JPH0393135A - Color picture tube - Google Patents

Color picture tube

Info

Publication number
JPH0393135A
JPH0393135A JP22855689A JP22855689A JPH0393135A JP H0393135 A JPH0393135 A JP H0393135A JP 22855689 A JP22855689 A JP 22855689A JP 22855689 A JP22855689 A JP 22855689A JP H0393135 A JPH0393135 A JP H0393135A
Authority
JP
Japan
Prior art keywords
electrode
focusing
electron beam
auxiliary electrode
focusing electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22855689A
Other languages
Japanese (ja)
Other versions
JP2938476B2 (en
Inventor
Hiroshi Suzuki
弘 鈴木
Koichi Sugawara
浩一 菅原
Noboru Tominaga
富永 登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP22855689A priority Critical patent/JP2938476B2/en
Priority to US07/576,260 priority patent/US5061881A/en
Priority to GB9019234A priority patent/GB2236613B/en
Priority to CN90108375.5A priority patent/CN1021264C/en
Publication of JPH0393135A publication Critical patent/JPH0393135A/en
Application granted granted Critical
Publication of JP2938476B2 publication Critical patent/JP2938476B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To display a picture with good resolution over the whole area of the fluorescent screen by installing a generating means of an axial asymmetrical lens electric field and by generating a lens electric field which becomes a diverging type in the horizontal direction and a focusing type in the vertical direction. CONSTITUTION:Longitudinal electron beam through holes 4a-4c and long sideways electron beam through holes 5a-5c are made in the end face at a second focusing electrode side of a first focusing electrode 4 and in the end face at a first focusing electrode side of a second focusing electrode 5 respectively as a generating means of an axial asymmetrical lens electric field. As a result of an increase in a deflection angle of an electron beam, therefore, a potential difference is produced between a first auxiliary electrode 18 and a second auxiliary electrode 19 and between the second auxiliary electrode 19 and the first focusing electrode 4, respectively. The potential difference generates an axial asymmetrical lens which is a diverging type in the horizontal direction and a focusing type in the vertical direction. It is thereby possible to generate a beam spot almost in a circle over the whole area of a fluorescent screen and get a good resolution over the whole area thereof.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、蛍光体スクリーン面の全域において高い解像
度が得られるように構成したカラー受像管装置に関する
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a color picture tube device configured to provide high resolution over the entire area of a phosphor screen.

従来の技術 カラー受像管装置の解像度特性は、ビームスポットの大
きさおよび形状に大きく依存する。すなわち、電子ビー
ムの射突によって蛍光体スクリーン面上に生成されるビ
ームスポットが径小にしてかつ真円に近いものでなけれ
ば、良好な解像度特性を得ることができない。
The resolution characteristics of prior art color picture tube devices are highly dependent on the size and shape of the beam spot. That is, good resolution characteristics cannot be obtained unless the beam spot generated on the phosphor screen surface by the impact of the electron beam has a small diameter and is close to a perfect circle.

しかし、電子銃から蛍光体スクリーン面にいたる電子ビ
ーム軌道は、電子ビームの偏向角度の増大に伴い長大と
なるので、蛍光体スクリーン面の中央部において径小に
してかつ真円のビームスポットが得られる最適フォーカ
ス電圧に保つと、蛍光体スクリーン面の周辺部ではオー
バフオーカスの状態となり、周辺部で径小なビームスポ
ットしたがって良好な解像度を得ることができなくなる
However, the electron beam trajectory from the electron gun to the phosphor screen surface becomes longer as the deflection angle of the electron beam increases. If the optimal focus voltage is maintained at the optimum focus voltage, the periphery of the phosphor screen will be in an overfocus state, and a beam spot will be small in diameter at the periphery, making it impossible to obtain good resolution.

そこで、電子ビームの偏向角度の増大に伴いフォーカス
電圧を高め、主レンズ作用を弱めるいわゆるダイナミッ
クフォーカス方式が採用されているのであるが、同方式
は以下に述べるようにインライン型カラー受像管の駆動
には適しない。すなわち、3つの電子ビーム放射部を水
平一直線上に配列してなるインライン型カラー受像管で
は、セルフコンバーゼンス効果を得るために水平偏向磁
界分布をビンクッション状に、そして、垂直偏向磁界分
布をバレル状にそれぞれ歪ませているので、ここを通過
する3電子ビームは水平方向で発散作用を、そして、垂
直方向では集束作用をそれぞれ受け、横長扁平の断面形
状となる。
Therefore, a so-called dynamic focus method is used, which increases the focus voltage as the deflection angle of the electron beam increases and weakens the main lens action.As described below, this method is suitable for driving in-line color picture tubes. is not suitable. In other words, in an in-line color picture tube in which three electron beam emitters are arranged horizontally in a straight line, the horizontal deflection magnetic field distribution is shaped like a bottle cushion, and the vertical deflection magnetic field distribution is shaped like a barrel, in order to obtain a self-convergence effect. Since the electron beams are each distorted in the horizontal direction, the three electron beams passing through the electron beams are subjected to a diverging effect in the horizontal direction and a converging effect in the vertical direction, resulting in a horizontally long and flat cross-sectional shape.

前記発散作用は、電子ビームの偏向角度の増大に伴い電
子ビーム軌道が長大となってビームスポットがオーバフ
ォーカスとなるのを打ち消す向きに作用するので、ビー
ムスポットは水平方向に関しては、全偏向期間を通じ最
適のフォーカス状態に保てる。しかし、垂直方向に関し
ては、前記集束作用が加わるのでオーバフオーカスの度
を増し、ビームスポットに長いヘイズ部を伴う結果とな
って解像度が損なわれる。このオーバフオーカスを前述
のダイナミックフォーカス方式で補正しようとすると、
ビームスポットは水平方向にアンダーフォーカスとなっ
てしまい、適正な補正効果が得られない。
The divergence effect acts in a direction that cancels out the overfocus of the beam spot due to the elongation of the electron beam trajectory as the deflection angle of the electron beam increases. Maintains optimal focus. However, in the vertical direction, since the focusing effect is added, the degree of overfocus increases, resulting in a long haze portion in the beam spot, resulting in a loss of resolution. If you try to correct this overfocus using the dynamic focus method described above,
The beam spot becomes underfocused in the horizontal direction, making it impossible to obtain an appropriate correction effect.

かかる課題は、たとえば特開昭61−99249号公報
に記述されている発明によってかなり改善できる。この
発明のカラー受像管では第9図に示すように、険極1 
a.l b,I Cs制御格子電極2、加速電極3、第
1集束電極4、第2集束電極5および最終加速電極6を
順次に配列してなり、第10図の(a) , (b)に
示すように第1集束電極4は第2集束電極5側の端面に
縦長の電子ビーム通過孔4a,4b,4cを、そして、
第2集束電極5は第1集束電極側の端面に横長の電子ビ
ーム通過孔6a.5b,5cをそれぞれ有し、第2集束
電極5と最終加速電極6とは主レンズ生成用の電子ビー
ム通過孔5d,5e,5fおよび6 a = 6 b 
v6cを有している。そして、第1集束電極4に一定の
フォーカス電圧V I”ocが、最終加速電極6に一定
の高電圧が、そして、第2集束電極5にはフォーカス電
圧Vfocから電子ビームの偏向角度の増大に伴い漸次
に上昇するダイナミック電圧がそれぞれ印加される。前
記ダイナミック電圧の印加によって第2集束電極5の電
位が第l集束電極4の電位VPOCよりも高くなると、
両電極4,5間には縦長の電子ビーム通過孔4a,4b
,4cおよび横長の電子ビーム通過孔5 a = 5 
b + 5 cによる四極レンズ電界が生成されるとと
もに、第2集束電極5と最終加速電極6との電位差が減
少するので、主レンズのレンズ作用が弱まる。これら二
つの作用によって、蛍光体スクリーン面の周辺部に偏向
された電子ビームによるビームスポットは、水平方向で
最適のフォーカス状態を保ちながら垂直方向でヘイズ部
を伴わなくなる。なお、図中の7はダイナミック電圧発
生回路を示す。
This problem can be considerably improved by the invention described in, for example, Japanese Unexamined Patent Publication No. 61-99249. In the color picture tube of this invention, as shown in FIG.
a. l b, I Cs control grid electrode 2, accelerating electrode 3, first focusing electrode 4, second focusing electrode 5, and final accelerating electrode 6 are arranged in sequence, as shown in (a) and (b) in Fig. 10. As shown, the first focusing electrode 4 has vertically elongated electron beam passing holes 4a, 4b, 4c on the end surface on the second focusing electrode 5 side, and
The second focusing electrode 5 has a horizontally elongated electron beam passage hole 6a on the end face on the first focusing electrode side. 5b and 5c, respectively, and the second focusing electrode 5 and the final accelerating electrode 6 have electron beam passing holes 5d, 5e, 5f and 6a = 6b for main lens generation.
It has v6c. Then, a constant focus voltage V I"oc is applied to the first focusing electrode 4, a constant high voltage is applied to the final acceleration electrode 6, and a constant high voltage is applied to the second focusing electrode 5 from the focus voltage Vfoc to increase the deflection angle of the electron beam. A dynamic voltage that gradually increases accordingly is applied.When the potential of the second focusing electrode 5 becomes higher than the potential VPOC of the first focusing electrode 4 due to the application of the dynamic voltage,
Between both electrodes 4 and 5 are vertically elongated electron beam passing holes 4a and 4b.
, 4c and a horizontally elongated electron beam passage hole 5 a = 5
A quadrupole lens electric field is generated by b + 5 c, and the potential difference between the second focusing electrode 5 and the final accelerating electrode 6 is reduced, so that the lens action of the main lens is weakened. Due to these two effects, the beam spot of the electron beam deflected to the periphery of the phosphor screen surface maintains an optimal focus state in the horizontal direction and is free from haze in the vertical direction. Note that 7 in the figure indicates a dynamic voltage generation circuit.

発明が解決しようとする課題 しかし、電子ビームの走査線とシャドウマスクの孔配列
との干渉によるモアレ(明暗の縞模様)が、生じやすく
なる。モアレは一種の画像ノイズで、これが発生ずると
目に著しく不快感を与えるのみならず画質が悪くなる。
Problems to be Solved by the Invention However, moiré (bright and dark striped patterns) is likely to occur due to interference between the scanning line of the electron beam and the hole arrangement of the shadow mask. Moiré is a type of image noise, and when it occurs, it not only causes extreme discomfort to the eyes, but also deteriorates the image quality.

モアレはビームスポットの垂直径が小さいほど発生しや
すいので、電子銃の設計にあたっては、ビームスポット
の垂直径が小さくなり過ぎないように配慮しなければな
らない。ところが、かかる従来のカラー受像管装置にお
いて、蛍光体スクリーン面の各位置でビームスポットが
最適フォーカスとなるに足る変化量のダイナミック電圧
を第2集束電極に印加すると、第11図に示すように蛍
光体スクリーン面8の周辺部でのビームスポット9がへ
イズ部を有しなくなるものの、高輝度コア部のみで生成
された横長の形状となり、垂直径が小さくなる。そして
、ビームスポット径がもっとも小さくなる低ビーム電流
時に垂直径が過小となるので、モアレが発生しやすくな
る。
Moire is more likely to occur as the vertical diameter of the beam spot becomes smaller, so when designing an electron gun, care must be taken to prevent the vertical diameter of the beam spot from becoming too small. However, in such a conventional color picture tube device, when a dynamic voltage with a change amount sufficient to bring the beam spot into optimal focus at each position on the phosphor screen surface is applied to the second focusing electrode, the fluorescence changes as shown in FIG. Although the beam spot 9 at the periphery of the body screen surface 8 no longer has a haze portion, it takes on a horizontally elongated shape generated only by the high-brightness core portion, and its vertical diameter becomes small. Since the vertical diameter becomes too small at a low beam current when the beam spot diameter is the smallest, moiré is likely to occur.

電子ビームが水平方向にも垂直方向にも最適のフォーカ
ス状態にあるにもかかわらずビームスポットが横長形状
となるのは、前述した従来例での電子レンズ系の性質に
由来している。これを第l2図によって説明すると、同
図は水平方向への偏向作用を受け、かつ、ダイナミック
電圧の印加により最適のフォーカス状態に保たれている
電子ビームの挙動を示すもので、同図の(a)は水平方
向の断面、同図の(ωは電子ビームの偏向方向に沿って
切断した垂直方向断面を示している。10はレンズ系の
物点に相当する、電子ビームのクロスオーバ部、11は
電子ビームの包路線、12は主レンズ、l3は第1集束
電極と第2集束電極との間に生成される軸非対称レンズ
電界の水平方向での集束作用を表わす凸レンズ、14は
同じく垂直方向での発散作用を表わす凹レンズ、15は
セルフコンバーゼンス用偏向ヨークの水平偏向磁界によ
る水平方向での発散作用を表わす凹レンズ、16は同磁
界による垂直方向での集束作用を表わす凸レンズ、17
は偏向ビームの射突点を示す。
The reason why the beam spot has a horizontally elongated shape even though the electron beam is in the optimal focus state both in the horizontal and vertical directions is due to the properties of the electron lens system in the conventional example described above. This can be explained with reference to Figure 12. This figure shows the behavior of an electron beam that is deflected in the horizontal direction and maintained in an optimal focus state by applying a dynamic voltage. a) is a horizontal cross section, and in the same figure (ω is a vertical cross section cut along the deflection direction of the electron beam. 10 is a crossover portion of the electron beam, which corresponds to the object point of the lens system; 11 is the envelope line of the electron beam, 12 is the main lens, l3 is a convex lens representing the horizontal focusing action of the axially asymmetric lens electric field generated between the first focusing electrode and the second focusing electrode, and 14 is also the vertical direction. 15 is a concave lens that represents a diverging action in the horizontal direction due to the horizontal deflection magnetic field of the self-convergence deflection yoke; 16 is a convex lens that represents a focusing action in the vertical direction due to the same magnetic field; 17
indicates the impact point of the deflected beam.

このように、物点たるクロスオーバ部10側から、水平
方向では凸レンズ、凸レンズおよび凹レンズが順次に並
び、垂直方向では凹レンズ、凸レンズおよび凸レンズが
順次に並ぶ光学レンズ系に置き換えて表わすことができ
、水平方向および垂直方向で最適にフォーカスさせよう
とすると、水平方向では最終段が凹レンズなので入射角
α−■が小さくならざるを得ない。
In this way, it can be replaced with an optical lens system in which a convex lens, a convex lens, and a concave lens are sequentially arranged in the horizontal direction, and a concave lens, a convex lens, and a convex lens are sequentially arranged in the vertical direction from the side of the crossover section 10, which is the object point, In order to achieve optimal focusing in the horizontal and vertical directions, the incident angle α-■ must become small in the horizontal direction because the final stage is a concave lens.

このようなレンズ系であるので、物点たるクロスオーバ
部10から中心軸に対しαなる角度で出射してレンズ系
を通り、蛍光体スクリーン面8上の射突点l7に入る電
子ビームの入射角をα′とすると、その関係は水平方向
と垂直方向とで異なったものとなり、垂直方向入射角α
′Vは水平方向入射角α′Hよりも大きくなる。一般に
、電子レンズ系の倍率Mは、M=(α/α−> fで表
わすことができ、ここで、V,V=はそれぞれクロスオ
ーバ部と蛍光体スクリーン面での電位である。したがっ
て、前記レンズ系の水平方向での倍与えられる。
With such a lens system, the electron beam is emitted from the crossover section 10, which is the object point, at an angle α with respect to the central axis, passes through the lens system, and enters the incident point l7 on the phosphor screen surface 8. If the angle is α′, the relationship is different in the horizontal and vertical directions, and the vertical incidence angle α
'V becomes larger than the horizontal incidence angle α'H. Generally, the magnification M of an electron lens system can be expressed as M=(α/α−>f, where V and V= are the potentials at the crossover portion and the phosphor screen surface, respectively. Therefore, The horizontal direction of the lens system is given by:

そして、前述のようにα−v>α′Hであるから、Mv
<MHとなる。すなわち、前述の従来例のカラー受像管
装置においては、垂直方向でのレンズ倍率が水平方向で
のレンズ倍率よりも小さくなってしまうので、ビームス
ポットの垂直径が小さくなり、モアレが発生しやすくな
る。
Then, since α−v>α′H as mentioned above, Mv
<MH. In other words, in the conventional color picture tube device mentioned above, the lens magnification in the vertical direction is smaller than the lens magnification in the horizontal direction, so the vertical diameter of the beam spot becomes smaller and moire is more likely to occur. .

#狗を解決1ろ昏めの木岐 本発明は上述の諸点に留意してなされたもので、本発明
によると、一定の加速電圧が印加される加速電極、一定
のフォーカス重圧が印加される第1集束電極および前記
フォーカス電圧から電子ビームの偏向角度の増大に伴い
漸次に上昇するダ〆 イナミック電圧が印加される第2集束電極を、制御格子
電極と最終加速電極との間に順次に配設し、前記第1集
束電極と前記第2集束電極との相対向端面の少なくとも
一方に軸非対称レンズ電界生成手段を設け、水平方向で
は集束形に、そして、垂直方向では発散形になるレンズ
電界を両集束電極間に生成せしめるカラー受像管装置に
おいて、前記第1集束電極に接続された平板状の第1補
助電極および前記第2菓束t極に接統された平板状の第
2M助電極を、前記加速電極と前記第1集束電極との間
に順次に配設し、前記第1補助電極および前記第2補助
電極の相対向端面の少なくとも一方ならびに前記第2補
助N.極および前記第1集束電極の相対向端面の少なく
とも一方に軸非対称レンズ電界生成手段を設け、水平方
向では発散形に、そして、垂直方向では集束形になるレ
ンズ電界を生成せしめる。
#Solving the dog 1. Kiki, who is in the process of solving the dog The present invention has been made with the above-mentioned points in mind. A first focusing electrode and a second focusing electrode to which a dynamic voltage is applied that gradually increases from the focus voltage as the deflection angle of the electron beam increases are sequentially arranged between the control grid electrode and the final acceleration electrode. An axially asymmetrical lens electric field generating means is provided on at least one of opposing end surfaces of the first focusing electrode and the second focusing electrode, and the lens electric field is formed in a converging form in the horizontal direction and in a diverging form in the vertical direction. In the color picture tube device, a flat-shaped first auxiliary electrode is connected to the first focusing electrode, and a flat-shaped second M auxiliary electrode is connected to the second confectionery t-pole. , are sequentially arranged between the accelerating electrode and the first focusing electrode, and at least one of the opposing end surfaces of the first auxiliary electrode and the second auxiliary electrode and the second auxiliary N. An axially asymmetric lens electric field generating means is provided on at least one of the opposing end faces of the pole and the first focusing electrode to generate a lens electric field that is diverging in the horizontal direction and converging in the vertical direction.

作用 このように構成すると、第1集束電極と第2集束電極と
の間に生成される軸非対称レンズ電界の前段に、これと
は逆方向の、つまり、水平方向においては発散形で、垂
直方向では集束形の軸非対称レンズ電界が生成されるの
で、水平方向および垂直方向におけるレンズ倍率をほぼ
等しくなすことができ、蛍光体スクリーン面の全域にわ
たって円形に近いビームスポットを生成させ得、良好な
解像度を前記全域で得ることができるのみならず、ビー
ムスポットの垂直径が過小にならなくなるので、モアレ
の発生を防止できる。
Effect With this configuration, in the preceding stage of the axially asymmetrical lens electric field generated between the first focusing electrode and the second focusing electrode, an electric field is generated in the opposite direction, that is, it is diverging in the horizontal direction and in the vertical direction. Since a focused axially asymmetric lens electric field is generated, the lens magnification in the horizontal and vertical directions can be made almost equal, and a nearly circular beam spot can be generated over the entire area of the phosphor screen surface, resulting in good resolution. Not only can this be obtained over the above range, but also the vertical diameter of the beam spot will not become too small, so moiré can be prevented from occurring.

実施例 第1図に示すように、水平一直線上にインライン配列さ
れた3個の陰極1a,lb,lcは制御格子電極2、加
速電極3、第1補助電極18、第2補助電極19、第1
集束電極4、第2集束電極5および最終加速電極6とと
もにインライン型電子銃を構成している。
Embodiment As shown in FIG. 1, three cathodes 1a, lb, and lc arranged horizontally in line are a control grid electrode 2, an acceleration electrode 3, a first auxiliary electrode 18, a second auxiliary electrode 19, and a second auxiliary electrode 19. 1
The focusing electrode 4, the second focusing electrode 5, and the final acceleration electrode 6 constitute an in-line electron gun.

第1集束電極4の第2集束電極側の端面に縦長の電子ビ
ーム通過孔4a,4b,4cが、そして、第2集束電極
5の第l集束電極側の端面に横長の電子ビーム通過孔5
a,5b.5cがそれぞれ軸非対称レンズ電界生成手段
として設けられていて、第2集束電極5の最終加速電極
6側の端面および最終加速電極6の第2集束電極4例の
端面に主レンズ電界生成用の電子ビーム通過孔5d.5
e,5fおよび6a.6b.6cがそれぞれ設けられて
いるのは従来どおりである。
Vertically elongated electron beam passing holes 4a, 4b, 4c are formed on the end surface of the first focusing electrode 4 on the second focusing electrode side, and horizontally elongated electron beam passing holes 5 are formed on the end surface of the second focusing electrode 5 on the lth focusing electrode side.
a, 5b. 5c are respectively provided as axis asymmetric lens electric field generating means, and electrons for generating the main lens electric field are provided on the end face of the second focusing electrode 5 on the final acceleration electrode 6 side and on the end face of the four second focusing electrodes of the final acceleration electrode 6. Beam passage hole 5d. 5
e, 5f and 6a. 6b. 6c are provided respectively as in the conventional case.

第1補助電極18は第1集束電極4に接続されているの
で、これに一定のフォーカス電圧VFocがかかる。第
2補助電極19は第2集束電極5に接続されているので
、これには電子ビームの偏向角度の増大に伴い、フォー
カス電圧v focから漸次に上昇するダイナミック電
圧がかかる。
Since the first auxiliary electrode 18 is connected to the first focusing electrode 4, a constant focus voltage VFoc is applied thereto. Since the second auxiliary electrode 19 is connected to the second focusing electrode 5, it is subjected to a dynamic voltage that gradually increases from the focus voltage v foc as the deflection angle of the electron beam increases.

第1補助電極18、第2補助電極19および第1集束電
極4の第2補助電極側端面には、第2図の(a) . 
(b) . (C)に示すような非円形の電子ビーム通
過孔18a,18b.18c ; 19a.19b,1
9c;4d.4e,4fが、それぞれ軸非対称レンズ電
界生成手段として設けられている。ただし、第1補助電
極18の電子ビーム通過孔18a,18b.18cはい
ずれも、加速電極3例の面で円形の開口を有し、かつ、
第2補助電極19例の面に横長矩形の開口を有している
。また、第2補助電極19の電子ビーム通過孔19a,
19b.19cは垂直方向に長軸を置く矩形状のもので
、第1集束電極4の第2補助電極19側の端面に設けら
れた電子ビーム通過孔4d,4e,4fは水平方向に長
軸を置く矩形状のものである。
The end surfaces of the first auxiliary electrode 18, the second auxiliary electrode 19, and the first focusing electrode 4 on the second auxiliary electrode side are as shown in FIG. 2(a).
(b). Non-circular electron beam passing holes 18a, 18b as shown in (C). 18c; 19a. 19b,1
9c; 4d. 4e and 4f are provided as axis-asymmetric lens electric field generating means, respectively. However, the electron beam passing holes 18a, 18b of the first auxiliary electrode 18. Each of 18c has a circular opening on the surface of the three accelerating electrodes, and
The surface of the second auxiliary electrode 19 has a horizontally long rectangular opening. Further, the electron beam passing hole 19a of the second auxiliary electrode 19,
19b. Reference numeral 19c has a rectangular shape with its long axis in the vertical direction, and electron beam passing holes 4d, 4e, and 4f provided in the end face of the first focusing electrode 4 on the second auxiliary electrode 19 side have their long axes in the horizontal direction. It is rectangular.

したがって、電子ビームの偏向角度が増大するのに伴い
、第1補助電極l8と第2補助電極19との間および第
2補助電極19と第1集束電極4との間のそれぞれに電
位差が生じ、水平方向に発散形の、そして、垂直方向に
は集束形の軸非対称レンズ電界が生成される。
Therefore, as the deflection angle of the electron beam increases, potential differences occur between the first auxiliary electrode l8 and the second auxiliary electrode 19 and between the second auxiliary electrode 19 and the first focusing electrode 4, respectively. An axially asymmetric lens electric field is generated that is horizontally divergent and vertically convergent.

この電子レンズ系における電子ビームの挙動を第3図の
参照により説明すると、同図の(a)は水平方向の断面
を、同図の(b)は偏向作用を受けた電子ビームに沿っ
て切断した垂直方向断面をそれぞれ示すもので、第1補
助電極、第2補助電極および第1集束電極によって生成
される軸非対称レンズ電界の水平方向での発散レンズ作
用を凹レンズ20で、垂直方向での集束レンズ作用を凸
レンズ21でそれぞれ示してある。なお、図中のその他
の符号は前述のものに対応させてある。
To explain the behavior of the electron beam in this electron lens system with reference to Figure 3, (a) in the figure is a cross section in the horizontal direction, and (b) in the figure is a cross section along the deflected electron beam. The horizontal cross-sections of the axially asymmetric lens electric fields generated by the first auxiliary electrode, the second auxiliary electrode, and the first focusing electrode are focused by the concave lens 20 in the vertical direction. The lens action is shown by a convex lens 21, respectively. Note that other symbols in the figure correspond to those described above.

クロスオーバ部10から中心軸に対しαなる角度で出射
した電子ビームは、凹レンズ20および凸レンズ2lに
よって水平方向では発散の、そして、垂直方向では集束
の各レンズ作用を受ける。
The electron beam emitted from the crossover section 10 at an angle α with respect to the central axis is subjected to lens effects of divergence in the horizontal direction and convergence in the vertical direction by the concave lens 20 and the convex lens 2l.

水平方向においてはαよりも大きい角度に拡げられ、垂
直方向においてはαより小さな角度に狭められるため、
電子レンズ系を通過して蛍光体スクリーン面8の水平偏
向射突点17に入射する電子ビームの垂直方向入射角α
一■が、水平方向入射角α′Hよりも大きくなり過ぎる
ことはなくなり、α=+”α′Hとなすことができる。
In the horizontal direction, it expands to an angle larger than α, and in the vertical direction, it narrows to an angle smaller than α, so
Vertical incident angle α of the electron beam that passes through the electron lens system and enters the horizontal deflection point 17 of the phosphor screen surface 8
1 is no longer too large than the horizontal incidence angle α'H, and α=+”α′H.

つまり、垂直方向のレンズ倍率Mvと水平方向のレンズ
倍率MHとをMYΣMHとなすことができる。
That is, the lens magnification Mv in the vertical direction and the lens magnification MH in the horizontal direction can be set to MYΣMH.

なお、以上は電子ビームが蛍光体スクリーン面上で水平
方向に偏向された場合について述べたが、垂直方向に偏
向された場合にも前述と同様の説明があてはまる。
Although the above description has been made of the case where the electron beam is deflected in the horizontal direction on the phosphor screen surface, the same explanation as above applies also to the case where the electron beam is deflected in the vertical direction.

以上説明したように、ダイナミック電圧の印加によって
ビームスポットの水平方向と垂直方向とを常に最適のフ
ォーカス状態に維持できるとともに、水平方向と垂直方
向との各レンズ系の倍率もほぼ同じに保てるので、蛍光
体スクリーン面の周辺部に偏向された電子ビームによる
ビームスポットといえども第4図に示すように円形に近
いものとなし得るのであり、ビームスポットの垂直径が
過小となることが避けられ、高解像度であってかつモア
レを生じない良質の画像を蛍光体スクリーン面の全域に
映出させることが可能となる。
As explained above, by applying a dynamic voltage, the beam spot can always be kept in the optimal focus state in the horizontal and vertical directions, and the magnification of each lens system in the horizontal and vertical directions can also be kept almost the same. Even the beam spot caused by the electron beam deflected to the periphery of the phosphor screen surface can be made into a nearly circular shape as shown in FIG. 4, and the vertical diameter of the beam spot can be prevented from becoming too small. It becomes possible to project a high-quality image with high resolution and no moiré over the entire area of the phosphor screen surface.

110゜偏向角型カラー受像管を使用した実施例におい
て、最終加速電圧を30kV,第1集束電極および第1
補助電極へのフォーカス電圧を8kVとした場合、第2
集束電極および第2補助電極19に対するダイナミック
電圧は、前記フォーカス電圧30KVを基準(OV)に
して約1.2KVである。すなわち、ダイナミック電圧
の最大振幅の適値は約1.2KVである。
In an example using a 110° deflection rectangular color picture tube, the final accelerating voltage was 30 kV, the first focusing electrode and the first
When the focus voltage to the auxiliary electrode is 8 kV, the second
The dynamic voltage for the focusing electrode and the second auxiliary electrode 19 is approximately 1.2 KV with respect to the focus voltage of 30 KV. That is, a suitable value for the maximum amplitude of the dynamic voltage is about 1.2 KV.

主レンズの実効的な口径が7.8mであるとき、両集束
電極間に生成される軸非対称レンズから主レンズにいた
る距離は12.5mとなすことができ、この場合、両集
束電極の矩形の電子ビーム通過孔の各寸法は、その長辺
を4.5mm,短辺を3.6Mとなすことができる。ま
た、前記軸非対称レンズから第2補助電極にいたる距離
は、1 9. 5+m+に、第2補助電極から陰極にい
たる距離は4wwmに設定できる。
When the effective aperture of the main lens is 7.8 m, the distance from the axially asymmetric lens generated between both focusing electrodes to the main lens can be 12.5 m, and in this case, the rectangular shape of both focusing electrodes The dimensions of the electron beam passage hole can be such that the long side is 4.5 mm and the short side is 3.6 mm. Further, the distance from the axis asymmetric lens to the second auxiliary electrode is 19. 5+m+, and the distance from the second auxiliary electrode to the cathode can be set to 4wwm.

第1補助電極の電子ビーム通過孔の横長開口部、第2補
助電極の縦長の電子ビーム通過孔および第1集束電極4
の第2補助電極側端面の横長ビーム通過孔は、蛍光体ス
クリーン面の周辺部へ偏向された電子ビームの垂直人射
角α゛Vと水平入射角α″Vとが、α−H”α′Vとな
るように選ばれる。
The horizontally long opening of the electron beam passing hole of the first auxiliary electrode, the vertically long electron beam passing hole of the second auxiliary electrode, and the first focusing electrode 4
The horizontally elongated beam passing hole on the end face on the second auxiliary electrode side allows the vertical incident angle α゛V and horizontal incidence angle α″V of the electron beam deflected to the peripheral part of the phosphor screen surface to be α−H”α 'V.

第1補助電極と第2補助電極との間の距離および第2補
助電極と第1集束電極との間の距離がいずれも0.5m
+sである場合、前記横長開口部、縦長の電子ビーム通
過孔および横長ビーム通過孔の各長辺は3m〜4鴫、短
辺は1m〜2IIII1に設定できる。
The distance between the first auxiliary electrode and the second auxiliary electrode and the distance between the second auxiliary electrode and the first focusing electrode are both 0.5 m.
+s, the long sides of the horizontally elongated opening, the vertically elongated electron beam passing hole, and the horizontally elongated beam passing hole can be set to 3 m to 4 m, and the short sides can be set to 1 m to 2 III1.

前述の実施例では、第2補助電極に縦長の電子ビーム通
過孔を、そして、第l集束電極の第2補助電極側の端面
に横長の電子ビーム通過孔をそれぞれ有せしめたが、第
5図に示す他の実施例では、第2補助電極19の電子ビ
ーム通過孔19a〜19cを第6図の(a)に示すよう
に同電極の板厚中間部で円形に、そして、両面では縦長
の開口ならしめており、第1集束電極4の第2補助電極
側端面における電子ビーム通過孔4d.4e,4fは、
第6図の(b)に示すように横長の開口を伴う円形なら
しめている。
In the above-mentioned embodiment, the second auxiliary electrode had a vertically elongated electron beam passage hole, and the end face of the first focusing electrode on the second auxiliary electrode side had a horizontally elongated electron beam passage hole. In another embodiment shown in FIG. 6, the electron beam passing holes 19a to 19c of the second auxiliary electrode 19 are circular in the middle part of the plate thickness of the second auxiliary electrode 19, and vertically elongated on both sides, as shown in FIG. 6(a). The electron beam passing hole 4d. 4e, 4f are
As shown in FIG. 6(b), it has a circular shape with a horizontally long opening.

また、第7図に示す他の実施例においては、第IM助電
極18、第2M助電極19および第1集束電極4の第2
補助電極側端面の電子ビーム通過孔をそれぞれ円形とな
すとともに、第8図の(a)〜(C)に示すように第1
補助電極18の第2補助電極側の面および第1集束電極
4の第2補助電極側の面に、当該電極の各電子ビーム通
過孔の上下位置から水平方向に突出した一対の衝立状部
分18d,18e.L8f ;4g.4h,4iをそれ
ぞれ有せしめる一方、第2補助電極19の両面に、同電
極の各電子ビーム通過孔の左右位置から垂直方向に突出
した一対の衝立状部分19d.19e,19f ; 1
9g.19h,19iを、それぞれ軸非対称レンズ電界
生成手段として有せしめている。
In another embodiment shown in FIG. 7, the second IM auxiliary electrode 18, the second M auxiliary electrode 19, and the second
The electron beam passage holes on the end face of the auxiliary electrode are each circular, and the first
A pair of screen-like portions 18d are provided on the surface of the auxiliary electrode 18 on the second auxiliary electrode side and the surface of the first focusing electrode 4 on the second auxiliary electrode side, projecting horizontally from the upper and lower positions of each electron beam passage hole of the electrode. , 18e. L8f; 4g. 4h, 4i, respectively, and on both sides of the second auxiliary electrode 19, a pair of screen-like portions 19d. 19e, 19f; 1
9g. 19h and 19i are respectively provided as axis asymmetric lens electric field generating means.

このように、水平方向および垂直方向の衝立状部分を互
いに向かい合わせて配置すると、非円形の電子ビーム通
過孔を向かい合わせて配置した場合と同様の軸非対称レ
ンズ電界を生成させることができる。
In this manner, by arranging the horizontal and vertical screen portions facing each other, it is possible to generate an axially asymmetrical lens electric field similar to the case where non-circular electron beam passage holes are arranged facing each other.

発明の効果 以上のように本発明によると、蛍光体スクリーン面の全
域にわたって良好な解像度で画像表示できるのみならず
モアレの発生を防止でき、また、第1および第2補助電
極は第1および第2の集束電極に管内でそれぞれ接続で
きるので、電極端子引き出し用ビンを増設する必要がな
い。
Effects of the Invention As described above, according to the present invention, it is possible not only to display an image with good resolution over the entire area of the phosphor screen surface, but also to prevent the occurrence of moiré. Since the two focusing electrodes can be connected to each other within the tube, there is no need to add an electrode terminal extraction bin.

【図面の簡単な説明】[Brief explanation of drawings]

第l図は本発明を実施したカラー受像管装置の電子銃の
横断面図、第2図の(a)〜(C)は同電子銃の各電極
の側面図、第3図の(a) , (b)は同装置におけ
る電子ビームに作用する水平・垂直方向のレンズ電界を
光学レンズ系に置き換えて描いた図、第4図は同装置の
蛍光体スクリーン面上に生成されるビームスポットの形
状を模式的に示す平面図、第5図は本発明の他の実施例
における電子銃の要部の横断面図、第6図の(a) ,
 (b)は同電子銃の各電極の側面図、第7図は本発明
のいま一つの実施例における電子銃の要部の横断面図、
第8図の(a)〜(C)は同電子銃の各電極の側面図、
第9図は従来のカラー受像管装置の電子銃の横断面図、
第10図の(a) , (b)は同電子銃の各電極の側
面図、第11図は同装置の蛍光体スクリーン面上に生成
されるビームスポットの形状を模式的に示す平面図、第
12図の(a) . (b)は同装置における電子ビー
ムに作用する水平・垂直方向のレンズ電界を光学レンズ
系に置き換えて描いた図である。 2・・・・・・制御格子電極、3・・・・・・加速電極
、4・・・・・・第1集束電極、5・・・−・・第2集
束電極、6・・・・・・最終加速電極、8・・・・・・
蛍光体スクリーン面、18・・・・・・第1補助電極、
19・・・・・・第2補助電極。
Fig. 1 is a cross-sectional view of an electron gun of a color picture tube device embodying the present invention, Fig. 2 (a) to (C) are side views of each electrode of the electron gun, and Fig. 3 (a) , (b) is a diagram depicting the horizontal and vertical lens electric fields acting on the electron beam in the same device replaced by an optical lens system, and Figure 4 shows the beam spot generated on the phosphor screen surface of the same device. FIG. 5 is a plan view schematically showing the shape, FIG. 5 is a cross-sectional view of a main part of an electron gun in another embodiment of the present invention, and FIG.
(b) is a side view of each electrode of the electron gun, and FIG. 7 is a cross-sectional view of the main parts of the electron gun in another embodiment of the present invention.
(a) to (C) in Fig. 8 are side views of each electrode of the electron gun;
FIG. 9 is a cross-sectional view of an electron gun of a conventional color picture tube device.
10(a) and 10(b) are side views of each electrode of the electron gun, and FIG. 11 is a plan view schematically showing the shape of the beam spot generated on the phosphor screen surface of the device. (a) in Figure 12. (b) is a diagram in which the horizontal and vertical lens electric fields acting on the electron beam in the same device are replaced with an optical lens system. 2...Control grid electrode, 3...Acceleration electrode, 4...First focusing electrode, 5...Second focusing electrode, 6...・・Final accelerating electrode, 8・・・・・・
Phosphor screen surface, 18...first auxiliary electrode,
19...Second auxiliary electrode.

Claims (2)

【特許請求の範囲】[Claims] (1)一定の加速電圧が印加される加速電極、一定のフ
ォーカス電圧が印加される第1集束電極および前記フォ
ーカス電圧から電子ビームの偏向角度の増大に伴い漸次
に上昇するダイナミック電圧が印加される第2集束電極
を、制御格子電極と最終加速電極との間に順次に配設し
、前記第1集束電極と前記第2集束電極との相対向端面
の少なくとも一方に軸非対称レンズ電界生成手段を設け
、水平方向では集束形に、そして、垂直方向では発散形
になるレンズ電界を両集束電極間に生成せしめるカラー
受像管装置において、前記第1集束電極に接続された平
板状の第1補助電極および前記第2集束電極に接続され
た平板状の第2補助電極を、前記加速電極と前記第1集
束電極との間に順次に配設し、前記第1補助電極および
前記第2補助電極の相対向端面の少なくとも一方ならび
に前記第2補助電極および前記第1集束電極の相対向端
面の少なくとも一方に軸非対称レンズ電界生成手段を設
け、水平方向では発散形に、そして、垂直方向では集束
形になるレンズ電界を生成せしめることを特徴とするカ
ラー受像管装置。
(1) An accelerating electrode to which a constant accelerating voltage is applied, a first focusing electrode to which a constant focusing voltage is applied, and a dynamic voltage that gradually increases from the focusing voltage as the deflection angle of the electron beam increases. A second focusing electrode is sequentially arranged between the control grid electrode and the final acceleration electrode, and an axially asymmetric lens electric field generating means is provided on at least one of the opposing end surfaces of the first focusing electrode and the second focusing electrode. In a color picture tube device that generates a lens electric field that is convergent in the horizontal direction and divergent in the vertical direction between both focusing electrodes, a flat first auxiliary electrode is connected to the first focusing electrode. and a flat second auxiliary electrode connected to the second focusing electrode is sequentially arranged between the accelerating electrode and the first focusing electrode, and the first auxiliary electrode and the second auxiliary electrode are An axially asymmetric lens electric field generating means is provided on at least one of the opposing end surfaces and at least one of the opposing end surfaces of the second auxiliary electrode and the first focusing electrode, and has a divergent type in the horizontal direction and a convergent type in the vertical direction. A color picture tube device characterized by generating a lens electric field.
(2)前記第1補助電極の電子ビーム通過孔は水平方向
に長軸を置く非円形の開口を第2補助電極側の端面に有
し、前記第2補助電極の電子ビーム通過孔は当該電極の
板厚中間部で円形にして、垂直方向に長軸を置く非円形
の開口を両端面に有し、前記第1集束電極の電子ビーム
通過孔は水平方向に長軸を置く非円形の開口を第2補助
電極側の端面に有していることを特徴とする請求項1記
載のカラー受像管装置。
(2) The electron beam passing hole of the first auxiliary electrode has a non-circular opening with its long axis in the horizontal direction on the end surface on the second auxiliary electrode side, and the electron beam passing hole of the second auxiliary electrode has a non-circular opening with its long axis in the horizontal direction. The electron beam passage hole of the first focusing electrode is a non-circular opening having a long axis in the horizontal direction, and the electron beam passing hole of the first focusing electrode is a non-circular opening with the long axis in the horizontal direction. 2. The color picture tube device according to claim 1, further comprising: a second auxiliary electrode on an end surface thereof on the second auxiliary electrode side.
JP22855689A 1989-09-04 1989-09-04 Color picture tube equipment Expired - Lifetime JP2938476B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP22855689A JP2938476B2 (en) 1989-09-04 1989-09-04 Color picture tube equipment
US07/576,260 US5061881A (en) 1989-09-04 1990-08-31 In-line electron gun
GB9019234A GB2236613B (en) 1989-09-04 1990-09-04 In-line electron gun
CN90108375.5A CN1021264C (en) 1989-09-04 1990-09-04 In-line electron gun

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22855689A JP2938476B2 (en) 1989-09-04 1989-09-04 Color picture tube equipment

Publications (2)

Publication Number Publication Date
JPH0393135A true JPH0393135A (en) 1991-04-18
JP2938476B2 JP2938476B2 (en) 1999-08-23

Family

ID=16878225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22855689A Expired - Lifetime JP2938476B2 (en) 1989-09-04 1989-09-04 Color picture tube equipment

Country Status (1)

Country Link
JP (1) JP2938476B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260101A (en) * 1992-04-27 1994-09-16 Nec Corp Electron gun for inline type color picture tube
JPH0721934A (en) * 1992-05-19 1995-01-24 Samsung Display Devices Co Ltd Electron gun for color cathode-ray tube
US5760550A (en) * 1995-09-05 1998-06-02 Matsushita Electronics Corporation Color picture tube
US5831399A (en) * 1995-12-27 1998-11-03 Matsushita Electronics Corporation Color picture tube apparatus
US5864203A (en) * 1994-03-25 1999-01-26 Mitsubishi Denki Kabushiki Kaisha Dynamic focusing electron gun
US6133685A (en) * 1996-07-05 2000-10-17 Matsushita Electronics Corporation Cathode-ray tube
US6194824B1 (en) 1997-08-04 2001-02-27 Matsushita Electronics Corporation Color cathode ray tube with astigmatism correction system
US6201345B1 (en) 1997-08-27 2001-03-13 Matsushita Electronics Corporation Cathode-ray tube with electron beams of increased current density
US6320333B1 (en) 1997-02-07 2001-11-20 Matsushita Electric Industrial Co., Ltd. Color picture tube
KR100322443B1 (en) * 1994-04-01 2002-06-20 김순택 Electron gun for color cathode ray tube
US6486624B2 (en) 2000-07-26 2002-11-26 Kabushiki Kaisha Toshiba Cathode ray tube apparatus
US6570349B2 (en) 2001-01-09 2003-05-27 Kabushiki Kaisha Toshiba Cathode-ray tube apparatus
US6707244B2 (en) 2001-05-28 2004-03-16 Kabushiki Kaisha Toshiba Cathode-ray tube apparatus
WO2004064105A1 (en) * 2003-01-15 2004-07-29 Kabushiki Kaisha Toshiba Cathode ray tube device
US7071606B2 (en) 2001-04-06 2006-07-04 Matsushita Electric Industrial Co., Ltd. Color picture tube

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260101A (en) * 1992-04-27 1994-09-16 Nec Corp Electron gun for inline type color picture tube
JPH0721934A (en) * 1992-05-19 1995-01-24 Samsung Display Devices Co Ltd Electron gun for color cathode-ray tube
US5864203A (en) * 1994-03-25 1999-01-26 Mitsubishi Denki Kabushiki Kaisha Dynamic focusing electron gun
KR100322443B1 (en) * 1994-04-01 2002-06-20 김순택 Electron gun for color cathode ray tube
US5760550A (en) * 1995-09-05 1998-06-02 Matsushita Electronics Corporation Color picture tube
US5831399A (en) * 1995-12-27 1998-11-03 Matsushita Electronics Corporation Color picture tube apparatus
US6133685A (en) * 1996-07-05 2000-10-17 Matsushita Electronics Corporation Cathode-ray tube
US6320333B1 (en) 1997-02-07 2001-11-20 Matsushita Electric Industrial Co., Ltd. Color picture tube
US6194824B1 (en) 1997-08-04 2001-02-27 Matsushita Electronics Corporation Color cathode ray tube with astigmatism correction system
US6201345B1 (en) 1997-08-27 2001-03-13 Matsushita Electronics Corporation Cathode-ray tube with electron beams of increased current density
US6486624B2 (en) 2000-07-26 2002-11-26 Kabushiki Kaisha Toshiba Cathode ray tube apparatus
US6570349B2 (en) 2001-01-09 2003-05-27 Kabushiki Kaisha Toshiba Cathode-ray tube apparatus
US7071606B2 (en) 2001-04-06 2006-07-04 Matsushita Electric Industrial Co., Ltd. Color picture tube
US6707244B2 (en) 2001-05-28 2004-03-16 Kabushiki Kaisha Toshiba Cathode-ray tube apparatus
WO2004064105A1 (en) * 2003-01-15 2004-07-29 Kabushiki Kaisha Toshiba Cathode ray tube device
US7030548B2 (en) 2003-01-15 2006-04-18 Kabushiki Kaisha Toshiba Cathode-ray tube apparatus

Also Published As

Publication number Publication date
JP2938476B2 (en) 1999-08-23

Similar Documents

Publication Publication Date Title
JP3576217B2 (en) Picture tube device
JP2938476B2 (en) Color picture tube equipment
JPH07134953A (en) Color picture tube
JP2928282B2 (en) Color picture tube equipment
JP2000182534A (en) Dynamic focusing electron gun for color cathode-ray tube
JPH08148095A (en) Electron gun and color cathode-ray tube provided with this electron gun
JP3672390B2 (en) Electron gun for color cathode ray tube
JP4120177B2 (en) Color picture tube
JP3315173B2 (en) Color picture tube equipment
JP3164834B2 (en) Color picture tube equipment
JP3040268B2 (en) Color picture tube equipment
JP2644809B2 (en) Electron gun structure for color picture tube
JP3074176B2 (en) Electron gun for cathode ray tube
JP2878731B2 (en) Color picture tube equipment
KR100232156B1 (en) Electron gun for color crt
JP3457545B2 (en) Cathode ray tube
JPH07262935A (en) Cathode-ray tube and electron gun
KR100447659B1 (en) A Electron Gun for Color CRT
JP3056497B2 (en) Color picture tube equipment
JP2960498B2 (en) Color picture tube equipment
KR20040076117A (en) Electron gun for Color Cathode Ray Tube
JPH06162958A (en) Color cathode-ray tube device
JP2001084920A (en) Electron gun for color picture tube
JPH02189842A (en) Electron gun for color image receiving tube
JPH0221095B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 11