JPH0393162A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH0393162A
JPH0393162A JP1228430A JP22843089A JPH0393162A JP H0393162 A JPH0393162 A JP H0393162A JP 1228430 A JP1228430 A JP 1228430A JP 22843089 A JP22843089 A JP 22843089A JP H0393162 A JPH0393162 A JP H0393162A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
carbonaceous material
discharge
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1228430A
Other languages
Japanese (ja)
Other versions
JP3179459B2 (en
Inventor
Susumu Harada
晋 原田
Masaaki Yokogawa
横川 雅明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP22843089A priority Critical patent/JP3179459B2/en
Publication of JPH0393162A publication Critical patent/JPH0393162A/en
Application granted granted Critical
Publication of JP3179459B2 publication Critical patent/JP3179459B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To decrease the self-discharge rate of a nonaqueous electrolyte secondary battery using a carbonaceous material in a negative electrode by specifying the crystal size in the direction of c axis in the X-ray diffraction of the carbonaceous material. CONSTITUTION:In a nonaqueous electrolyte secondary battery having a negative electrode 2 comprising a carbonaceous material and a nonaqueous electrolyte in which a lithium salt is dissolved in a nonaqueous solvent, the carbonaceous material whose crystal size (Lc) in the direaction of c axis in the x-ray diffraction is in the range of 73-85Angstrom is used. Small Lc value means low graphitization and impurities are easily contained and self-discharge is increased. Large Lc value means high graphitization and doping-undoping of lithium ions is difficult and discharge capacity is decreased. By specifying the Lc value, self-discharge rate is remarkably decreased without large decrease in discharge capacity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、炭素質材料を負極に用いた非水電解液二次電
池の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to improvement of a non-aqueous electrolyte secondary battery using a carbonaceous material as a negative electrode.

〔発明の概要〕[Summary of the invention]

負極−に炭素質材料を用いた非水電解液二次電池におい
て、前記炭素質材料として、X線回折におけるC軸方向
の結晶厚みLcが73Å〜85人の範囲の炭素賞材料を
用いることによって、充放電サイクル特性に優れ、放電
容量が大きく、その上自己放電率を低減した非水電解液
二次電池を提供する。
In a nonaqueous electrolyte secondary battery using a carbonaceous material for the negative electrode, by using a carbon material having a crystal thickness Lc in the C-axis direction in X-ray diffraction in the range of 73 Å to 85 Å as the carbonaceous material. The present invention provides a nonaqueous electrolyte secondary battery that has excellent charge/discharge cycle characteristics, a large discharge capacity, and a reduced self-discharge rate.

〔従来の技術〕[Conventional technology]

近年、ビデオカメラやラジオカセットコーダー等のポー
タブル機器の普及に伴い、使い捨てである一次電池に代
わって、繰り返し使用できる二次電池に対する需要が高
まっている.現在使用されている二次電池の殆どは、ア
ルカリ電解液を用いたニッケルーカドミウム電池である
.しかし、この電池の電圧は約1.2vと低いので、電
池のエネルギー密度を向上させることは困難である.ま
た、この電池は常温での自己放電率が1ケ月で20%以
上という欠点もある.そこで、負極にリチウム等の軽金
属を使用し、また電解液に非水溶媒を使用することによ
って、電圧が3v以上と高く、しかも自己放電率も低い
二次電池が検討された.しかし、このような二次電池で
は、負極に使用するリチウム等が充放電の繰り返しによ
ってデンドライト状に戒長し、この負極と正極が溶解し
て電池が内部で短絡するという不都合が生じ易かった。
In recent years, with the spread of portable devices such as video cameras and radio cassette recorders, there has been an increasing demand for reusable secondary batteries instead of disposable primary batteries. Most secondary batteries currently in use are nickel-cadmium batteries that use an alkaline electrolyte. However, since the voltage of this battery is as low as approximately 1.2V, it is difficult to improve the energy density of the battery. Another disadvantage of this battery is that its self-discharge rate at room temperature is more than 20% in one month. Therefore, a secondary battery with a high voltage of 3 V or more and a low self-discharge rate was investigated by using a light metal such as lithium for the negative electrode and a non-aqueous solvent for the electrolyte. However, in such a secondary battery, lithium or the like used in the negative electrode tends to form a dendrite due to repeated charging and discharging, and the negative electrode and positive electrode tend to melt, causing an internal short circuit in the battery.

このため、リチウム等を他の金属と合金化し、この合金
を負極に使用する二次電池が検討された。
For this reason, consideration has been given to a secondary battery in which lithium or the like is alloyed with other metals and this alloy is used for the negative electrode.

しかし、この電池も、負極の合金が充放電の進行につれ
て崩壊し易く、実用化が困難である。そこで、例えば特
開昭62−90863号公報に示されているように、コ
ークス等の炭素質材料を負極として使用する二次電池が
提案された。この提案によって、上述したような、充放
電の繰り返しにおける負極の劣化問題を回避できること
が判った。ここで、炭素質材料は、アルカリ金属イオン
の、電解液を通してのドーピング、脱ドーピングによっ
て二次電池の負極として作用するとされている。 この
ように、充放電サイクル特性に優れた炭素質材料を負極
とした二次電池は、しかしながら、金属リチウム等を負
極とした電池に比べ、自己放電率が極めて高く、そのた
めに実用化に至っていないのが現状である。
However, the alloy of the negative electrode of this battery also tends to disintegrate as charging and discharging progresses, making it difficult to put it into practical use. Therefore, a secondary battery using a carbonaceous material such as coke as a negative electrode was proposed, for example, as shown in Japanese Patent Application Laid-Open No. 62-90863. It has been found that this proposal makes it possible to avoid the problem of deterioration of the negative electrode due to repeated charging and discharging as described above. Here, the carbonaceous material is said to act as a negative electrode of a secondary battery by doping and dedoping of alkali metal ions through an electrolytic solution. As described above, secondary batteries with negative electrodes made of carbonaceous materials with excellent charge-discharge cycle characteristics, however, have extremely high self-discharge rates compared to batteries with metal lithium, etc. as negative electrodes, and for this reason have not been put into practical use. is the current situation.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の課題は、上述した現状に鑑み、負極に炭素質材
料を用いた非水電解液二次電池の問題点である高い自己
放電率を低減することである。
In view of the above-mentioned current situation, an object of the present invention is to reduce the high self-discharge rate, which is a problem of non-aqueous electrolyte secondary batteries using carbonaceous materials for the negative electrode.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、炭素質材料を有する負極と、電解質としてリ
チウム塩を非水溶媒に溶解した非水電解液とを有する非
水電解液二次電池であって、前記の炭素質材料としてX
線回折におけるC軸方向の結晶厚みLc(以下、単にL
cと記す)73Å〜85大の範囲の炭素質材料を使用す
る。
The present invention provides a non-aqueous electrolyte secondary battery comprising a negative electrode having a carbonaceous material and a non-aqueous electrolyte in which a lithium salt is dissolved in a non-aqueous solvent as an electrolyte, wherein the carbonaceous material is
Crystal thickness Lc in the C-axis direction in line diffraction (hereinafter simply referred to as L
A carbonaceous material ranging from 73 Å to 85 Å is used.

Lcが小さいと自己放電が大きくなり、逆にLCが大き
いと放電容量が小さくなる傾向があり、この両者の兼ね
合いから、Lcは73入〜85人の範囲であることが好
ましい。Lcが小さいことは、あまり黒鉛化が進んでい
ないことを意味し、そのような状態では不純物を含みや
すく、そのために自己放電が大きくなると考えられる。
If Lc is small, self-discharge tends to be large, and conversely, if LC is large, discharge capacity tends to be small. Considering the balance between the two, it is preferable that Lc is in the range of 73 to 85 people. A small Lc means that graphitization has not progressed very much, and in such a state, impurities are likely to be included, which is thought to increase self-discharge.

また逆にLCが大きいことは、黒鉛化が進んでいること
を意味し、そのような状態では、リチウムイオンがドー
プ、脱ドープしにくくなり、そのために放電容量が小さ
くなると考えられる。本発明に用いられる正極材料とし
ては、一般にリチウム二次電池に用いられる、例えば二
酸化マンガン、五酸化バナジウムにような遷移金属化合
物や、硫化鉄等の遷移金属カルコゲン化合物等が使用可
能である。電解液としては、リチウム塩を電解質といて
、非水溶媒に溶解した非水電解液が使用可能である。こ
こで非水溶媒としては、特に限定されるものではないが
、例えばプロピレンカーポネート、エチレンカーボネー
ト、1.2−ジメトキシエタン、1.2−ジエトキシエ
タン、γ−プチロラクトン、テトラヒドロフラン、1.
3−ジオキソラン、4メチル−1.3−ジオキソラン、
ジエチルエーテル、スルホラン、メチルスルホラン、ア
セトニトリル、プロピオニトリル等の単独もしくは2種
以上の混合溶媒が使用できる。電解質も従来より公知の
ものがいずれも使用可能であり、LiCl04、LiA
sF.、LiPFa 、LiBFn 、Lid(CJs
)4、LiC1,1iBr, CH3SO3Li, C
F3SO1Li等がある。
On the other hand, a large LC means that graphitization is progressing, and in such a state, it is difficult to dope and dedope lithium ions, which is thought to reduce the discharge capacity. As the positive electrode material used in the present invention, transition metal compounds such as manganese dioxide and vanadium pentoxide, and transition metal chalcogen compounds such as iron sulfide, which are generally used in lithium secondary batteries, can be used. As the electrolyte, a non-aqueous electrolyte in which a lithium salt is dissolved in a non-aqueous solvent can be used. Here, the nonaqueous solvent is not particularly limited, but includes, for example, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 1.
3-dioxolane, 4-methyl-1,3-dioxolane,
Solvents such as diethyl ether, sulfolane, methylsulfolane, acetonitrile, and propionitrile may be used alone or in combination of two or more thereof. Any conventionally known electrolytes can be used, including LiCl04, LiA
sF. , LiPFa, LiBFn, Lid(CJs
)4, LiC1,1iBr, CH3SO3Li, C
There are F3SO1Li, etc.

〔作用〕[Effect]

負極に炭素質材料を用いる非水電解液二次電池において
、前記炭素質材料のLcを73Å〜85人の範囲に選ぶ
ことによって、放電容量をあまり低下させることなく、
自己放電率を著しく低減できる。
In a non-aqueous electrolyte secondary battery using a carbonaceous material for the negative electrode, by selecting Lc of the carbonaceous material in the range of 73 Å to 85 Å, the discharge capacity can be reduced not much.
Self-discharge rate can be significantly reduced.

〔実施例] 第1図は、本発明の実施例で適用された円筒型非水電解
液二次電池の構造を模式的に示す断面図である。この電
池は、第l図で示されるように、正極lと負極2がセバ
レータ3を介して渦巻状に巻かれた電極構造をもつ渦巻
式円筒型非水電解液二次電池である。以下、実施例を第
1図を参照しながら説明する。
[Example] FIG. 1 is a cross-sectional view schematically showing the structure of a cylindrical non-aqueous electrolyte secondary battery applied in an example of the present invention. This battery is a spiral cylindrical non-aqueous electrolyte secondary battery having an electrode structure in which a positive electrode 1 and a negative electrode 2 are spirally wound with a separator 3 in between, as shown in FIG. An embodiment will be described below with reference to FIG.

実施例1 まず、負極2は次のように作製した。粉砕したニードル
コークスをアルゴン雰囲気の電気炉中1500℃で2時
間処理してLcが73人のものを作り、これを負極材料
として用いた。
Example 1 First, negative electrode 2 was produced as follows. The pulverized needle coke was treated in an electric furnace in an argon atmosphere at 1500° C. for 2 hours to produce a coke with an Lc of 73, which was used as a negative electrode material.

なお、ここでLcはX線回折で、002回折線図形から
日本学術振興会法に準じて求められた(以下の全ての実
施例及び比較例においても同様な方法でLcは求められ
た). この高温処理した二一ドルコークスの真密度は2.16
g/cs” 、X線回折における002面の面間隔はd
o02 (以下、単に6002と記す)は3.44λで
あった。
Here, Lc was determined by X-ray diffraction from the 002 diffraction line pattern according to the Japan Society for the Promotion of Science method (Lc was determined in the same manner in all the Examples and Comparative Examples below). The true density of this high temperature treated 21 dollar coke is 2.16
g/cs”, the spacing of the 002 plane in X-ray diffraction is d
o02 (hereinafter simply referred to as 6002) was 3.44λ.

この二一ドルコークス90重量部に結着剤としてのボリ
フッ化ビニリデン10重量部を加え、混合し、負極合剤
とした。そしてこの負極合剤を溶剤N−メチルピロリド
ンに分散させてスラリー(ペースト状)にした。次に、
この負極合剤スラリーを、負極集電体としての厚さlO
μmの銅箔の両面に塗布し、乾燥した.乾燥後にローラ
ープレス機により圧縮戒形して、これを34.5s+m
の幅にカットして帯状の負極2を作った。
10 parts by weight of polyvinylidene fluoride as a binder was added to 90 parts by weight of this twenty-one dollar coke and mixed to form a negative electrode mixture. This negative electrode mixture was then dispersed in a solvent N-methylpyrrolidone to form a slurry (paste). next,
This negative electrode mixture slurry is used as a negative electrode current collector to a thickness of lO
It was applied to both sides of μm copper foil and dried. After drying, it is compressed using a roller press machine and then compressed for 34.5s+m.
A strip-shaped negative electrode 2 was made by cutting it to a width of .

この帯状の負極2において、負極合剤は負極集?体の両
面に互いにほぼ同じ膜厚で形威してあり、これらの膜厚
の和は約175μmであった。
In this strip-shaped negative electrode 2, is the negative electrode mixture the negative electrode mixture? The film was formed on both sides of the body with approximately the same thickness, and the sum of these film thicknesses was approximately 175 μm.

次に正極lは次のようにして作製した。Next, the positive electrode 1 was produced as follows.

炭酸リチウム1モルと炭酸コバルトを混合し、900゜
Cの空気中で5時間焼威してLiCoOzを得、これを
正極活物質として用い、このLiCoO■91重量部に
導電材としてグラファイ}Sfi量部、結着剤としてボ
リフッ化ビニリデン3M量部を加え、混合して正極合剤
とした。そして、この正極合剤を溶剤N−メチルビロリ
ドンに分散させてスラリー(ペースト状)にした。次に
、この正極合剤スラリーを、正極集電体としての厚さ2
0μmの帯状のアルミニウム箔の両面に塗布し、乾燥し
た。乾燥後にローラープレス機により圧縮或形して、こ
れを3.5+u+の幅にカットして帯状の正極1を作っ
た。
1 mole of lithium carbonate and cobalt carbonate were mixed and burned in air at 900°C for 5 hours to obtain LiCoOz, which was used as a positive electrode active material, and 91 parts by weight of this LiCoO was added with an amount of graphite}Sfi as a conductive material. and 3M parts of polyvinylidene fluoride as a binder were added and mixed to prepare a positive electrode mixture. Then, this positive electrode mixture was dispersed in a solvent N-methylpyrrolidone to form a slurry (paste). Next, this positive electrode mixture slurry was applied to a thickness of 2 as a positive electrode current collector.
It was applied to both sides of a 0 μm strip of aluminum foil and dried. After drying, it was compressed into a shape using a roller press and cut into a width of 3.5+u+ to produce a strip-shaped positive electrode 1.

この帯状の正極1において、正極合剤は正極集電体の両
面に互いにほぼ同じ膜厚で形威してあり、これらの膜厚
の和は約175μmであった。そして、帯状の正極l、
帯状の負極2及び厚さ25μmの微孔性ポリプロピレン
フィルムからなるセパレータ3を、負極2、セバレータ
3、正極1、セパレーク3の順序で積層してから、この
積層体を渦巻状に多数回巻回することによって、巻回体
を作製した. 上述のようにして作った巻同体を、第1図に示すように
、ニッケルめっきを施した内径13.3+amの鉄製電
池缶に収納した。そして、正極lの集電を行うために、
アルξニウム製の正極り一ド8を正極1に取付け、これ
を正極1から導出して、電池蓋7に溶接した。また、負
極2の集電を行うために、ニッケル製の負極リ一ド9を
負極2に取付け、これを負極2から導出して、電池缶5
に溶接した.この電池缶の中に、六フフ化リン酸リチウ
ムを1モル/リットルの濃度で溶解した炭酸プロピレン
と1.2−ジメトキシエタンとを混合して得た電解液を
注入した.次に、壱同体の上下面に対向するように、電
池缶5内に絶縁板4を配設した.また、この電池缶5と
電池蓋7を絶縁封ロガスケット6を介してかしめて、電
池付た7を封ロした。
In this strip-shaped positive electrode 1, the positive electrode mixture was formed on both sides of the positive electrode current collector with approximately the same film thickness, and the sum of these film thicknesses was about 175 μm. and a strip-shaped positive electrode l;
A strip-shaped negative electrode 2 and a separator 3 made of a microporous polypropylene film with a thickness of 25 μm are laminated in the order of negative electrode 2, separator 3, positive electrode 1, and separator 3, and then this laminate is spirally wound many times. A rolled body was created by doing this. As shown in FIG. 1, the volume produced as described above was housed in a nickel-plated iron battery can with an inner diameter of 13.3+ am. Then, in order to collect current from the positive electrode l,
A positive electrode board 8 made of aluminum was attached to the positive electrode 1, led out from the positive electrode 1, and welded to the battery lid 7. In addition, in order to collect current from the negative electrode 2, a nickel negative electrode lead 9 is attached to the negative electrode 2, and this is led out from the negative electrode 2, and the battery can 5
Welded to. An electrolytic solution prepared by mixing propylene carbonate and 1,2-dimethoxyethane in which lithium hexafluorophosphate was dissolved at a concentration of 1 mol/liter was poured into the battery can. Next, an insulating plate 4 was placed inside the battery can 5 so as to face the top and bottom surfaces of the first body. Further, the battery can 5 and the battery lid 7 were caulked together with an insulating sealing gasket 6 interposed therebetween to seal the battery 7 attached thereto.

以上のようにして直径13.8a+a+、高さ42II
Imの円筒型非水電解液二次電池を作製した。
As above, diameter 13.8a+a+, height 42II
A cylindrical non-aqueous electrolyte secondary battery of Im was manufactured.

実施例2 粉砕した二一ドルコークスをアルゴン雰囲気の電気炉中
1600℃で2時間処理して、Lcが85人のものを作
り、これを負極材料として用いた。この高温処理した二
一ドルコークスの真密度は2.17g/cm’ 、do
02は3.43入であった。そして、これ以外は実施例
lと同様にして電池を作製した。
Example 2 Pulverized $21 coke was treated in an electric furnace in an argon atmosphere at 1600° C. for 2 hours to produce a coke with an Lc of 85, which was used as a negative electrode material. The true density of this high temperature treated 21 dollar coke is 2.17g/cm', do
02 was 3.43 in. A battery was produced in the same manner as in Example 1 except for this.

比較例l 粉砕した二一ドルコークスを熱処理せずそのまま負極材
料として用いた。この二一ドルコークスのLcは59人
、真密度は2.12g/cm’ 、do02は3.44
λであった。そして、それ以外は実施例1と同様にして
電池を作製した。
Comparative Example 1 Crushed 21-dollar coke was used as a negative electrode material without being heat-treated. The Lc of this 21 dollar coke is 59 people, the true density is 2.12 g/cm', and the do02 is 3.44.
It was λ. A battery was produced in the same manner as in Example 1 except for this.

比較例2 粉砕した二一ドルコークスをアルゴン雰囲気の電気炉中
1200″Cで2時間処理して、Lcが60人のものを
作り、これを負極材料として用いた。この高温処理した
二一ドルコークスの真密度は2。12g/cm” 、d
002は3.44人であった。そして、これ以外は実施
例と同様にして電池を作製した。
Comparative Example 2 Pulverized 21 dollar coke was treated at 1200''C in an argon atmosphere for 2 hours to produce a coke with an Lc of 60, which was used as a negative electrode material. The true density of coke is 2.12g/cm", d
002 had 3.44 people. A battery was produced in the same manner as in the example except for this.

比較例3 粉砕した二一ドルコークスをアルゴン雰囲気の電気炉中
1300℃で2時間処理して、Lcが63入のものを作
り、これを負極材料として用いた。この高温処理した二
一ドルコークスの真密度は2.13g/c+w3、d0
02は3.44人であった。そして、それ以外は実施例
1と同様にして電池を作製した。
Comparative Example 3 Pulverized 21-dollar coke was treated at 1300° C. for 2 hours in an electric furnace in an argon atmosphere to produce a coke with Lc of 63, which was used as a negative electrode material. The true density of this high temperature treated 21 dollar coke is 2.13g/c+w3, d0
02 was 3.44 people. A battery was produced in the same manner as in Example 1 except for this.

比較例4 粉砕した二一ドルコークスをアルゴン雰囲気の電気炉中
1400”Cで2時間処理して、Lcが65大のものを
作り、これを負極材料として用いた。この高温処理した
二一ドルコークスの真密度は2.15g/cm3、d0
02は3.44人であった。そして、それ以外は実施例
1と同様にして電池を作製した。
Comparative Example 4 Pulverized 21 dollar coke was treated at 1400''C in an electric furnace in an argon atmosphere for 2 hours to produce a coke with an Lc of 65, which was used as a negative electrode material.This high temperature treated 21 dollar coke The true density of coke is 2.15g/cm3, d0
02 was 3.44 people. A battery was produced in the same manner as in Example 1 except for this.

比較例5 粉砕した二一ドルコークスをアルゴン雰囲気の電気炉中
1700℃で2時間処理して、Lcが98人のものを作
り、これを負極材料として用いた。この高温処理した二
一ドルコークスの真密度は2.17g/ca+’ 、d
o02は3.42入であった。そして、それ以外は実施
例1と同様にして電池を作製した。
Comparative Example 5 Crushed 21-dollar coke was treated in an electric furnace in an argon atmosphere at 1700° C. for 2 hours to produce a coke with an Lc of 98, which was used as a negative electrode material. The true density of this high temperature treated 21 dollar coke is 2.17g/ca+', d
o02 was 3.42 in. A battery was produced in the same manner as in Example 1 except for this.

実施例及び比較例で示した電池を何れも充電電流190
sAで上限電圧4.1vとして3時間定電流充電を行い
、次に160オームで終止電圧2.9vまで放電を行う
充放電サイクルを20回行い、20回目の放電容量を測
定した.次に、再びこれらの電池を前述の充電条件で充
電した後、電池を24゜Cの温度の下で720時間放置
し、その後に放電試験を行い、この放電容量も測定し、
20回目の放電容量と比較して自己放電率を算出した。
The batteries shown in the examples and comparative examples were charged at a charging current of 190
Constant current charging was performed for 3 hours at sA with an upper limit voltage of 4.1 V, and then 20 charge/discharge cycles were performed in which discharge was performed at 160 ohms to a final voltage of 2.9 V, and the discharge capacity at the 20th time was measured. Next, after charging these batteries again under the above-mentioned charging conditions, the batteries were left at a temperature of 24°C for 720 hours, and then a discharge test was conducted, and the discharge capacity was also measured.
The self-discharge rate was calculated by comparing with the 20th discharge capacity.

以上の測定の結果を表lに示す。The results of the above measurements are shown in Table 1.

第1表 第1表からLcの小さい二一ドルコークスの方が放電容
量が大きく、Lcが85入以下で320mA以上の放電
容量が得られ、Lcが85入以上では放電容量が急に小
さくなる傾向が見られる。また、Lcが大きい程、自己
放電率が低くなり、Lcが73入以上では6%以下の低
自己放電率が得られるが、Lcが73入より小さいと自
己放電率は急に高くなる傾向が見られる。このように、
自己放電と放電容量の両方を考え合わせると、Lcが7
3Å〜85人の範囲にある二一ドルコークスについての
結果を示したが、ピッチコ一クスについても同様な結果
が得られた。
Table 1 From Table 1, 21-dollar coke with a small Lc has a larger discharge capacity, and when Lc is 85 or less, a discharge capacity of 320 mA or more can be obtained, but when Lc is 85 or more, the discharge capacity suddenly decreases. A trend can be seen. In addition, the larger Lc is, the lower the self-discharge rate becomes. If Lc is 73 or more, a low self-discharge rate of 6% or less can be obtained, but if Lc is less than 73, the self-discharge rate tends to suddenly increase. Can be seen. in this way,
Considering both self-discharge and discharge capacity, Lc is 7.
Results were shown for 21 dollar coke ranging from 3 Å to 85 people, but similar results were obtained for pitch coke.

〔発明の効果〕〔Effect of the invention〕

本発明により、コークス等の炭素質材料を負極に用いる
非水電解液二次電池の従来よりの欠点であった、自己放
電が大きいという問題を解決することができた.これに
より、高エネルギー密度でサイクル特性に優れ、その上
保存性に優れた二次電池を提供できるようになり、その
工業的価値は大である。
The present invention has solved the problem of large self-discharge, which was a conventional drawback of non-aqueous electrolyte secondary batteries that use carbonaceous materials such as coke for the negative electrode. This makes it possible to provide a secondary battery with high energy density, excellent cycle characteristics, and excellent storage stability, which has great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例で適用した円筒型非水電解液二
次電池の構造を模式的に示す断面図である。 図の中で用いた符号において、 l・−−−一−−−一−−・一正極 2−−−−−−−・−・−・一負極
FIG. 1 is a cross-sectional view schematically showing the structure of a cylindrical non-aqueous electrolyte secondary battery applied in an example of the present invention. In the symbols used in the diagram, 1 - - - 1 - - 1 - - 1 positive electrode 2 - - - - - - - 1 negative electrode

Claims (1)

【特許請求の範囲】[Claims]  炭素質材料を有する負極と、リチウム塩を電解質とし
て非水溶媒に溶解した非水電解液とを有する非水電解液
二次電池において、前記炭素質材料のX線回折における
C軸方向の結晶厚みLcが73Å〜85Åの範囲にある
ことを特徴とする非水電解液二次電池。
In a nonaqueous electrolyte secondary battery having a negative electrode having a carbonaceous material and a nonaqueous electrolyte dissolved in a nonaqueous solvent using a lithium salt as an electrolyte, the crystal thickness in the C-axis direction in X-ray diffraction of the carbonaceous material A nonaqueous electrolyte secondary battery characterized in that Lc is in the range of 73 Å to 85 Å.
JP22843089A 1989-09-05 1989-09-05 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3179459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22843089A JP3179459B2 (en) 1989-09-05 1989-09-05 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22843089A JP3179459B2 (en) 1989-09-05 1989-09-05 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH0393162A true JPH0393162A (en) 1991-04-18
JP3179459B2 JP3179459B2 (en) 2001-06-25

Family

ID=16876363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22843089A Expired - Fee Related JP3179459B2 (en) 1989-09-05 1989-09-05 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3179459B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5468571A (en) * 1992-11-19 1995-11-21 Sanyo Electric Co., Ltd. Secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014121505A (en) * 2012-12-21 2014-07-03 Kokusai Shoji Co Ltd Finger-ring rice paddle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5468571A (en) * 1992-11-19 1995-11-21 Sanyo Electric Co., Ltd. Secondary battery

Also Published As

Publication number Publication date
JP3179459B2 (en) 2001-06-25

Similar Documents

Publication Publication Date Title
JP4072126B2 (en) Electrode active material, electrode, lithium ion secondary battery, method for producing electrode active material, and method for producing lithium ion secondary battery
JPH04147573A (en) Nonaqueous electrolyte secondary battery
JP3282189B2 (en) Non-aqueous electrolyte secondary battery
JP2001243943A (en) Non-aqueous electrolyte secondary battery
JPH04249073A (en) Non-aqueous electrolyte secondary battery
JPH06302320A (en) Nonaqueous electrolyte secondary battery
JP4591674B2 (en) Lithium ion secondary battery
JPH1131513A (en) Nonaqueous electrolyte secondary battery
JP7122653B2 (en) Non-aqueous electrolyte secondary battery
JP3748843B2 (en) Organic electrolyte secondary battery
JP2001023685A (en) Electrolyte and secondary battery using it
JP2000243449A (en) Nonaqueous electrolyte secondary battery
JP2007157538A (en) Battery
US20020197531A1 (en) Negative electrode active material and nonaqueous electrolyte battery
JP7182198B2 (en) Nonaqueous electrolyte secondary battery, electrolyte solution, and method for manufacturing nonaqueous electrolyte secondary battery
JP3306906B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JPH10270079A (en) Nonaqueous electrolyte battery
JP3158412B2 (en) Lithium secondary battery
JPH0393162A (en) Nonaqueous electrolyte secondary battery
JP2730641B2 (en) Lithium secondary battery
JP2002203551A (en) Non-aqueous electrolyte battery
JP3580511B2 (en) Organic electrolyte secondary battery
JP2506572Y2 (en) Lithium ion secondary battery
JPH0434855A (en) Spiral type non-aqueous electrolyte battery
JP3663694B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees