JP2001084920A - Electron gun for color picture tube - Google Patents

Electron gun for color picture tube

Info

Publication number
JP2001084920A
JP2001084920A JP26562499A JP26562499A JP2001084920A JP 2001084920 A JP2001084920 A JP 2001084920A JP 26562499 A JP26562499 A JP 26562499A JP 26562499 A JP26562499 A JP 26562499A JP 2001084920 A JP2001084920 A JP 2001084920A
Authority
JP
Japan
Prior art keywords
focusing electrode
electrode
focusing
lens
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26562499A
Other languages
Japanese (ja)
Inventor
Kazuhide Ioki
二英 井置
Hideo Muranishi
秀雄 村西
Takashi Watanabe
隆 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electronics Corp
Priority to JP26562499A priority Critical patent/JP2001084920A/en
Publication of JP2001084920A publication Critical patent/JP2001084920A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve focus over an entire screen and reduce circuit cost by reducing a dynamic voltage. SOLUTION: From a cathode side to a fluorescent screen side, first focusing electrode 4, second focusing electrode 5, third focusing electrode 6, and fourth focusing electrode 7 are arranged one after another. To the first focusing electrode 4 and the third focusing electrode 6, a uniform focusing voltage is applied, and to the second focusing electrode 5 and the fourth focusing electrode 7, a dynamic voltage raised with the increase in the deflection amount of an electron beam is applied. Among the second focusing electrode 5, a third focusing electrode 6, and the fourth focusing electrode 7, a unipotential quadrupole lens is formed having a diverging action in a horizontal direction and a focusing action in the vertical direction, and the unipotential quadrupole lens is combined with a main lens whose horizontal lens integrity is increased more than its vertical one.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、インライン型のカ
ラー受像管用電子銃に関するものであり、比較的容易か
つ安価に蛍光体スクリーン面の全域において高解像度が
得られ、かつダイナミック電圧を低減することで回路コ
ストの削減を図るものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an in-line type electron gun for a color picture tube, which is capable of relatively easily and inexpensively obtaining high resolution over the entire surface of a phosphor screen and reducing a dynamic voltage. To reduce the circuit cost.

【0002】[0002]

【従来の技術】3つの電子ビーム放射部を水平一直線上
に配列したカラー受像管では、セルフコンバーゼンス構
成とするために水平磁界をピンクッション状に、垂直磁
界をバレル状にそれぞれ歪ませている。このため、偏向
磁界を通過する3本の電子ビームは水平方向で発散作用
を、垂直方向では集束作用を受ける結果となり、水平方
向に長軸を置く横長偏平の断面形状となる。一般に、電
子ビームの偏向角度が増すのに伴い電子ビーム軌道が長
大化し、ビームスポットはオーバフォーカスとなる。し
かし、その一部が前記発散作用によって打ち消されるの
で、ビームスポットは水平方向に関しては全偏向期間を
通じてジャストフォーカス状態に保たれる。しかし、垂
直方向に関しては前記集束作用が加わるので、オーバフ
ォーカスの度合いが増してビームスポットに長いヘイズ
を伴う結果となり、画面周辺部の解像度が低下する。
2. Description of the Related Art In a color picture tube in which three electron beam radiating portions are arranged in a horizontal straight line, a horizontal magnetic field is distorted in a pincushion shape and a vertical magnetic field is distorted in a barrel shape in order to form a self-convergence configuration. As a result, the three electron beams passing through the deflecting magnetic field undergo a diverging action in the horizontal direction and a focusing action in the vertical direction, resulting in a horizontally flat cross-sectional shape having a long axis in the horizontal direction. Generally, as the deflection angle of the electron beam increases, the trajectory of the electron beam increases, and the beam spot becomes overfocused. However, since a part of the beam spot is canceled by the divergence, the beam spot is kept in the just focus state in the horizontal direction throughout the entire deflection period. However, in the vertical direction, since the above-mentioned focusing action is added, the degree of overfocus increases, resulting in a long haze in the beam spot, and the resolution of the peripheral portion of the screen decreases.

【0003】上記課題は特開平6−187921号公報
に記載の発明により改善される。電子銃は、図7に示す
ように陰極1a、1b、1c、制御格子電極2、加速電
極3、第1集束電極4、第2集束電極5、第1集束電極
4に接続された第3集束電極6、第2集束電極5に接続
された第4集束電極7および最終加速電極8を順次に配
設した構成となる。図8に示すように、第2集束電極5
は第3集束電極6側の端面に縦長の電子ビーム通過孔5
a、5b、5cを有し、第3集束電極6は第2集束電極
5側の端面に横長の電子ビーム通過孔6a、6b、6c
を、そして、第4集束電極7側の端面には縦長の電子ビ
ーム通過孔6d、6e、6fを有し、第4集束電極7は
第3集束電極6側の端面に横長の電子ビーム通過孔7
a、7b、7cを有し、第4集束電極7と最終加速電極
8とは、相対する端面に主レンズ生成用の非円形の電子
ビーム通過孔7d、7e、7fおよび8a、8b、8c
をそれぞれ有している。
[0003] The above problem is improved by the invention described in Japanese Patent Application Laid-Open No. Hei 6-187921. As shown in FIG. 7, the electron gun has a cathode 1a, 1b, 1c, a control grid electrode 2, an acceleration electrode 3, a first focusing electrode 4, a second focusing electrode 5, and a third focusing connected to the first focusing electrode 4. The electrode 6, the fourth focusing electrode 7 connected to the second focusing electrode 5, and the final accelerating electrode 8 are sequentially arranged. As shown in FIG. 8, the second focusing electrode 5
Are vertically elongated electron beam passage holes 5 in the end face on the third focusing electrode 6 side.
a, 5b, and 5c, and the third focusing electrode 6 has laterally elongated electron beam passage holes 6a, 6b, and 6c at the end face on the second focusing electrode 5 side.
The end face on the fourth focusing electrode 7 side has vertically elongated electron beam passage holes 6d, 6e, 6f, and the fourth focusing electrode 7 has a horizontally elongated electron beam passing hole on the end face on the third focusing electrode 6 side. 7
a, 7b, 7c, and the fourth focusing electrode 7 and the final accelerating electrode 8 are provided with non-circular electron beam passage holes 7d, 7e, 7f and 8a, 8b, 8c for generating a main lens at opposing end surfaces.
Respectively.

【0004】第1集束電極4と第3集束電極6とに一定
の第1フォーカス電圧Vfが印加され、最終加速電極8
に一定の高電圧Vaが印加される。そして、第2集束電
極5および第4集束電極7に対しては、第1フォーカス
電圧Vfから出発して電子ビームの偏向角度の増大に伴
いしだいに上昇するダイナミック電圧が印加される。電
子ビームがその偏向角度を高めるのに伴い、第4集束電
極7の電位が第3集束電極6の電位よりもしだいに高く
なるので、両電極6、7間に4極レンズ電界(軸非対称
レンズ電界)が生成される。この4極レンズ電界はそこ
を通過する電子ビームに水平方向で集束形の、垂直方向
で発散形のレンズ作用を与える。また、第4集束電極7
の電位が最終加速電極8の電位に近づくので、両電極
7、8間に生成される主レンズ(軸非対称レンズ電界)
によるレンズ作用が弱まる。そして、これら2つの作用
により水平方向で最適のフォーカス状態を保ちながら、
垂直方向でヘイズを伴わないビームスポットを生成し、
蛍光体スクリーン面の全域において高い解像度を得るこ
とができる。
A constant first focus voltage Vf is applied to the first focusing electrode 4 and the third focusing electrode 6, and the final accelerating electrode 8
Is applied with a constant high voltage Va. Then, to the second focusing electrode 5 and the fourth focusing electrode 7, a dynamic voltage is applied which starts from the first focus voltage Vf and gradually increases as the deflection angle of the electron beam increases. As the electron beam increases its deflection angle, the potential of the fourth focusing electrode 7 gradually becomes higher than the potential of the third focusing electrode 6. An electric field) is generated. The quadrupole lens field imparts a horizontally focused and vertically divergent lens effect to the electron beam passing therethrough. Also, the fourth focusing electrode 7
Is closer to the potential of the final accelerating electrode 8, so that the main lens (axially asymmetric lens electric field) generated between the two electrodes 7, 8
Lens action is weakened. Then, while maintaining the optimal focus state in the horizontal direction by these two actions,
Generates a beam spot without haze in the vertical direction,
High resolution can be obtained over the entire area of the phosphor screen.

【0005】電子ビームの偏向角度が大きくなるのに伴
い、第2集束電極5の電位が第3集束電極6の電位より
も高くなるので、両電極5、6間にも4極レンズ電界が
生成される。この4極レンズ電界は第3、第4集束電極
6、7間に生成される4極レンズ電界とは逆特性になる
ので、このレンズ系における水平方向および垂直方向の
レンズ倍率をほぼ同等となし得るのであり、従って、ビ
ームスポットの垂直方向径が過小となることによるモア
レの発生を防ぐことができる。
As the deflection angle of the electron beam increases, the potential of the second focusing electrode 5 becomes higher than the potential of the third focusing electrode 6, so that a four-pole lens electric field is generated between the electrodes 5 and 6. Is done. Since the quadrupole lens electric field has the opposite characteristic to the quadrupole lens electric field generated between the third and fourth focusing electrodes 6 and 7, the lens magnifications in the horizontal and vertical directions in this lens system are not substantially equal. Therefore, it is possible to prevent the occurrence of moire due to the vertical diameter of the beam spot being too small.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、カラー
受像管の大型化、高偏向角度化、および画面フラット化
に伴い、セルフコンバーゼンス構成とするための水平、
垂直磁界の歪みが従来より大きくなる。このためビーム
スポットの垂直方向でのオーバーフォーカス度合いが増
し、従来構成の第3、第4集束電極6、7間に生成され
る、縦長孔と横長孔とを交叉させたクロススロット孔の
4極レンズ構造を用いる場合では、形成できるレンズ強
度に限度があるために非点収差の大きな主レンズと組み
合わせることができず、ヘイズを伴わないビームスポッ
トを生成するためにはダイナミック電圧を著しく増大さ
せる必要があり、ダイナミック電圧生成の回路構成も複
雑となりコスト高を招く。
However, with the increase in the size of the color picture tube, the increase in the deflection angle, and the flatness of the screen, the horizontal and the horizontal for the self-convergence structure have been developed.
The distortion of the vertical magnetic field becomes larger than before. For this reason, the degree of overfocus in the vertical direction of the beam spot increases, and the four poles of the cross-slot hole which is formed between the third and fourth focusing electrodes 6 and 7 of the conventional configuration and intersects the vertically long hole and the horizontally long hole. When a lens structure is used, it cannot be combined with a main lens with large astigmatism due to the limited lens strength that can be formed, and the dynamic voltage must be significantly increased to generate a beam spot without haze. Therefore, the circuit configuration for generating the dynamic voltage is complicated, and the cost is increased.

【0007】また、4極レンズ強度を強くする方法とし
て、衝立状部材を電子ビーム通過孔のまわりに設ける構
造が考案されているが、この場合、部品のコスト高や部
品製作が難しくなる問題があった。
As a method of increasing the strength of the quadrupole lens, a structure in which a partition member is provided around the electron beam passage hole has been devised. In this case, however, there is a problem that the cost of parts and the production of parts become difficult. there were.

【0008】本発明は、比較的低いダイナミック電圧を
用いて画面周辺部に最適フォーカスのビームスポットを
生成することを目的とし、高偏向角度あるいは画面が完
全フラットのカラー受像管装置におけるダイナミック電
圧発生回路の複雑化および製造コストの増大を防止する
ことを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to generate a beam spot having an optimum focus at the periphery of a screen by using a relatively low dynamic voltage, and to provide a dynamic voltage generating circuit in a color picture tube device having a high deflection angle or a completely flat screen. It is an object of the present invention to prevent complication of the device and increase in manufacturing cost.

【0009】[0009]

【課題を解決するための手段】本発明においては、制御
電極と最終加速電極との間に加速電極、第1集束電極、
第2集束電極、第1集束電極に接続された第3集束電
極、第2集束電極に接続された第4集束電極を順次に配
設する。第1集束電極および第3集束電極には一定の第
1フォーカス電圧を印加する一方、第2集束電極および
第4集束電極には画面中央で第1フォーカス電圧よりも
低く、かつ、電子ビームの偏向角度の増大に伴い漸次に
上昇する第2フォーカス電圧を印加する。第1集束電極
および第2集束電極間では水平方向に集束形、垂直方向
に発散形の第1の軸非対称レンズ電界を形成し、第2集
束電極、第3集束電極および第4集束電極でユニポテン
シャル型のより強い第2の軸非対称レンズ電界(水平方
向に発散形、垂直方向に集束形の軸非対称レンズ電界)
を形成する。また、水平方向で強く垂直方向では弱い集
束レンズ作用の第3の軸非対称レンズ電界を、第4集束
電極と最終加速電極との間に生成する。
According to the present invention, an acceleration electrode, a first focusing electrode, and a first focusing electrode are provided between a control electrode and a final acceleration electrode.
A second focusing electrode, a third focusing electrode connected to the first focusing electrode, and a fourth focusing electrode connected to the second focusing electrode are sequentially arranged. A constant first focus voltage is applied to the first focusing electrode and the third focusing electrode, while the second focusing electrode and the fourth focusing electrode are lower than the first focusing voltage at the center of the screen and deflect the electron beam. A second focus voltage that gradually increases as the angle increases is applied. A first axially asymmetric lens electric field of a horizontal focusing type and a vertical diverging type is formed between the first focusing electrode and the second focusing electrode, and the second focusing electrode, the third focusing electrode and the fourth focusing electrode form a uniaxial lens. Potential type stronger second axially asymmetric lens electric field (horizontal divergence type, vertical focusing type axially asymmetric lens electric field)
To form In addition, a third axially asymmetric lens electric field having a focusing lens action that is strong in the horizontal direction and weak in the vertical direction is generated between the fourth focusing electrode and the final acceleration electrode.

【0010】このような構成にすると、主にビームスポ
ットの非点収差補正に関与する第2集束電極、第3集束
電極および第4集束電極で形成されるユニポテンシャル
形の4極レンズ(第2の軸非対称レンズ)のレンズ強度
が、従来のクロススロット形の軸非対称レンズよりレン
ズ作用が強いため、ダイナミック電圧を低減することが
できる。
With such a configuration, a unipotential type quadrupole lens (the second focusing electrode formed by the second focusing electrode, the third focusing electrode, and the fourth focusing electrode, which is mainly involved in correcting the astigmatism of the beam spot) is used. Lens strength) is stronger than that of a conventional cross-slot type asymmetric lens, so that the dynamic voltage can be reduced.

【0011】[0011]

【発明の実施の形態】図1に本発明の電子銃の電極構成
を示す。陰極1a、1b、1c、制御電極2、加速電極
3、第1集束電極4、第2集束電極5、第1集束電極4
に接続された第3集束電極6、第2集束電極5に接続さ
れた第4集束電極7および最終加速電極8を順次に配設
した構成となる。図2に示すように、第1集束電極4の
第2集束電極5側の端面に横長の電子ビーム通過孔4
a、4b、4cを有し、第2集束電極5の第1集束電極
4側の端面に縦長の電子ビーム通過孔5a、5b、5c
を有し、第2集束電極5の第3集束電極6側の端面には
横長の電子ビーム通過孔5d、5e、5fを有する。第
3集束電極6は板状電極に縦長の電子ビーム通過孔6
a、6b、6cを有し、第4集束電極7の第3集束電極
6側の端面に横長の電子ビーム通過孔7a、7b、7c
を有する。
FIG. 1 shows an electrode configuration of an electron gun according to the present invention. Cathodes 1a, 1b, 1c, control electrode 2, accelerating electrode 3, first focusing electrode 4, second focusing electrode 5, first focusing electrode 4
, A fourth focusing electrode 7 connected to the second focusing electrode 5 and a final accelerating electrode 8 are sequentially arranged. As shown in FIG. 2, a horizontally elongated electron beam passage hole 4 is formed in the end face of the first focusing electrode 4 on the second focusing electrode 5 side.
a, 4b, and 4c, and vertically elongated electron beam passage holes 5a, 5b, and 5c are formed in the end face of the second focusing electrode 5 on the first focusing electrode 4 side.
The second focusing electrode 5 has laterally elongated electron beam passing holes 5d, 5e, and 5f on the end face on the third focusing electrode 6 side. The third focusing electrode 6 has a vertically long electron beam passage hole 6
a, 6b, and 6c, and the laterally elongated electron beam passage holes 7a, 7b, and 7c are formed in the end face of the fourth focusing electrode 7 on the third focusing electrode 6 side.
Having.

【0012】第1集束電極4および第3集束電極6には
一定の第1フォーカス電圧を印加する一方、第2集束電
極5および第4集束電極7には第1フォーカス電圧より
も低い電圧値から出発し、かつ、電子ビームの偏向角度
の増大に伴ってしだいに上昇する第2フォーカス電圧を
印加し、第2集束電極5、第3集束電極6および第4集
束電極7の間でユニポテンシャル形(3つの電極からな
り、両端の電極電位が同じで、中央の電極電位が異なる
タイプ)の強い4極レンズ電界(水平方向に発散形、垂
直方向に集束形の軸非対称レンズ電界)を形成すること
により必要とするダイナミック電圧の低減を図るように
する。
A constant first focus voltage is applied to the first focusing electrode 4 and the third focusing electrode 6, while a second focusing electrode 5 and the fourth focusing electrode 7 are applied with a voltage value lower than the first focusing voltage. A second focus voltage which starts and gradually increases as the deflection angle of the electron beam increases is applied, and a unipotential type is applied between the second focusing electrode 5, the third focusing electrode 6 and the fourth focusing electrode 7. A strong quadrupole lens electric field (horizontal divergence type, vertically converging type axially asymmetric lens electric field) of a type (consisting of three electrodes and having the same electrode potential at both ends and different center electrode potentials) Thus, the required dynamic voltage can be reduced.

【0013】本実施の形態では、第1集束電極4および
第2集束電極間5で形成される第1の4極レンズと第2
集束電極5、第3集束電極6および第4集束電極7間で
形成される第2の4極レンズとで構成される2つの4極
レンズ系を有しているが、主レンズに近接する第2の4
極レンズが主にビームスポットの非点収差補正に関与
し、この第2の4極レンズ作用の強度をより強くするこ
とで、必要とするダイナミック電圧の低減を図ることが
できる。
In this embodiment, the first quadrupole lens formed between the first focusing electrode 4 and the second focusing electrode 5 and the second
It has two quadrupole lens systems composed of a focusing electrode 5, a third focusing electrode 6, and a second quadrupole lens formed between the fourth focusing electrode 7, but the second quadrupole lens system is provided near the main lens. 2 of 4
The polar lens is mainly involved in correcting the astigmatism of the beam spot, and the required dynamic voltage can be reduced by increasing the strength of the second quadrupole lens action.

【0014】第2集束電極5、第3集束電極6および第
4集束電極7間で形成されるユニポテンシャル形の第2
の4極レンズは、従来の2個の電極で構成されるクロス
スロット孔の4極レンズに比べ、3個の電極の孔径、板
厚、電極間ギャップ等の設計パラメータが増える。この
ため、4極レンズの強度を調整する余地が増え、容易に
4極レンズの強度を強めることができる。また、3個の
電極はプレス孔あけ加工を施しているので比較的容易に
部品製作が可能であり、衝立状部材を設けた構造に比べ
て部品の加工コストも安価であるという特徴がある。
The second unipotential type second electrode formed between the second focusing electrode 5, the third focusing electrode 6 and the fourth focusing electrode 7.
In the four-pole lens of the first embodiment, design parameters such as a hole diameter, a plate thickness, and an inter-electrode gap of three electrodes are increased as compared with a conventional four-pole lens having a cross slot formed of two electrodes. Therefore, there is more room for adjusting the strength of the quadrupole lens, and the strength of the quadrupole lens can be easily increased. In addition, since the three electrodes are subjected to press hole forming, parts can be manufactured relatively easily, and the processing cost of the parts is lower than that of the structure provided with the partition members.

【0015】本実施の形態では、第2集束電極5の第3
集束電極6側の端面には横長の電子ビーム通過孔5d、
5e、5fを、第4集束電極7の第3集束電極6側の端
面には横長の電子ビーム通過孔7a、7b、7cをそれ
ぞれ設けている。第3集束電極6は板状電極に基本的に
縦長の電子ビーム通過孔6a、6b、6cを設けている
が、電子銃組立を容易にするため、第3集束電極6の孔
形状を丸孔と縦長矩形孔とを組み合わせたような形状の
孔6d、6e、6f(図3(a))、あるいは丸孔と楔
形孔とを組み合わせたような形状の孔6g、6h、6i
(図3(b))にすることもできる。
In the present embodiment, the third focusing electrode 5
At the end face on the side of the focusing electrode 6, a horizontally long electron beam passage hole 5d,
5e, 5f, and horizontally long electron beam passage holes 7a, 7b, 7c are provided on the end face of the fourth focusing electrode 7 on the third focusing electrode 6 side. The third focusing electrode 6 is basically provided with vertically elongated electron beam passage holes 6a, 6b, 6c in the plate-like electrode. However, in order to facilitate the assembly of the electron gun, the hole shape of the third focusing electrode 6 is made a round hole. 6d, 6e, 6f (FIG. 3 (a)) in the shape of a combination of a hole and a vertically long rectangular hole, or holes 6g, 6h, 6i in the shape of a combination of a round hole and a wedge-shaped hole.
(FIG. 3B).

【0016】第1集束電極4と第2集束電極5とで形成
される第1の4極レンズは、水平方向に集束形、垂直方
向に発散形の軸非対称レンズを形成し、上記第2の4極
レンズとは逆極性であり、トータルの4極レンズ系とし
て水平方向および垂直方向のレンズ倍率をほぼ同等に
し、ビームスポットの垂直方向径が過小となることを防
ぎモアレ発生を軽減するものである。この第1の4極レ
ンズはカソード1に近い位置に配置するため、トータル
の4極レンズの非点収差量の影響が少なく、ダイナミッ
ク電圧の低減にはほとんど寄与しない。
The first quadrupole lens formed by the first focusing electrode 4 and the second focusing electrode 5 forms an axially asymmetric lens of a focusing type in the horizontal direction and a diverging type in the vertical direction. It has the opposite polarity to the quadrupole lens, and as a total quadrupole lens system, makes the lens magnification in the horizontal direction and the vertical direction almost equal, prevents the vertical diameter of the beam spot from becoming too small, and reduces the occurrence of moire. is there. Since the first quadrupole lens is arranged at a position close to the cathode 1, the effect of the total astigmatism of the quadrupole lens is small, and it hardly contributes to the reduction of the dynamic voltage.

【0017】主レンズに近接する第2集束電極5、第3
集束電極6および第4集束電極7間で構成されるユニポ
テンシャル形の4極レンズのレンズ強度を強くすること
でダイナミック電圧は低減できるが、ただ単に4極レン
ズの強度を強くするのみではフォーカス品位の画面全域
での高解像度を確保するという点で不十分である。すな
わち、主レンズ作用と4極レンズ作用とのマッチングを
取る必要がある。
The second focusing electrode 5 close to the main lens and the third focusing electrode 5
The dynamic voltage can be reduced by increasing the lens strength of the unipotential type quadrupole lens formed between the focusing electrode 6 and the fourth focusing electrode 7, but the focus quality can be reduced simply by increasing the intensity of the quadrupole lens. Is insufficient in securing high resolution over the entire screen. That is, it is necessary to match the action of the main lens with the action of the quadrupole lens.

【0018】このことに関して図4、図5を用いて説明
する。図4は、主レンズおよび2つの4極レンズのトー
タルの画面中央での水平方向(図4(a))、垂直方向
(図4(b))のレンズ作用を光学レンズのモデルで模
式的に示したものである。4極レンズの水平方向は発散
形、垂直方向は集束形であり、第2フォーカス電圧が第
1フォーカス電圧よりも低い値から出発して電子ビーム
の偏向角度の増大に伴いしだいに上昇するため、画面中
央(偏向角度0)において第1フォーカス電圧と第2フ
ォーカス電圧との電位差が最も大きくなり、4極レンズ
作用としては最大となる。このため、もし第4集束電極
7と最終加速電極8との間で生成される第3の軸非対称
レンズ(主レンズ)については非点収差が無い場合、す
なわち水平方向と垂直方向との主レンズ強度が同等とす
ると、4極レンズの影響により、電子銃全体としてのレ
ンズ倍率は、垂直方向のレンズ倍率に比べて水平方向の
レンズ倍率が著しく大きくなるため、画面中央で著しく
横長状のビームスポットとなり、水平解像度が著しく劣
化する。
This will be described with reference to FIGS. FIG. 4 is a schematic view of the lens operation in the horizontal direction (FIG. 4A) and the vertical direction (FIG. 4B) at the center of the total screen of the main lens and the two quadrupole lenses using an optical lens model. It is shown. The quadrupole lens has a divergent type in the horizontal direction and a convergent type in the vertical direction, and the second focus voltage starts from a value lower than the first focus voltage and gradually increases as the deflection angle of the electron beam increases. At the center of the screen (deflection angle 0), the potential difference between the first focus voltage and the second focus voltage is the largest, and the function of the quadrupole lens is the largest. Therefore, if the third axially asymmetric lens (main lens) generated between the fourth focusing electrode 7 and the final acceleration electrode 8 has no astigmatism, that is, the main lens in the horizontal direction and the vertical direction At the same intensity, the lens magnification of the electron gun as a whole is significantly larger in the horizontal direction than in the vertical direction due to the influence of the quadrupole lens. And the horizontal resolution is significantly degraded.

【0019】このような4極レンズ作用のみ強くすると
この弊害を避けるためには、主レンズの非点収差量を大
きくして、主レンズ作用と4極レンズ作用とのマッチン
グをとる必要がある。画面中央でほぼ真円のビームスポ
ットを得るには、図4に示すように主レンズ作用として
は水平方向のレンズ作用を垂直方向のレンズ作用よりも
強めて、4極レンズおよび主レンズのトータルで、水平
・垂直方向のレンズ倍率をほぼ同等にすることで、ほぼ
真円状のビームスポットが得ることができる。
In order to avoid this adverse effect when only the quadrupole lens function is strengthened, it is necessary to increase the amount of astigmatism of the main lens and to match the main lens function with the quadrupole lens function. In order to obtain a substantially perfect beam spot at the center of the screen, as shown in FIG. 4, the main lens action is made stronger in the horizontal lens action than in the vertical lens action, and the total of the quadrupole lens and the main lens is used. By making the lens magnifications in the horizontal and vertical directions substantially equal, a substantially perfect beam spot can be obtained.

【0020】図5は、画面周辺部に偏向した場合の光学
レンズモデルを示す。画面周辺部では、第2フォーカス
電圧が第1フォーカス電圧よりも低い値から出発して画
面周辺の末端部では第2フォーカス電圧と第1フォーカ
ス電圧とがほぼ同等となるため、実質的には4極レンズ
作用は働かない。従って、画面周辺の末端部では、主レ
ンズ作用と偏向磁界による作用(水平方向が発散形、垂
直方向が集束形)のみが働く。このため、主レンズのH
/V差を偏向磁界による集束作用のH/V差を打ち消す
ようにすれば、周辺部でも真円状のビームスポットが得
られる。
FIG. 5 shows an optical lens model when it is deflected to the periphery of the screen. In the peripheral portion of the screen, the second focus voltage starts from a value lower than the first focus voltage. In the peripheral portion of the peripheral portion of the screen, the second focus voltage and the first focus voltage are substantially equal to each other. Polar lens action does not work. Therefore, only the action of the main lens and the action of the deflecting magnetic field (divergent in the horizontal direction and convergent in the vertical direction) work at the end around the screen. For this reason, H of the main lens
If the H / V difference of the focusing action by the deflection magnetic field is canceled by the / V difference, a perfect circular beam spot can be obtained even in the peripheral portion.

【0021】本実施の形態の第2集束電極5、第3集束
電極6および第4集束電極7間で構成されるユニポテン
シャル形の4極レンズの強度は、主レンズと4極レンズ
とのマッチングをとるために従来の2個の電極で構成さ
れるクロススロット孔の4極レンズの強度に比べ約1.
5倍程度に強めているため、主レンズの非点収差量(H
V差)を、より大きくする必要がある。従来から、主レ
ンズの非点収差量(HV差)を大きくするために、最終
加速電極(陽極)8の平板型の電界補正電極81の近傍
に、一対の立体状(衝立状)あるいは矩形孔の非点収差
調整用電極10を設けている。しかし、非点収差調整の
効果のより大きな衝立状電極を設置しても所望の主レン
ズの非点収差量(約1500〔V〕)を得ることができ
ず、本実施の形態では、上記の衝立状の非点収差調整用
電極10に加え、新たに第4集束電極7の第3集束電極
6側の端面と主レンズとの間に、図2に示すような非点
収差調整用の縦長矩形孔7d、7e、7fを有する電極
を配設することにより、ほぼ所望の非点収差量を得るこ
とができている。この縦長矩形孔の電極は、第4集束電
極7の平板型の電界補正電極71と第3集束電極6側の
端面の横長矩形孔とのほぼ中間部に配置される。縦長矩
形孔でなくとも正方形孔または丸孔の場合でも、十分な
非点収差の調整は可能である。
The strength of the unipotential type quadrupole lens formed between the second focusing electrode 5, the third focusing electrode 6 and the fourth focusing electrode 7 in the present embodiment matches the strength of the main lens and the quadrupole lens. In order to reduce the intensity of a conventional four-pole lens having a cross slot hole composed of two electrodes.
Since it is increased to about 5 times, the astigmatism amount (H
V difference) needs to be made larger. Conventionally, in order to increase the amount of astigmatism (HV difference) of the main lens, a pair of three-dimensional (partition) or rectangular holes is provided near the flat type electric field correction electrode 81 of the final acceleration electrode (anode) 8. Are provided. However, a desired main lens astigmatism amount (about 1500 [V]) cannot be obtained even if a screen-shaped electrode having a greater effect of astigmatism adjustment is provided. In addition to the screen-like astigmatism adjusting electrode 10, a vertically long astigmatism adjusting vertical as shown in FIG. 2 is further provided between the end surface of the fourth focusing electrode 7 on the third focusing electrode 6 side and the main lens. By providing the electrodes having the rectangular holes 7d, 7e, 7f, it is possible to obtain a substantially desired amount of astigmatism. The electrode having the vertically elongated rectangular hole is disposed almost at the middle between the flat electric field correction electrode 71 of the fourth focusing electrode 7 and the horizontally elongated rectangular hole on the end face on the third focusing electrode 6 side. Even in the case of a square hole or a round hole instead of a vertically long rectangular hole, it is possible to sufficiently adjust astigmatism.

【0022】本発明の主要な電極寸法および電圧条件は
以下の通りである。図2の矩形孔4a、4b、4cは、
水平3.4〔mm〕、垂直1.2〔mm〕、ピッチ6.
03〔mm〕である。矩形孔5a、5b、5cは水平
1.2〔mm〕、垂直3.4〔mm〕、ピッチ6.03
〔mm〕である。矩形孔5d、5e、5fは、水平4.
75〔mm〕、垂直3.55〔mm〕、ピッチ5.62
〔mm〕である。図3の丸孔と矩形孔の組み合わせ孔6
a、6b、6cは、丸孔部はφ3.5〔mm〕、矩形孔
は水平1.5〔mm〕、垂直4.5〔mm〕、ピッチ
5.62〔mm〕である。矩形孔7a、7b、7cは、
水平4.75〔mm〕、垂直3.55〔mm〕、ピッチ
5.62〔mm〕である。矩形孔7d、7fは、水平
4.5mm、垂直4.5〔mm〕である。矩形孔7e
は、水平3.6〔mm〕、垂直6〔mm〕、ピッチ6.
0〔mm〕である。電圧条件は、Va=27.5〔k
V〕、Vg2=600〔V〕、Vfoc1=7.9〔k
V〕である。
The main electrode dimensions and voltage conditions of the present invention are as follows. The rectangular holes 4a, 4b, 4c in FIG.
Horizontal 3.4 [mm], vertical 1.2 [mm], pitch 6.
03 [mm]. The rectangular holes 5a, 5b, 5c have horizontal 1.2 [mm], vertical 3.4 [mm], and pitch 6.03.
[Mm]. The rectangular holes 5d, 5e and 5f are horizontal.
75 [mm], vertical 3.55 [mm], pitch 5.62
[Mm]. Combination hole 6 of round hole and rectangular hole in FIG.
In a, 6b, and 6c, the round hole has a diameter of 3.5 mm, the rectangular hole has a horizontal 1.5 mm, a vertical 4.5 mm, and a pitch of 5.62 mm. The rectangular holes 7a, 7b, 7c
Horizontal 4.75 [mm], vertical 3.55 [mm], pitch 5.62 [mm]. The rectangular holes 7d and 7f are 4.5 mm horizontally and 4.5 mm vertically. Rectangular hole 7e
Is horizontal 3.6 [mm], vertical 6 [mm], and pitch 6.
0 [mm]. The voltage condition is Va = 27.5 [k
V], Vg2 = 600 [V], Vfoc1 = 7.9 [k
V].

【0023】21インチ−100°偏向のコンピュータ
モニタ管に本発明と、従来の構造(クロススロット孔の
4極レンズ構造と衝立状の非点収差調整用電極によるも
の)とで、水平・垂直のダイナミック電圧を比較した。
図6(a)は画面横方向の位置(横軸)と水平ダイナミ
ック電圧Vd(縦軸)との関係を示し、曲線イは従来技
術、曲線ロは本発明をそれぞれ示す。図6(b)は画面
縦方向の位置と垂直ダイナミック電圧Vdとの関係を示
し、曲線ハは従来技術を、曲線ニは本発明をそれぞれ示
す。図6(a)より、従来の水平ダイナミック電圧が画
面周辺部(中央から200〔mm〕)において約650
〔V〕であったものが、本発明の場合は約500〔V〕
となり、約150〔V〕水平ダイナミック電圧が低くな
ることがわかる。また、図6(b)より、従来のダイナ
ミック電圧が画面周辺部(中央から150〔mm〕)に
おいて約200〔V〕であったものが、本発明の場合は
約150〔V〕まで低減することがわかる。
The present invention is applied to a computer monitor tube of 21 inches-100 degrees deflection with the present invention and a conventional structure (a quadrupole lens structure having a cross-slot hole and a screen-like astigmatism adjusting electrode). The dynamic voltages were compared.
FIG. 6A shows the relationship between the position in the horizontal direction of the screen (horizontal axis) and the horizontal dynamic voltage Vd (vertical axis). Curve A shows the prior art, and curve B shows the present invention. FIG. 6B shows the relationship between the position in the vertical direction of the screen and the vertical dynamic voltage Vd, wherein curve C represents the prior art and curve D represents the present invention. FIG. 6A shows that the conventional horizontal dynamic voltage is about 650 at the periphery of the screen (200 mm from the center).
[V], but in the case of the present invention, about 500 [V]
It can be seen that the horizontal dynamic voltage is reduced by about 150 [V]. Further, from FIG. 6B, the conventional dynamic voltage is about 200 [V] at the peripheral portion of the screen (150 [mm] from the center), but is reduced to about 150 [V] in the case of the present invention. You can see that.

【0024】[0024]

【発明の効果】以上のように本発明によると、比較的低
いダイナミック電圧を用いて画面周辺部に最適フォーカ
スのビームスポットを生成することができるものであ
り、とくに、高偏向角度あるいは画面が完全フラットの
カラー受像管装置に適用してダイナミック電圧発生回路
の複雑化および製造コストの増大を抑えることができ
る。
As described above, according to the present invention, it is possible to generate a beam spot having an optimum focus on the periphery of a screen by using a relatively low dynamic voltage. When applied to a flat color picture tube device, it is possible to suppress the complexity of the dynamic voltage generation circuit and increase in manufacturing cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電子銃の側面断面図FIG. 1 is a side sectional view of an electron gun of the present invention.

【図2】本発明の電子銃を構成する各電極の平面図FIG. 2 is a plan view of each electrode constituting the electron gun of the present invention.

【図3】同じく本発明の電子銃を構成する電極の平面図FIG. 3 is a plan view of electrodes constituting the electron gun of the present invention.

【図4】本発明の電子レンズ系での電子ビームの挙動
(無偏向時)を説明するための図
FIG. 4 is a diagram for explaining the behavior of the electron beam in the electron lens system of the present invention (when no deflection is performed).

【図5】本発明の電子レンズ系での電子ビームの挙動
(偏向時)を説明するための図
FIG. 5 is a diagram for explaining the behavior (at the time of deflection) of an electron beam in the electron lens system of the present invention.

【図6】水平方向ダイナミック電圧と垂直方向ダイナミ
ック電圧を従来技術と本発明とで比較した図
FIG. 6 is a diagram comparing the horizontal dynamic voltage and the vertical dynamic voltage between the related art and the present invention.

【図7】従来の電子銃の側面断面図FIG. 7 is a side sectional view of a conventional electron gun.

【図8】従来の電子銃を構成する電極の平面図FIG. 8 is a plan view of electrodes constituting a conventional electron gun.

【符号の説明】[Explanation of symbols]

1a〜1c 陰極 2 制御電極 3 加速電極 4 第1集束電極 5 第2集束電極 6 第3集束電極 7 第4集束電極 8 最終加速電極 10 非点収差調整用電極 1a-1c Cathode 2 Control electrode 3 Acceleration electrode 4 First focusing electrode 5 Second focusing electrode 6 Third focusing electrode 7 Fourth focusing electrode 8 Final acceleration electrode 10 Electrode for astigmatism adjustment

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 隆 大阪府高槻市幸町1番1号 松下電子工業 株式会社内 Fターム(参考) 5C041 AA03 AB07 AC05 AC26 AC35 AD02 AD03 AE01  ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Watanabe 1-1, Sachimachi, Takatsuki-shi, Osaka Matsushita Electronics Co., Ltd. F term (reference) 5C041 AA03 AB07 AC05 AC26 AC35 AD02 AD03 AE01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 管軸方向にほぼ垂直な方向に配列された
陰極と、制御電極と、加速電極と、集束電極と、最終加
速電極とから構成されるカラー受像管用電子銃におい
て、 前記集束電極を管軸方向に第1集束電極、第2集束電
極、第3集束電極、第4集束電極に4分割し、 前記第1集束電極と前記第3集束電極には一定のフォー
カス電圧を印加し、前記第2集束電極と前記第4集束電
極には前記フォーカス電圧より低い電圧値から出発して
電子ビームの偏向量の増大に応じて上昇するダイナミッ
ク電圧を印加することにより、前記第2集束電極と前記
第3集束電極と前記第4集束電極とで水平方向で発散作
用、垂直方向で集束作用となるユニポテンシャル型4極
レンズを形成することを特徴とするカラー受像管用電子
銃。
1. A color picture tube electron gun comprising a cathode, a control electrode, an accelerating electrode, a focusing electrode, and a final accelerating electrode, the cathode being arranged in a direction substantially perpendicular to the tube axis direction. Is divided into a first focusing electrode, a second focusing electrode, a third focusing electrode, and a fourth focusing electrode in the tube axis direction, and a constant focusing voltage is applied to the first focusing electrode and the third focusing electrode, The second focusing electrode and the fourth focusing electrode are applied with a dynamic voltage that starts from a voltage value lower than the focus voltage and increases with an increase in the amount of deflection of the electron beam. An electron gun for a color picture tube, wherein the third focusing electrode and the fourth focusing electrode form a unipotential type quadrupole lens having a diverging function in a horizontal direction and a focusing action in a vertical direction.
【請求項2】 前記第4集束電極と前記最終加速電極と
で形成される主レンズは、水平方向のレンズ強度が垂直
方向のレンズ強度よりも強いことを特徴とする請求項1
に記載のカラー受像管用電子銃。
2. The main lens formed by the fourth focusing electrode and the final accelerating electrode, wherein the horizontal lens intensity is higher than the vertical lens intensity.
4. The electron gun for a color picture tube according to claim 1.
【請求項3】 前記第2集束電極の前記第3集束電極と
対向する面に設けられた電子ビーム通過孔と、前記第3
集束電極に設けられた電子ビーム通過孔と、前記第4集
束電極の前記第3集束電極と対向する面に設けられた電
子ビーム通過孔のうち少なくとも1つの電子ビーム通過
孔が非軸対称の形状である、請求項2に記載のカラー受
像管用電子銃。
3. An electron beam passage hole provided on a surface of said second focusing electrode facing said third focusing electrode, said third focusing electrode comprising:
At least one of the electron beam passage holes provided in the focusing electrode and the electron beam passage holes provided in the surface of the fourth focusing electrode facing the third focusing electrode has a non-axisymmetric shape. The electron gun for a color picture tube according to claim 2, wherein
【請求項4】 前記ユニポテンシャル型4極レンズと前
記主レンズとの間に、非点収差量を調整するための縦長
矩形孔、正方形孔、丸孔のいずれかを有する電極板を備
える、請求項1または2に記載のカラー受像管用電子
銃。
4. An electrode plate having one of a vertically long rectangular hole, a square hole, and a round hole for adjusting the amount of astigmatism is provided between the unipotential type quadrupole lens and the main lens. Item 3. An electron gun for a color picture tube according to Item 1 or 2.
【請求項5】 前記第3集束電極を板状の電極とし、そ
の電子ビーム通過孔の垂直方向径が水平方向径よりも大
きい、請求項1または2に記載のカラー受像管用電子
銃。
5. The electron gun for a color picture tube according to claim 1, wherein the third focusing electrode is a plate-like electrode, and the vertical diameter of the electron beam passage hole is larger than the horizontal diameter.
JP26562499A 1999-09-20 1999-09-20 Electron gun for color picture tube Pending JP2001084920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26562499A JP2001084920A (en) 1999-09-20 1999-09-20 Electron gun for color picture tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26562499A JP2001084920A (en) 1999-09-20 1999-09-20 Electron gun for color picture tube

Publications (1)

Publication Number Publication Date
JP2001084920A true JP2001084920A (en) 2001-03-30

Family

ID=17419727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26562499A Pending JP2001084920A (en) 1999-09-20 1999-09-20 Electron gun for color picture tube

Country Status (1)

Country Link
JP (1) JP2001084920A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6472808B1 (en) * 1998-12-22 2002-10-29 Hitach, Ltd. Color cathode ray tube having electrostatic quadrupole lenses

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6472808B1 (en) * 1998-12-22 2002-10-29 Hitach, Ltd. Color cathode ray tube having electrostatic quadrupole lenses

Similar Documents

Publication Publication Date Title
JPH0360147B2 (en)
KR910007800B1 (en) Dynamic focus electron gun
JP2938476B2 (en) Color picture tube equipment
JP2928282B2 (en) Color picture tube equipment
JP2001084920A (en) Electron gun for color picture tube
JPH076707A (en) Color picture tube device
JP4120177B2 (en) Color picture tube
JP3164834B2 (en) Color picture tube equipment
JP3040268B2 (en) Color picture tube equipment
US20010045797A1 (en) Electron gun for color cathode ray tube
JP3040272B2 (en) Color picture tube equipment
JP3040269B2 (en) Color picture tube equipment
JP3040271B2 (en) Color picture tube equipment
JP3050385B2 (en) Electron gun for color picture tube
JP2563273B2 (en) Picture tube device
US6448703B1 (en) Electrode unit with inverted dynamic focus voltage applied thereto for forming quadrupole lens and dynamic focus electron gun using the same
JPH09237588A (en) Color picture tube device
KR100418938B1 (en) Electron Gun For Cathode Ray Tube
JP2962893B2 (en) In-line type electron gun
JP3056497B2 (en) Color picture tube equipment
JPS6391939A (en) Color picture tube device
JPH0221095B2 (en)
JPH02189842A (en) Electron gun for color image receiving tube
JPH0360145B2 (en)
JPH0887967A (en) Electron gun for color cathode-ray tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050628