methods in the silicon mirror polishing process.

今ひとつ有機物の完全除去とシリコン表面の超清浄化が
必要な主要工程はフォトリソグラフィにおけるエッチン
グ後のレジスト除去である.一般にはOxプラズマアッ
シングが広く使われているが、通常レジスト中にはto
oppb程度のCu .Fe等の金属不純物が含まれて
いるので、それ等がレジスト灰化とともにウェーハ表面
へ残り、その汚染量はIQII原子/d台に達する。こ
のような汚染の除去対策とプラズマによる素子損傷防止
の見地から、レジスト除去は湿式処理が望ましい。
Another major process that requires complete removal of organic matter and ultra-cleaning of the silicon surface is resist removal after etching in photolithography. Generally, Ox plasma ashing is widely used, but the resist usually contains
Cu of oppb level. Since metal impurities such as Fe are included, they remain on the wafer surface as the resist ashes, and the amount of contamination reaches IQII atoms/d. From the viewpoint of removing such contamination and preventing element damage caused by plasma, wet processing is preferable for resist removal.

湿式処理としては一般に過酸化水素あるいはオゾンを加
えた硫酸が使われているが120〜130℃程度の加熱
処理が必要である。
Hydrogen peroxide or sulfuric acid to which ozone is added is generally used for wet treatment, but heat treatment at about 120 to 130°C is required.

ところで鏡面研磨で使われるトリクロロエチレンのよう
な塩素化炭化水素は沸点に近い温度での処理の為使用量
のかなりの部分が気化して処理室雰囲気を汚染し、結局
折角清浄化したウェーハに二次汚染して有機質吸着膜を
形成する。またこの処理に引続(SC−1洗浄ではアン
モニアガスが多量に蒸発して処理室雰囲気を汚染し、や
はり清浄化したウェーハ表面に二次汚染して反応が起り
、くもりのような異質の表面状態が発生する。
By the way, since the chlorinated hydrocarbons such as trichlorethylene used in mirror polishing are processed at temperatures close to their boiling point, a considerable portion of the amount used evaporates and contaminates the atmosphere of the processing chamber. Contaminates and forms an organic adsorption film. Furthermore, following this process (in SC-1 cleaning, a large amount of ammonia gas evaporates and contaminates the processing chamber atmosphere, which also causes secondary contamination and reactions on the cleaned wafer surface, resulting in a foreign surface condition such as cloudiness). occurs.

またレジスト除去の際の硫酸系の湿式処理は130℃程
度を必要とするので、硫酸のくストが発生して処理室環
境を汚染しアンモニア同様に直接、間接にウェーハに悪
影響を与える.ボジ型レジスト除去の為に有機溶剤系剥
離剤も試みられているが、除去能力の良いものは有機ア
ルカリとしてモノエタノールア逅ンあるいはジエタノー
ルアミン等を含み、これらは必要な処理温度でかなり蒸
気圧が高いので、処理室雰囲気を汚染し、ウェーハへの
有機質膜の二次汚染源となる.このような汚染雰囲気は
ダクトを経由して排ガス処理装置を通り工場外に排出さ
れるがここに挙げた化学物質の完全な除去は容易でない
。微量の大気汚染でもトリクロロエチレン公害や酸性雨
等の原因になり得るので、排ガス処理は経済面でまた管
理面で大きな負担となる。
In addition, since the sulfuric acid-based wet process for resist removal requires a temperature of about 130°C, sulfuric acid fust is generated, contaminates the processing chamber environment, and, like ammonia, directly or indirectly affects the wafer. Organic solvent-based stripping agents have also been tried for removing positive type resists, but those with good removal ability contain organic alkalis such as monoethanolamine or diethanolamine, which have a considerable vapor pressure at the required processing temperature. Since it is expensive, it contaminates the processing chamber atmosphere and becomes a source of secondary contamination of organic films on wafers. Such a polluted atmosphere is discharged outside the factory through a duct and an exhaust gas treatment device, but it is not easy to completely remove the chemical substances listed here. Even a small amount of air pollution can cause trichlorethylene pollution, acid rain, etc., so exhaust gas treatment poses a large economic and management burden.

本発明の目的は一旦清浄化した表面に対し雰囲気を介し
た汚染源とならないまた大気汚染公害の恐れのない非蒸
発性の処理液を用い、ウェーハに付着した有機物を除去
しかつCuで代表される半導体に有害な金属不純物を各
元素につきおおよそ10I0原子/C一程度まで洗浄し
得るシリコンウェーハ表面の超清浄化方法を提供するも
のである.〔課題を解決するための手段〕 本発明は、上記の問題点を解決する為、半導体用シリコ
ンウェーハに付着した有機物の除去をトリエチレングリ
コールモノアルキルエーテル及びテトラエチレングリコ
ールモノアルキルエーテルから選ばれる少くとも1種を
主剤とする液で行った後、有機強アルカリと過酸化水素
を含む水溶液で洗浄処理するウェーハの超清浄化法を提
供するものである。
The purpose of the present invention is to remove organic matter adhering to the wafer by using a non-evaporating treatment liquid that does not become a source of contamination through the atmosphere and does not cause air pollution on the surface once cleaned. The present invention provides an ultra-cleaning method for silicon wafer surfaces that can remove metal impurities harmful to semiconductors to approximately 10I0 atoms/C for each element. [Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention removes organic substances attached to silicon wafers for semiconductors using a small amount selected from triethylene glycol monoalkyl ether and tetraethylene glycol monoalkyl ether. The present invention provides an ultra-cleaning method for wafers in which a cleaning treatment is performed using a solution containing one type of main ingredient, and then a cleaning treatment is performed using an aqueous solution containing a strong organic alkali and hydrogen peroxide.

除去対象の有機物として鏡面研磨でのワックスとフォト
リソグラフィでのレジストを選び、清浄化の最も難しい
Cuについて従来の各工程での挙動を明かにした上で、
本発明を構威する処理液の作用の特長を従来との比較で
示す。
We selected wax in mirror polishing and resist in photolithography as the organic substances to be removed, and after clarifying the behavior of Cu, which is the most difficult to clean, in each conventional process, we
The features of the action of the processing liquid that constitutes the present invention will be shown in comparison with the conventional one.

まず鏡面研磨の際のCuの挙動を調べた.定盤が鋳鉄の
研磨機の稼働中に研磨布上から研磨液を採取し分析を行
った所、Cu濃度は10=15ppbであった。研磨終
了後ウェーハをマウント板から剥がし裏面のワックスを
除くことなく水洗し、上述の表面分析を行った所10枚
のウェーハについて(8〜18)XIOII原子/ c
tiの吸着が検出された。ワックスを除くためトリクロ
ロエチレンで煮沸・蒸気洗浄した所、表面のCu濃度は
約半分に減少し、(4 〜1 0) x 1 0”原子
/ C+aとなった。
First, we investigated the behavior of Cu during mirror polishing. When the polishing liquid was collected from the polishing cloth during operation of the polishing machine with a cast iron surface plate and analyzed, the Cu concentration was found to be 10=15 ppb. After polishing, the wafers were peeled off from the mount plate and washed with water without removing the wax on the back side, and the surface analysis described above was performed, and 10 wafers were found to have (8 to 18) XIOII atoms/c.
Adsorption of Ti was detected. When boiling and steam cleaning with trichlorethylene to remove wax, the Cu concentration on the surface was reduced by about half, to (4 to 10) x 10'' atoms/C+a.

続いてアンモニア水(l容)十過酸化水素(l容)+水
(5容)よりなるSC−1洗浄を80℃でIO分行った
が、( 1. 1〜2)XIO”原子/ aJまでしか
清浄化出来なかった。稀フッ酸処理をさらに加えてもあ
まり効果はな<Cub度は平均して約20%程度低減さ
れたのみであった。
Subsequently, SC-1 cleaning consisting of aqueous ammonia (l volume), hydrogen peroxide (l volume) + water (5 volumes) was performed at 80°C for IO minutes, but (1.1-2)XIO'' atoms/aJ Further addition of dilute hydrofluoric acid treatment had no significant effect; the degree of cubing was only reduced by about 20% on average.

この一連の実験において得た予期せざる結果はトリクロ
ロエチレン処理後のウェーハに対するsc−iの洗浄効
果で、Coに対して優れた効果が期待されるにも拘らず
洗浄後のCu残存率は大よそ15〜25%であった。一
方比較のため稀フッ酸に溶かしたCuをシリコン表面に
10′!原子/d程度析出させた汚染試料に対して、同
組或・同条件のSC−1洗浄を行った所、Cu残存率は
4〜6%でかなり良くこれがSC−1本来の洗浄効果と
いえよう。従ってトリクロロエチレン処理はSC一l洗
浄の能力を低減することが分った.重金属不純物に対す
る洗浄効果が良いとしてLSIメーカに広く使われてい
るSC−2洗浄をSC−1洗浄の代わりに使うと更に悪
い結果となった.上記同様のトリクロロエチレン処理後
に1.3及び1.8X10”原子/dのCu吸着のある
ウェーハに対して、塩酸(l容)十遇酸化水素(1容)
十水(5容)よりなるSC−2洗浄を80℃で10分行
ったところ、4及び6XIO”原子/C−までしか低減
出来ず、前述のSC−1洗浄で述べたような比較洗浄試
験で少なくとも7%程度の残存率は期待出来るのに、こ
の場合残存率が30%以上にもなった.このSC−1洗
浄あるいはSC−2洗浄を更に繰返して行っても2度目
は洗浄能力が大巾に低下する. 以上一連の実験結果はCuの拡散で説明出来る。
An unexpected result obtained in this series of experiments was the cleaning effect of sc-i on wafers treated with trichlorethylene, and although it is expected to have an excellent effect on Co, the residual rate of Cu after cleaning was very low. It was 15-25%. On the other hand, for comparison, Cu dissolved in dilute hydrofluoric acid was applied to the silicon surface for 10'! When SC-1 cleaning of the same type and under the same conditions was performed on a contaminated sample with about atomic/d precipitation, the Cu residual rate was 4 to 6%, which was quite good and can be said to be the original cleaning effect of SC-1. Good morning. Therefore, trichlorethylene treatment was found to reduce the ability of SC11 cleaning. When SC-2 cleaning, which is widely used by LSI manufacturers due to its good cleaning effect on heavy metal impurities, was used instead of SC-1 cleaning, the results were even worse. Hydrochloric acid (l volume) and hydrogen oxide (1 volume)
When SC-2 cleaning consisting of 10 water (5 volumes) was performed at 80°C for 10 minutes, the reduction was only to 4 and 6XIO'' atoms/C-, which was compared to the comparative cleaning test described above for SC-1 cleaning. In this case, a residual rate of at least 7% can be expected, but in this case, the residual rate was over 30%.Even if this SC-1 cleaning or SC-2 cleaning was repeated, the cleaning ability would not improve the second time. The above series of experimental results can be explained by the diffusion of Cu.

即ち放射性同位元素&4Cuを用いた実験により、シリ
コン中の拡散速度が他の元素に比してはるかに大きいC
uは鏡面研磨という機械加工で生じたごく薄い表面近傍
の変質層へトリクロロエチレンの沸点即ち87℃程度の
温度でも侵入することが分った.トリクロロエチレンは
シリコン面に吸着したCuイオンを全く溶解せず、また
自然酸化膜のようなCuを掴まえる層を形成する働きも
ない。従ってトリクロロエチレン処理では研磨剤等と一
緒にごく表層に付着したCuだけしか除かれないのであ
ろう。表面の下に掴まったCuは洗浄が難しくなり、S
C−1やSC−2洗浄の効果が低減するものと思われる
,SC−2洗浄の方が洗浄効果がさらに悪いのはエッチ
ング作用がないためであろう.従ってまずワックス除去
の段階でCuJ度を十分低減出来る有機溶剤が必要とな
る。
In other words, experiments using radioactive isotopes and 4Cu have shown that C has a much higher diffusion rate in silicon than other elements.
It was found that u penetrates into the extremely thin altered layer near the surface created by the mechanical process of mirror polishing, even at temperatures around 87°C, the boiling point of trichlorethylene. Trichlorethylene does not dissolve Cu ions adsorbed on the silicon surface at all, nor does it have the function of forming a layer that can trap Cu, such as a natural oxide film. Therefore, in the trichlorethylene treatment, only the Cu attached to the very surface layer can be removed together with the abrasive and the like. Cu trapped below the surface becomes difficult to clean and S
It seems that the effectiveness of C-1 and SC-2 cleaning is reduced, and the reason why SC-2 cleaning is even worse is probably because it does not have an etching effect. Therefore, an organic solvent that can sufficiently reduce the CuJ degree is required at the wax removal stage.

(1)  鏡面研磨工程で吸着したCuを離脱させる能
力がトリクロロエチレンより大きい。
(1) The ability to release Cu adsorbed during the mirror polishing process is greater than that of trichlorethylene.

(2)  この溶剤に可溶で、精密な研磨を可能にする
接着力をもったワックスがある。
(2) There is a wax that is soluble in this solvent and has adhesive strength that enables precise polishing.

(3)環境汚染を避ける為の低蒸発性。目安として20
℃での蒸気圧が0. O L IIlmog以下。
(3) Low evaporation to avoid environmental pollution. 20 as a guide
The vapor pressure at °C is 0. OL IIlmog and below.

以上の3条件を満たす有機溶剤として、トリエチレング
リコールモノアルキルエーテル並びにテトラエチレング
リコールモノアルキルエーテルを見出だした。蒸気圧が
非常に低<100℃以下の加温では殆ど無臭で蒸発は無
視出来、またこれに溶けてかつ研磨用として適当な接着
力を持つワックスとして例えばグリコールフタレート系
のものがある(公開特許公報〔A〕昭61−16477
7及び昭62−219526) .ここで本発明者はシ
リコン研磨面に吸着したCuに対してこれらの有機溶剤
によりワックス除去処理後のCu残存率を20%程度に
、即ちトリクロロエチレン処理の場合の1/2〜1/3
に低減し得た。Cuに対する除去作用はワックスの種類
に関係なく、これら有機溶剤自信の性質である。
Triethylene glycol monoalkyl ether and tetraethylene glycol monoalkyl ether were found as organic solvents that satisfy the above three conditions. When heated to temperatures below 100°C, where the vapor pressure is very low, it is almost odorless and evaporation can be ignored. In addition, there are glycol phthalate-based waxes that are soluble in this wax and have suitable adhesion for polishing (as disclosed in published patents). Publication [A] 1986-16477
7 and Showa 62-219526). Here, the inventor of the present invention used these organic solvents to reduce the residual rate of Cu after wax removal treatment to about 20% of the Cu adsorbed on the silicon polished surface, that is, 1/2 to 1/3 of that in the case of trichlorethylene treatment.
This could be reduced to The removal effect on Cu is a property of these organic solvents themselves, regardless of the type of wax.

しかも本有機溶剤処理は後続するsc−i洗浄のCu除
去能力に関し特徴ある効果を与える。トリクロロエチレ
ン処理の場合後続するSC−1洗浄でCuの除去効果が
大幅に低下したが、本処理の後では80℃、10分のS
C−1洗浄によるCu残存率が6〜10%と前者の約1
/2になり、除去効果は本来のSC−1の能力にほぼ近
いところまで改善された。この結果から、本有機溶剤は
その処理中におけるCuの内部への侵入を妨げて変質層
のCu捕獲が少なく、従ってSC−1洗浄効果が向上す
るものと推定される。
Moreover, the present organic solvent treatment provides a unique effect on the Cu removal ability of the subsequent sc-i cleaning. In the case of trichlorethylene treatment, the subsequent SC-1 cleaning significantly reduced the Cu removal effect, but after this treatment, S
The Cu residual rate after C-1 cleaning is 6-10%, which is about 1% of the former.
/2, and the removal effect has been improved to almost the ability of the original SC-1. From this result, it is presumed that the present organic solvent prevents Cu from penetrating into the interior during the treatment and captures less Cu in the altered layer, thus improving the SC-1 cleaning effect.

しかし、SC−1洗浄はウエーハに微妙な影響を与える
アンモニアガス環境汚染を起こす。そこで気化による環
境汚染を生じない有機強アルカリ例えばテトラメチル水
酸化アンモニウムの1重量%水溶液でもってSC−1の
アンモニア成分を置換えたもの、即ち本水溶液(1容)
十過酸化水素(1容)十水(5容)の処理液で80℃、
10分の洗浄を本有機溶剤のワックス除去処理に後続さ
せた。この液は調合する薬品の純度が良いとSC−1に
比し発泡が弱く、ミスト発生の少ない超音波洗浄を効果
的に施すことが出来た。ワックス除去で残ったCuに対
する本洗浄後の残存率は5〜7%でSC−1洗浄を若干
上回る良好な結果となった。尚Na * Fe + C
r + Co + Ntについては放射性同位元素をト
レーサーとして、/l,Znは前記分析手法で、それぞ
れ(1〜5)XIO”原子/cd程度付着させたウェー
ハについて本洗浄による除去効果を残存率で求めてSC
−1洗浄の場合と比較した.結果はまったく類似してお
り、Feと1は洗浄効果があまり良くなく、その他の元
素は残存率5%以下で十分に洗浄出来る.また微粒子汚
染が多く発生するトリクロロエチレン処理のウエーハに
対して本洗浄の微粒子除去効果をSC一i洗浄と比較し
たがほぼ匹敵する結果となった。
However, SC-1 cleaning causes ammonia gas environmental contamination, which has a subtle effect on the wafer. Therefore, the ammonia component of SC-1 was replaced with a strong organic alkali that does not cause environmental pollution due to vaporization, such as a 1% by weight aqueous solution of tetramethyl ammonium hydroxide, that is, this aqueous solution (1 volume).
80℃ with a treatment solution of 10 hydrogen peroxide (1 volume) and 10 water (5 volumes).
A 10 minute wash followed the organic solvent wax removal treatment. When the purity of the chemicals in this solution was high, foaming was weaker than in SC-1, and ultrasonic cleaning could be effectively performed with less mist generation. The residual ratio of Cu remaining after wax removal after the main cleaning was 5 to 7%, which was a good result that was slightly higher than the SC-1 cleaning. Na * Fe + C
For r + Co + Nt, a radioactive isotope was used as a tracer, and for /l and Zn, using the above analysis method, the removal effect of this cleaning was expressed as a residual rate for a wafer with approximately (1 to 5) XIO'' atoms/cd attached, respectively. Seeking SC
This was compared with the case of -1 cleaning. The results are quite similar, with Fe and 1 not having very good cleaning effects, and other elements being able to be cleaned satisfactorily with a residual rate of less than 5%. In addition, the particulate removal effect of the main cleaning was compared with that of the SC-i cleaning for trichlorethylene-treated wafers where a large amount of particulate contamination occurs, and the results were almost comparable.

化学汚染に対しても微粒子汚染に対しても洗浄効果は有
機アルカリ濃度の高い程、過酸化水素濃度の低い程、ま
た処理温度は高い程良いが、それ等の方向ではエッチン
グが加速されてピットを生じ表面が荒れる。洗浄液とし
て実用性のある濃度範囲は有機強アルカリは0.01−
1重量%、過酸化水素はo. t − t o重量%で
ある。他の有機強アルカリについても同じ濃度範囲で類
似の洗浄液を調製し得て、洗浄効果について大差のない
結果が得られ、1重量%以下の濃度では殆どが100℃
以下の処理で無臭で、環境雰囲気に対する有機質汚染が
無視できる。
The higher the concentration of organic alkali, the lower the concentration of hydrogen peroxide, and the higher the processing temperature, the better the cleaning effect for both chemical and particulate contamination, but in these directions, etching is accelerated and pits are formed. This causes the surface to become rough. The concentration range that is practical as a cleaning solution is 0.01-
1% by weight, hydrogen peroxide o. t - t % by weight. Similar cleaning solutions can be prepared for other strong organic alkalis in the same concentration range, and results with no significant difference in cleaning effectiveness were obtained;
The following treatment is odorless and organic pollution to the environment can be ignored.

従って鏡面研磨工程において、ワックス除去をトリエチ
レングリコールモノアルキルエーテル及び/又はテトラ
エチレングリコールモノアルキルエーテルで行い、有機
強アルカリと過酸化水素による洗浄を後続させることに
より、薬液蒸発やミスト発生による環境雰囲気からの二
次汚染を抑制し、かつシリコンウェーハ表面のCu濃度
を10111原子/ cd前後とする清浄化が可能とな
った。
Therefore, in the mirror polishing process, by removing wax with triethylene glycol monoalkyl ether and/or tetraethylene glycol monoalkyl ether, followed by cleaning with strong organic alkali and hydrogen peroxide, the environmental atmosphere due to chemical evaporation and mist generation is removed. It has become possible to clean the silicon wafer surface by suppressing secondary contamination from carbon dioxide and reducing the Cu concentration to around 10111 atoms/cd.

また、トリエチレングリコールモノアルキルエーテルあ
るいはテトラエチレングリコールモノアルキルエーテル
は水と自由に混合し、かつアルカリ性で変質し難いので
、有機強アルカリ並びに界面活性剤の高濃度水溶液を少
量添加することが出来る。この添加により、液は弱いエ
ッチング能力を持ちシリコン表面変質層の数十λを除き
得るので付着Cuに対する除去力はさらに高まる。また
この添加ではワ・冫クス除去能力が増すので、除去処理
温度を下げることが出来る。この場合は、さらに数〜数
十ppmのEDTA , CVDTA. TTHA等の
錯化剤を加えるとCu洗浄効果が強化されることが多い
Further, since triethylene glycol monoalkyl ether or tetraethylene glycol monoalkyl ether mixes freely with water and is alkaline and difficult to deteriorate, a small amount of a strong organic alkali and a highly concentrated aqueous solution of a surfactant can be added. By adding this, the liquid has a weak etching ability and can remove tens of λ of the silicon surface deterioration layer, so that the removal power for deposited Cu is further increased. Furthermore, since this addition increases the wax/dilute removal ability, the removal treatment temperature can be lowered. In this case, several to tens of ppm of EDTA, CVDTA. Addition of a complexing agent such as TTHA often enhances the Cu cleaning effect.

従って引続く有機強アルカリ・過酸化水素処理で確実に
表面のCu濃度をIQIO原子/ cd以下とすること
が出来る.尚有機アルカリと界面活性剤の添加はこの溶
剤のワックスに対する溶解力を助長し、ワックス除去の
際の加温をあまり強くしなくても即ち40〜50℃程度
でも十分目的を達し得るので、処理の低温化はCuのシ
リコン内部への拡散抑制にさらに役だつ。
Therefore, the subsequent treatment with strong organic alkali and hydrogen peroxide can reliably reduce the Cu concentration on the surface to below IQIO atoms/cd. The addition of an organic alkali and a surfactant enhances the solvent's ability to dissolve wax, and the purpose can be achieved without heating too strongly during wax removal, that is, at around 40 to 50°C. Lowering the temperature further helps to suppress the diffusion of Cu into the silicon.

ところで、通常LSIで使われるポジ型のフォトレジス
トはアルカリ可溶性のフェノール系樹脂と光照射でアル
カリ可溶性となるキノンアジド系感光剤よりなるが、本
発明に提起された有機溶剤に低蒸発性の有機アルカリ例
えばトリエタノールアミンを添加したものはこの種のレ
ジストに対して除去能力がある.この処理液は既存の有
機溶剤系レジスト除去剤に比し若干剥離速度は遅いが環
境雰囲気に対し有機質汚染が殆ど起らない利点を持つ。
By the way, the positive photoresist normally used in LSI is made of an alkali-soluble phenolic resin and a quinone azide photosensitizer that becomes alkali-soluble when irradiated with light. For example, products containing triethanolamine have the ability to remove this type of resist. Although this processing liquid has a slightly slower peeling speed than existing organic solvent-based resist removers, it has the advantage of causing almost no organic contamination to the environmental atmosphere.

しかし剥離速度に関しても、ワックス除去の場合と同様
にさらに有機強アルカリ並びに界面活性剤の微量を添加
することにより実用上十分な程度とすることが出来る.
本発明の有機溶剤は既述の如<Cuに対して除去効果が
あるが、これに有機アルカリが加わると錯化作用が働い
て効果が強化される.さらに有機強アルカリが加わると
エッチング作用を伴い、洗浄効果が加速される。そして
ワックス除去の場合と同様に有機強アルカリと過酸化水
素による洗浄を後続させることにより、レジスト不純物
だけでなくフォトリソグラフイエ程でのプロセス装置か
らの金属元素汚染をlOl0原子/ c4以下まで超清
浄化出来る。
However, as in the case of wax removal, the peeling speed can be increased to a practically sufficient level by adding a small amount of a strong organic alkali and a surfactant.
As mentioned above, the organic solvent of the present invention has a removing effect on Cu, but when an organic alkali is added thereto, a complexing action occurs and the effect is enhanced. Furthermore, when a strong organic alkali is added, an etching effect is accompanied and the cleaning effect is accelerated. Then, as in the case of wax removal, cleaning with a strong organic alkali and hydrogen peroxide is followed to ultra-clean not only resist impurities but also metal element contamination from process equipment in the photolithography process to less than 1Ol0 atoms/c4. It can be transformed into

以上のように本発明は、半導体用シリコンウェーハに付
着した有機物の除去をトリエチレングリコールモノアル
キルエーテル及びテトラエチレングリコールモノアルキ
ルエーテルのうち少くとも1種を主剤とする液で行った
後、有機強アルカリと過酸化水素による洗浄を行うこと
により、薬液起因の汚染環境雰囲気からの二次汚染を抑
制し、かつシリコンウェーハの表面Cu濃度を効果的に
低減出来るウェーハ清浄化方法を提供するものである。
As described above, the present invention removes organic matter adhering to a semiconductor silicon wafer using a liquid containing at least one of triethylene glycol monoalkyl ether and tetraethylene glycol monoalkyl ether as a main ingredient, and then The present invention provides a wafer cleaning method that suppresses secondary contamination from a contaminated environmental atmosphere caused by chemicals and effectively reduces the surface Cu concentration of silicon wafers by cleaning with alkali and hydrogen peroxide. .

本発明における有機物除去剤であるトリエチレングリコ
ールモノアルキルエーテルあるいはテトラエチレングリ
コールモノアルキルエーテルはアルキル基がメチル、エ
チル、プロビル、プチル等何であっても20゜Cでの蒸
気圧は0. 0 1 +u+Hg以下でありまたCuに
対する除去効果に大差は無い.従って除去すべき有機物
の性質に応じて選択すれば良く、必要あれば2種以上を
混合して用いる。
Triethylene glycol monoalkyl ether or tetraethylene glycol monoalkyl ether, which is the organic matter removing agent in the present invention, has a vapor pressure of 0.0 at 20°C, regardless of whether the alkyl group is methyl, ethyl, proyl, butyl, etc. 0 1 +u+Hg or less, and there is no significant difference in the removal effect against Cu. Therefore, they may be selected depending on the nature of the organic matter to be removed, and two or more types may be used in combination if necessary.

20℃での蒸気圧を0. 0 1 msHg以下に限定
したのはこの条件を満足する限り通常使われる100゜
C以下の除去処理では殆ど無臭で蒸発やミストの発生が
なく環境雰囲気への有機質汚染が避けられるからである
.従って本有機溶剤に対して添加されるすべての物質の
蒸気圧も同様に限定しなければならない。そこで本発明
において添加出来るアルカリ性有機溶剤としては、例え
ばトリエタノールアミン、テトラエチレンベンタミン等
が挙げられ、これらは粘性が非常に強いので添加は30
重量%程度までである.有機強アルカリや界面活性剤の
添加は微量でも影響が明瞭で0.01重量%以上数重量
%以下で効果が見られる。
The vapor pressure at 20°C is 0. The reason why the temperature is limited to 0.01 msHg or less is that as long as this condition is satisfied, the commonly used removal treatment at 100°C or less is almost odorless, does not generate evaporation or mist, and organic contamination of the environment can be avoided. Therefore, the vapor pressure of any substances added to the organic solvent must be similarly limited. Therefore, examples of alkaline organic solvents that can be added in the present invention include triethanolamine and tetraethylenebentamine.
Up to about % by weight. Addition of a strong organic alkali or surfactant has a clear effect even in a small amount, and the effect can be seen at 0.01 weight % or more and several weight % or less.

本発明における過酸化水素と組合せる洗浄用の有機強ア
ルカリは1重量%水溶液でpHが大よそ常温で12以上
の物質でないと効果がない。即ち、例えばテトラメチル
水酸化アンモニウム、コリン、グアニジン等及びそれら
の炭酸塩、ケイ酸塩等が該当する。このなかでコリンは
濃度が高い場合は魚臭があり、グアニジンは塩でないと
分解しやすい.最も適当なものはテトラメチル水酸化ア
ンモニウムである。
The strong organic alkali used for cleaning in combination with hydrogen peroxide in the present invention is not effective unless it is a 1% by weight aqueous solution with a pH of 12 or higher at room temperature. That is, for example, tetramethyl ammonium hydroxide, choline, guanidine, etc., and their carbonates, silicates, etc. are applicable. Among these, choline has a fishy odor when it is in high concentration, and guanidine easily decomposes unless it is salt. The most suitable is tetramethyl ammonium hydroxide.

なお、本発明の方法においては、必要に応じて、従来よ
り公知の希フッ酸処理を組合わせて行うことができる。
In addition, in the method of the present invention, a conventionally known dilute hydrofluoric acid treatment can be used in combination, if necessary.

〔実施例〕〔Example〕

以下実施例により本発明を従来法との比較で詳細に説明
する.以降、濃度を表す「%」は「重量%」を意味する
The present invention will be explained in detail below by comparing it with a conventional method using examples. Hereinafter, "%" representing concentration means "% by weight".

実施例l シリコンウェーハ片面鏡面研磨用のウェーハマウント板
4個を装備した研磨機で、その2個には本発明で提起し
た有機溶剤に可溶なワックス即ち日化精工(株)のグリ
コールフタレート系ワックス「フタリックブルー」 (
以下記号(N)で示す)で、他の2個には比較のため従
来の一般的なパラフィン系ワックス(以下記号(P)で
示す)で、それぞれウエー八を4枚ずつ接着させ、定法
どおり鏡面研磨を行って標準仕様の鏡面研磨ウェーハを
作威した.なお研磨の途中で研磨材液を採取してCu濃
度を測り10〜20ppbであることを確認した。ワッ
クス(Nlの付着したウェーハはワックス除去をトリエ
チレングリコールモノメチルエーテルの70℃lO分の
処理(以下本発明の有機溶剤によるワックス除去処理を
( BGRE処理〕と略称する)で行い、純水リンス後
引続きテトラメチル水酸化アンモニウムのO. 1%と
過酸化水素の5%の水溶液を80゜Cにして10分超音
波洗浄した(以下本発明の有機強アルカリ・過酸化水素
による洗浄処理を[ OAHO洗浄]と略称する)。ま
たワックスCP)の付着したウェーハはワックス除去を
トリクロロエチレンの70゜C 1 0分の処理(以下
この従来のワックス除去処理を(TCE処理)と略称す
る)で行い、純水リンス後引続きSC−1洗浄を施した
。両清浄化過程においてそれぞれ4枚1111のウエー
ハを順に上述の如き表面分析に供し、研磨時表面に吸着
したCuの清浄化の状況を追跡した.この結果を比較し
て図に示す.図を一見しただけでワックス除去後でも、
洗浄処理後でもトリエチレングリコールモノメチルエー
テルでワックス除去をした場合、Cuの除去効果が明ら
かに高いことが分る。Cuに対するアルカリ過酸化水素
処理の効果は洗浄初期の3分以内が著しく、従ってこの
洗浄を始める前のCuの汚染状態の除去し易さ即ちワッ
クス除去の方式に洗浄効果が係わるといえる。
Example 1 A polishing machine equipped with four wafer mount plates for single-sided mirror polishing of silicon wafers, two of which were equipped with the organic solvent-soluble wax proposed in the present invention, that is, the glycol phthalate-based wax manufactured by Nikka Seiko Co., Ltd. Wax “Phthalic Blue” (
For comparison, we glued four pieces of way eight each using conventional general paraffin wax (denoted as symbol (P) below) for comparison. We performed mirror polishing to create a standard specification mirror polished wafer. In addition, the abrasive liquid was sampled during polishing, and the Cu concentration was measured and confirmed to be 10 to 20 ppb. Wafers with attached wax (Nl) are removed by treatment with triethylene glycol monomethyl ether at 70°C/lO (hereinafter referred to as the wax removal treatment using an organic solvent of the present invention (BGRE treatment)), and after rinsing with pure water. Subsequently, an aqueous solution of O. 1% tetramethyl ammonium hydroxide and 5% hydrogen peroxide was heated to 80°C and subjected to ultrasonic cleaning for 10 minutes (hereinafter, the cleaning treatment using a strong organic alkali/hydrogen peroxide of the present invention will be referred to as [OAHO Wafers with wax CP) adhered to them are removed by treatment with trichlorethylene at 70°C for 10 minutes (hereinafter, this conventional wax removal process is abbreviated as (TCE treatment)). After water rinsing, SC-1 cleaning was subsequently performed. During both cleaning processes, four 1111 wafers were sequentially subjected to the above-mentioned surface analysis to track the cleaning status of Cu adsorbed on the surface during polishing. The results are compared and shown in the figure.A glance at the figure shows that even after wax removal,
It can be seen that even after the cleaning treatment, when wax was removed using triethylene glycol monomethyl ether, the effect of removing Cu was clearly high. The effect of alkaline hydrogen peroxide treatment on Cu is remarkable within the first 3 minutes of cleaning, and therefore, it can be said that the cleaning effect is related to the ease with which the contamination of Cu can be removed before starting this cleaning, that is, the wax removal method.

実施例2 実施例1と同様に研磨機を扱い、(N)ワックスを使用
して、[ EGRE処理]をトリエチレングリコールモ
ノエチルエーテルの70℃、lO分の処理で行い、Fe
と1に対する洗浄能力不足を補う為の200倍に水で薄
めた稀フッ酸の10分浸漬処理後、実施例1と同じ( 
OAIO洗浄〕を施した場合と、従来の(P)ワックス
、(TCE処理〕に同条件の稀フン酸処理とSC−1洗
浄を行った場合とを比較して、清浄化各段階のシリコン
表面Cul度を分析した。一条件につき各2枚のウェー
ハが供されているが、各ウエーハについて得られた結果
を表1に示す。
Example 2 Using a polishing machine in the same manner as in Example 1, using (N) wax, [EGRE treatment] was performed with triethylene glycol monoethyl ether at 70°C for 10 minutes, and Fe
After a 10-minute immersion treatment in diluted hydrofluoric acid diluted 200 times with water to compensate for the lack of cleaning ability for
OAIO cleaning] was compared with conventional (P) wax, (TCE treatment), diluted hydrochloric acid treatment under the same conditions, and SC-1 cleaning. The Cul degree was analyzed. Two wafers were provided for each condition, and the results obtained for each wafer are shown in Table 1.

表 1 稀フッ酸処理をワックス除去後に挟んでもCu除去に関
する限りはどちらの処理も著効があったとはいえない.
この実施例を明らかなことは、モノメチルエーテルがモ
ノエチルエーテルに変っても、ワックス除去後並びに洗
浄処理後で(EGRE処理)が従来処理よりCu除去効
果の優れている点である.実施例3 実施例1と同様に研磨機を扱い、特に( EGR2処理
〕に適したものとして三井東圧化学(株)が試作したフ
タレート系ワックス(以下CM)と略称する)を使って
、3個のマウント板にウェーハを貼付け研磨後のワック
ス除去はそれぞれテトラエチレングリコールモノメチル
エーテルにヨリ、引続< [ OA}10洗浄〕は第1
のマウント板のウェーハを有機強アルカリのコリン0.
1%と過酸化水素5%の水溶液で行い(洗浄プロセスN
+lL1)、第2のマウント板のものは有機強アルカリ
をテトラメチル水酸化アンモニウムとしたもの(Nα2
)、第3のマウント板のものは有機強アルカリを炭酸グ
アニジンとしたもの(Na3)で行った。残りのマウン
ト板は従来プロセスで、(P)ワックスを使用して[T
CE処理]とSC−1洗浄を行った。
Table 1 Even if dilute hydrofluoric acid treatment was applied after wax removal, it cannot be said that either treatment was particularly effective as far as Cu removal was concerned.
What is clear from this example is that even if monomethyl ether is changed to monoethyl ether, the Cu removal effect after wax removal and after cleaning treatment (EGRE treatment) is superior to conventional treatment. Example 3 A polishing machine was used in the same manner as in Example 1, and a phthalate wax (hereinafter abbreviated as CM), which was prototyped by Mitsui Toatsu Chemical Co., Ltd. as being particularly suitable for (EGR2 processing), was used. After attaching the wafer to the mount plate and polishing, wax was removed using tetraethylene glycol monomethyl ether, followed by the first cleaning.
The wafer on the mounting plate is coated with a strong organic alkali, choline 0.
1% and 5% hydrogen peroxide (cleaning process N
+lL1), and the second mount plate uses tetramethyl ammonium hydroxide as a strong organic alkali (Nα2
), and the third mounting plate was made using guanidine carbonate as a strong organic alkali (Na3). The remaining mounting plates were made using a conventional process using (P) wax and [T
CE treatment] and SC-1 cleaning.

この4プロセスはそれぞれ独立に高純度窒素を導入した
特別の1個のクリーンブース内に処理槽を並べて行われ
、処理温度や処理時間は実施例lと同じである.洗浄後
純水リンスされたウェーハはブース内に放置自然乾燥さ
れた。
These four processes were carried out in a special clean booth in which high-purity nitrogen was introduced independently, and the treatment tanks were arranged side by side, and the treatment temperature and treatment time were the same as in Example 1. After cleaning, the wafers were rinsed with pure water and left in the booth to air dry.

各プロセスについて清浄化段階でウェーハの表面Cul
9度分析を行い、また洗浄されたウェーハのオージェ電
子分光分析を行って272eVのCビークの有無で有機
質環境汚染を受けたかどうかを調べた。結果を表2に示
す。
The surface Cul of the wafer during the cleaning step for each process.
Analysis was carried out nine times, and the cleaned wafers were subjected to Auger electron spectroscopy to determine whether or not there was organic environmental contamination based on the presence or absence of a 272 eV C peak. The results are shown in Table 2.

表 2 単位IQII+原子/ CTII トリエチレングリコールがテトラエチレングリコールに
なってもまた有機強アルカリの種類が代わっても洗浄効
果は前実施例とほぼ同じで、これ等によっても明らかに
従来のプロセスよりCu除去能力が大きい。また洗浄ウ
ェーハの表面C濃度でも差があり、本発明で使用する薬
品はC, 0,  Hの3元素だけよりなるので直接の
あるいは環境へ飛散してからの二次的の汚染はCが心配
なだけであるが、オージェ分析の結果はCが検出されず
超清浄化のための一つの条件が満足されている.コリン
もこの実施例程度の濃度であれば環境への汚染を無視出
来る。従来の方法では処理用薬品に起因する環境雰囲気
汚染を介したウェーハへのC汚染が避けられない。
Table 2 Unit IQII + Atom/CTII Even if triethylene glycol is changed to tetraethylene glycol or the type of strong organic alkali is changed, the cleaning effect is almost the same as in the previous example. Great removal ability. There is also a difference in the C concentration on the surface of the cleaned wafer, and since the chemicals used in the present invention consist of only three elements, C, O, and H, there is concern about C contamination either directly or as a result of secondary contamination after scattering into the environment. However, as a result of Auger analysis, no C was detected, which satisfies one of the conditions for ultra-cleanliness. If the concentration of choline is as high as in this example, the environmental pollution can be ignored. In conventional methods, C contamination of the wafer through environmental atmosphere contamination caused by processing chemicals is unavoidable.

実施例4 全てのマウント板に対して(M)ワックスを使用し、実
施例lと同様に研磨機を扱い、トリエチレングリコール
モノメチルエーテルに対しテトラメチル水酸化アンモニ
ウム25%水溶液を0.8容量%、ボリオキシエチレン
系非イオン界面活性剤(固形分30%)を0. 1容量
%、さらにI!DTA30ppmを添加して作威したワ
ックス除去剤により、ワックス除去を45℃でlO分超
音波洗浄で行った。その後2個のマウント板のウエーハ
はテトラメチル水酸化アンモニウムを使う実施例lの〔
OAHO洗浄〕を施し、残りについてはSC−1洗浄を
行った.清浄化各段階の表面Cu濃度の推移を測定した
.一条件につき各2枚のウェーハが供されているが、各
ウエーハについて得られた結果を表3に示す。
Example 4 (M) wax was used for all mounting plates, the polishing machine was treated as in Example 1, and 0.8% by volume of a 25% aqueous solution of tetramethyl ammonium hydroxide in triethylene glycol monomethyl ether was used. , 0.0% polyoxyethylene nonionic surfactant (solid content 30%). 1% by volume, more I! Wax was removed by ultrasonic cleaning at 45° C. for 10 minutes using a wax remover made by adding 30 ppm of DTA. The wafers for the two mounting plates were then prepared using Example 1 using tetramethyl ammonium hydroxide.
OAHO cleaning] and SC-1 cleaning for the rest. The changes in surface Cu concentration at each stage of cleaning were measured. Two wafers were provided for each condition, and the results obtained for each wafer are shown in Table 3.

表   3 単位10l0原子/ cnl ワックス除去剤にワックス除去促進剤並びにシリコン表
面のCu溶解促進剤として微量のアルカリ、界面活性剤
、錯化剤を添加したため、ワックス除去を比較的低温で
行ったにも拘らず、この段階で強力なCu除去効果が得
られている。低温化はCuの内部への拡散を低減すると
考えられ、従って後続する洗浄処理が有機強アルカリ・
過酸化水素でもアンモニア・過酸化水素でも効果的にC
u除去作用が続いている。
Table 3 Unit: 10l0 atoms/cnl Because a trace amount of alkali, surfactant, and complexing agent were added to the wax removal agent as a wax removal promoter and a Cu dissolution promoter on the silicon surface, wax removal was performed at a relatively low temperature. Regardless, a strong Cu removal effect was obtained at this stage. Lowering the temperature is thought to reduce the diffusion of Cu into the interior, and therefore the subsequent cleaning process is performed using a strong organic alkali.
Effectively removes C from both hydrogen peroxide and ammonia/hydrogen peroxide.
The u removal effect continues.

実施例5 (M)ワックスを使い上例の如く鏡面研磨をした後、ワ
ックス除去はトリエチレングリコールモノブロビルエー
テルに対しテトラメチル水酸化アンモニウム25%水溶
液を1容量%、実施例4とは異種のポリオキシエチレン
系非イオン界面活性剤(固形分30%) 0. 0 5
容量%を添加して作威した除去剤により、45℃で10
分間超音波のもとで行った。純水リンス後テトラメチル
水酸化アンモニウムの( AOHO洗浄)を行い、純水
リンスして特許第638281号による2%のフッ酸を
添加した稀HC/!(1:1)で20℃で10分間洗浄
した。
Example 5 After mirror polishing using wax (M) as in the above example, the wax was removed by adding 1% by volume of a 25% aqueous solution of tetramethyl ammonium hydroxide to triethylene glycol monobrobyl ether, which was different from Example 4. Polyoxyethylene nonionic surfactant (solid content 30%) 0. 0 5
10% by volume at 45°C.
Performed under ultrasound for minutes. After rinsing with pure water, perform tetramethyl ammonium hydroxide (AOHO cleaning), rinse with pure water, and use dilute HC/! with 2% hydrofluoric acid added according to Patent No. 638281! (1:1) at 20°C for 10 minutes.

洗浄後のウェーハ表面の分析結果はCu , Na ,
K,Ca+ Fe,l/!+ Cr.Znについてすべ
てIQIII原子/ cd以下であった。
The analysis results of the wafer surface after cleaning showed Cu, Na,
K, Ca+ Fe, l/! +Cr. All Zn values were below IQIII atoms/cd.

実施例6 500人の厚さの酸化膜を形威したシリコンウェーハに
対して市販の半導体用のボジレジストを厚み1.5μI
ll塗布し、90℃で30分プリベークした後、テスト
パターンのマスクを用いて定法どおり露光して現像して
、140℃で30分のポストベークを経てレジストパタ
ーンを作成した。これに対してO!プラズマエッチング
を0. 8 Torr ,200℃で行ってレジストを
灰化除去し、その酸化膜を微量の超高純度フッ酸で溶か
したのち、前述の方法で全反射X線蛍光分析を行ったと
ころ、2X10”原子/ c4のCuが検出された。次
にレニストパターンの酸化膜ウエーハをトリエチレング
リコールモノメチルエーテル70%、トリエタノールア
ミン30%液に対しテトラメチル水酸化アンモニウム2
5%水溶液を0.2容量%、ポリオキシエチレン系非イ
オン界面活性剤(固形分30%)を0.05容量%加え
た剥離液で90℃でlO分処理した.引続く洗浄は実施
例lのテトラメチル水酸化アンモニウムの( AOHO
洗浄)を行った。処理後の表面状態を単色光で800倍
の電子顕微鏡で観察したがレジストは残存せず、また表
面に対してオージェ分析を行ったがCは検出されなかっ
た.また別の同じレジスト除去処理をしたウェーハの酸
化膜の分析を行った結果はCuはIQIO原子/cii
であった。
Example 6 A commercially available semiconductor body resist with a thickness of 1.5 μI was applied to a silicon wafer with an oxide film of 500 mm thickness.
After pre-baking at 90° C. for 30 minutes, exposure and development was carried out in the usual manner using a test pattern mask, and a resist pattern was created through post-baking at 140° C. for 30 minutes. O for this! Plasma etching is 0. After removing the resist by ashing at 8 Torr and 200°C, and dissolving the oxide film with a small amount of ultra-high purity hydrofluoric acid, total internal reflection X-ray fluorescence analysis was performed using the method described above. Cu of c4 was detected.Next, the Lenist pattern oxide film wafer was diluted with tetramethyl ammonium hydroxide 2 in a solution of 70% triethylene glycol monomethyl ether and 30% triethanolamine.
It was treated at 90°C with a stripping solution containing 0.2% by volume of a 5% aqueous solution and 0.05% by volume of a polyoxyethylene nonionic surfactant (30% solids) at 90°C. Subsequent washing was performed using tetramethylammonium hydroxide (AOHO) from Example I.
washing) was performed. The surface condition after treatment was observed using an electron microscope with monochromatic light at a magnification of 800 times, but no resist remained, and Auger analysis was performed on the surface, but no C was detected. In addition, analysis of the oxide film of another wafer subjected to the same resist removal process revealed that Cu is IQIO atoms/cii
Met.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明の方法は、シリコン鏡面研磨のワッ
クスとかフォトリソグラフィのレジスト等ウェーハに付
着した有機物を容易に除去し、しかも恐らく変質層発生
が原因と思われる特に洗浄が難しいCuに対して、有機
物除去から洗浄までの特徴ある処理で効果的な超洗浄化
が可能になった。
As described above, the method of the present invention can easily remove organic substances attached to wafers, such as silicon mirror polishing wax and photolithography resist, and can also remove Cu, which is particularly difficult to clean, and which is probably caused by the generation of a degraded layer. , effective ultra-cleaning has become possible with unique processes ranging from organic matter removal to cleaning.

当然他の元素に対しても同様の効果が得られる。Naturally, similar effects can be obtained with other elements.

オイルや指紋等の付着に関してはずっと簡単に清浄化が
達或出来る。
Cleaning of oil, fingerprints, etc. is much easier.

本発明の方法では公害を起こすトリクロロエチレンのよ
うな塩素系有機溶剤、硫酸等が不要であるばかりでなく
、本発明に提起した有機溶剤はいずれも蒸気圧が非常に
低くて環境雰囲気を殆ど汚染しない。これは薬品起因の
環境雰囲気を介したウェーハ表面への二次的化学汚染例
えばアンモニアガス汚染等の恐れが無いことで超清浄化
上非常に重要であり、超高性能デバイスにとって歩留り
や信頼性の面で効果が期待出来る。また本処理の有機溶
剤は混入するワックス・レジスト・水・有機アルカリ・
界面活性剤・錯化剤等がすべて減圧蒸溜で除かれ、殆ど
100%近く回収が可能であり経済性でも優れている。
The method of the present invention not only eliminates the need for polluting chlorinated organic solvents such as trichlorethylene, sulfuric acid, etc., but also the organic solvents proposed in the present invention have extremely low vapor pressures and hardly pollute the environmental atmosphere. . This is very important for ultra-cleanliness because there is no risk of secondary chemical contamination, such as ammonia gas contamination, on the wafer surface via the environmental atmosphere caused by chemicals, and it is important for yield and reliability for ultra-high performance devices. Effects can be expected on the surface. In addition, the organic solvent used in this treatment is used for wax, resist, water, organic alkali, etc.
All surfactants, complexing agents, etc. are removed by vacuum distillation, allowing almost 100% recovery, making it highly economical.

【図面の簡単な説明】[Brief explanation of drawings]

図は実施例lの結果を示す。 The figure shows the results of Example 1.

Claims (2)

【特許請求の範囲】[Claims] (1)有機物が付着した半導体用シリコンウェーハをト
リエチレングリコールモノアルキルエーテル及びテトラ
エチレングリコールモノアルキルエーテルから選ばれる
少なくとも1種を主剤とする液で処理した後、有機強ア
ルカリと過酸化水素とを含む水溶液で洗浄処理を行うこ
とを特徴とするシリコンウェーハ表面の超清浄化法。
(1) After treating a semiconductor silicon wafer with organic matter attached to it with a liquid containing at least one selected from triethylene glycol monoalkyl ether and tetraethylene glycol monoalkyl ether as a main ingredient, a strong organic alkali and hydrogen peroxide are added. An ultra-cleaning method for the surface of silicon wafers, which is characterized by performing cleaning treatment with an aqueous solution containing
(2)有機物が付着した半導体用シリコンウェーハをト
リエチレングリコールモノアルキルエーテル及びテトラ
エチレングリコールモノアルキルエーテルから選ばれる
少なくとも1種を主剤とし、さらに有機アルカリを含有
し、成分のすべてについて20℃での蒸気圧が0.01
mmHg以下である低蒸発性の処理液で処理した後、有
機強アルカリと過酸化水素含む水溶液で洗浄処理を行う
ことを特徴とするシリコンウェーハ表面の超清浄化法。
(2) A silicon wafer for semiconductors to which organic matter has been attached is made of at least one selected from triethylene glycol monoalkyl ether and tetraethylene glycol monoalkyl ether as a main ingredient, further contains an organic alkali, and all components are heated at 20°C. Vapor pressure is 0.01
An ultra-cleaning method for the surface of a silicon wafer, which is characterized in that the surface of a silicon wafer is treated with a low-evaporation treatment liquid having a temperature of mmHg or less, and then a cleaning treatment is performed with an aqueous solution containing a strong organic alkali and hydrogen peroxide.
JP22968989A 1989-09-05 1989-09-05 Purification of semiconductor wafer Pending JPH0393229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22968989A JPH0393229A (en) 1989-09-05 1989-09-05 Purification of semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22968989A JPH0393229A (en) 1989-09-05 1989-09-05 Purification of semiconductor wafer

Publications (1)

Publication Number Publication Date
JPH0393229A true JPH0393229A (en) 1991-04-18

Family

ID=16896159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22968989A Pending JPH0393229A (en) 1989-09-05 1989-09-05 Purification of semiconductor wafer

Country Status (1)

Country Link
JP (1) JPH0393229A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05271699A (en) * 1992-03-27 1993-10-19 Tama Kagaku Kogyo Kk Detergent composition for glass
US5466389A (en) * 1994-04-20 1995-11-14 J. T. Baker Inc. PH adjusted nonionic surfactant-containing alkaline cleaner composition for cleaning microelectronics substrates
EP0690483A2 (en) 1994-06-23 1996-01-03 MALLINCKRODT BAKER, Inc. Cleaning wafer substrates of metal contamination while maintaining wafer smoothness

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05271699A (en) * 1992-03-27 1993-10-19 Tama Kagaku Kogyo Kk Detergent composition for glass
US5466389A (en) * 1994-04-20 1995-11-14 J. T. Baker Inc. PH adjusted nonionic surfactant-containing alkaline cleaner composition for cleaning microelectronics substrates
EP0690483A2 (en) 1994-06-23 1996-01-03 MALLINCKRODT BAKER, Inc. Cleaning wafer substrates of metal contamination while maintaining wafer smoothness
US5498293A (en) * 1994-06-23 1996-03-12 Mallinckrodt Baker, Inc. Cleaning wafer substrates of metal contamination while maintaining wafer smoothness

Similar Documents

Publication Publication Date Title
KR102055788B1 (en) Etching compositions and methods for using same
JP4304988B2 (en) Semiconductor device substrate cleaning method
KR100368193B1 (en) Aqueous rinsing composition
EP0827188B1 (en) Cleaning liquid for producing semiconductor device and process for producing semiconductor device using same
KR100859900B1 (en) Resist stripping composition
CA2146036C (en) Ph adjusted nonionic surfactant-containing alkaline cleaner composition for cleaning microelectronics substrates
KR100913557B1 (en) Liquid detergent for semiconductor device substrate and method of cleaning
JP3871257B2 (en) Non-corrosive cleaning composition for removing plasma etching residue
KR100610387B1 (en) Silicate-containing alkaline compositions for cleaning microelectronic substrates
US6831048B2 (en) Detergent composition
US20090120457A1 (en) Compositions and method for removing coatings and preparation of surfaces for use in metal finishing, and manufacturing of electronic and microelectronic devices
TWI416282B (en) Composition for removing a photoresist residue and polymer residue, and residue removal process using same
US20070093406A1 (en) Novel cleaning process for masks and mask blanks
JPH0817778A (en) Method for cleaning of metal contamination of wafer substrate by maintaining smoothness of wafer
JP2003221600A (en) Substrate surface-cleaning solution and method of cleaning the same
JP2007519942A (en) Chemicals and methods for stripping resist, BARC, and gap fill materials
JP2003129089A (en) Detergent composition
KR100997180B1 (en) Non-corrosive cleaning compositions for removing etch residues
JP2009543344A (en) Post-etch wafer surface cleaning with liquid meniscus
JP2005194294A (en) Cleaning liquid and method for producing semiconductor device
JP3624809B2 (en) Cleaning composition, cleaning method and use thereof
TW417183B (en) Alkaline water-based solution for cleaning metallized microelectronic workpieces and methods of using same
JPH0393229A (en) Purification of semiconductor wafer
JP2003068696A (en) Method for cleaning substrate surface
JP2000252250A (en) Semiconductor substrate cleaning liquid and cleaning method employing it