JP3040269B2 - Color picture tube equipment - Google Patents

Color picture tube equipment

Info

Publication number
JP3040269B2
JP3040269B2 JP4313098A JP31309892A JP3040269B2 JP 3040269 B2 JP3040269 B2 JP 3040269B2 JP 4313098 A JP4313098 A JP 4313098A JP 31309892 A JP31309892 A JP 31309892A JP 3040269 B2 JP3040269 B2 JP 3040269B2
Authority
JP
Japan
Prior art keywords
focusing
electrode
focusing electrode
electron beam
horizontal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4313098A
Other languages
Japanese (ja)
Other versions
JPH06162958A (en
Inventor
康之 上田
Original Assignee
松下電子工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下電子工業株式会社 filed Critical 松下電子工業株式会社
Priority to JP4313098A priority Critical patent/JP3040269B2/en
Publication of JPH06162958A publication Critical patent/JPH06162958A/en
Application granted granted Critical
Publication of JP3040269B2 publication Critical patent/JP3040269B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、蛍光体スクリーン面の
全域において高い解像度が得られるように構成したカラ
ー受像管装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a color picture tube device constructed so that a high resolution can be obtained over the entire area of a phosphor screen.

【0002】[0002]

【従来の技術】カラー受像管装置の解像度は、ビームス
ポットの大きさおよび形状に大きく依存する。すなわ
ち、電子ビームの射突によって蛍光体スクリーン面上に
生成されるビームスポットが径小にしてかつ真円に近い
ものでなければ良好な解像度特性は得られない。
2. Description of the Related Art The resolution of a color picture tube device largely depends on the size and shape of a beam spot. That is, good resolution characteristics cannot be obtained unless the beam spot generated on the phosphor screen surface by the bombardment of the electron beam is small in diameter and close to a perfect circle.

【0003】3つの電子ビーム放射部を水平一直線上に
配列してなるカラー受像管では、セルフコンバーゼンス
構成となすために水平偏向磁界をピンクッション状に、
そして垂直偏向磁界をバレル状にそれぞれ歪ませてい
る。このため、偏向磁界を通過する3電子ビームは水平
方向で発散作用を、そして垂直方向では集束作用をそれ
ぞれ受ける結果となり、水平方向に長軸を置く横長偏平
の断面形状になる。
In a color picture tube in which three electron beam radiating portions are arranged in a horizontal straight line, a horizontal deflection magnetic field is formed into a pincushion shape in order to form a self-convergence structure.
The vertical deflection magnetic field is distorted in a barrel shape. As a result, the three electron beams passing through the deflecting magnetic field undergo a diverging action in the horizontal direction and a focusing action in the vertical direction, resulting in a horizontally oblong cross-sectional shape having a long axis in the horizontal direction.

【0004】一般に、電子ビームの偏向角度が増すのに
伴い電子ビーム軌道が長大化し、ビームスポットがオー
バフォーカス化する。しかし、これが前記発散作用によ
って打ち消されるので、ビームスポットは水平方向に関
しては全偏向期間を通じて最適のフォーカス状態に保た
れる。しかし、垂直方向に関しては前記集束作用が加わ
るので、オーバフォーカスの度が増してビームスポット
に長いヘイズ部を伴う結果となり解像度が低下する。
Generally, as the deflection angle of the electron beam increases, the trajectory of the electron beam becomes longer, and the beam spot becomes overfocused. However, since this is canceled out by the diverging effect, the beam spot is kept in the optimum focus state in the horizontal direction throughout the entire deflection period. However, in the vertical direction, since the above-mentioned focusing action is added, the degree of overfocus is increased, and the beam spot is accompanied by a long haze portion, and the resolution is reduced.

【0005】[0005]

【発明が解決しようとする課題】かかる課題は、本出願
人の出願に係る特開平3−95835号公報に記載の発
明によってかなり改善できた。しかし、最終集束電極と
最終加速電極との間に生成される3つの主レンズ電界は
水平方向にインライン配列されるので、その垂直方向径
を大きく設定できても水平方向径は大きくし難く、3つ
の主レンズ電界を通過する電子ビームは横長の断面形状
となりやすい。このため、水平方向球面収差が大とな
り、とくに大ビーム電流時における解像度がかえって低
下する。
This problem can be considerably improved by the invention described in Japanese Patent Application Laid-Open No. 3-95835 filed by the present applicant. However, since the three main lens electric fields generated between the final focusing electrode and the final accelerating electrode are arranged in-line in the horizontal direction, even if the vertical diameter can be set large, the horizontal diameter is difficult to increase. An electron beam passing through two main lens electric fields tends to have a horizontally long cross-sectional shape. For this reason, the horizontal spherical aberration becomes large, and the resolution at the time of a large beam current is rather lowered.

【0006】[0006]

【課題を解決するための手段】本発明は、かかる課題を
解決すべくなされたもので、制御格子電極と最終加速電
極との間に加速電極、平板状の第1集束電極、平板状の
第2集束電極、第1集束電極に接続された第3集束電極
および第2集束電極に接続された第4集束電極を順次に
配設する。そして、第1集束電極および第3集束電極に
一定の第1フォーカス電圧を印加する一方、第2集束電
極および第4集束電極には第1フォーカス電圧よりも高
く、かつ、電子ビームの偏向角度の増大に伴い漸次に上
昇する第2フォーカス電圧を印加し、水平方向において
発散形の、そして垂直方向においては集束形の第1の軸
非対称レンズ電界を第2集束電極と第3集束電極との間
に生成せしめ、水平方向において集束形の、そして垂直
方向においては発散形の第2の軸非対称レンズ電界を第
3集束電極と第4集束電極との間に生成せしめ、水平方
向の集束作用を弱めて垂直方向の集束作用を強める第3
の軸非対称レンズ電界を第4集束電極と最終加速電極と
の間に生成せしめる。そして、第1、第2および第3の
軸非対称レンズ電界のすべてによる水平方向集束作用を
A、垂直方向の集束作用をBとするとき、電子ビームの
偏向角度が0の場合にA≒B、前記偏向角度が増大する
のに伴いA>Bならしめる。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and comprises an acceleration electrode, a plate-shaped first focusing electrode, and a plate-shaped first focusing electrode between a control grid electrode and a final acceleration electrode. A second focusing electrode, a third focusing electrode connected to the first focusing electrode, and a fourth focusing electrode connected to the second focusing electrode are sequentially arranged. Then, while applying a constant first focus voltage to the first focusing electrode and the third focusing electrode, the second focusing electrode and the fourth focusing electrode are higher than the first focusing voltage and have a deflection angle of the electron beam. A second focus voltage, which gradually increases with the increase, is applied, and a first axially asymmetric lens electric field of a divergent type in the horizontal direction and a convergent type in the vertical direction is applied between the second focusing electrode and the third focusing electrode. A second axially asymmetric lens electric field that is horizontally focused and divergent in the vertical direction between the third focusing electrode and the fourth focusing electrode, thereby weakening the horizontal focusing action. To enhance vertical focusing
Is generated between the fourth focusing electrode and the final accelerating electrode. When the horizontal focusing action by all of the first, second and third axially asymmetric lens electric fields is A and the vertical focusing action is B, A ≒ B when the electron beam deflection angle is 0, A> B is established as the deflection angle increases.

【0007】[0007]

【作用】かかる構成では、主レンズにおける水平方向の
レンズ作用が弱まるので、水平方向球面収差を小さくす
ることができる。また、軸非対称レンズ電界の球面収差
は軸対称レンズのそれに比べて小さいので、各段でのレ
ンズ作用を合成した合成レンズの水平方向収差を小さく
でき、したがって、主レンズ電界を通過する電子ビーム
が横長の断面形状を有していても、水平方向球面収差を
小さくすることができる。
With this configuration, the horizontal lens function of the main lens is weakened, so that the horizontal spherical aberration can be reduced. In addition, since the spherical aberration of the axially asymmetric lens electric field is smaller than that of the axially symmetric lens, the horizontal aberration of the combined lens obtained by combining the lens actions at each stage can be reduced, and therefore, the electron beam passing through the main lens electric field can Even if it has a horizontally long cross-sectional shape, horizontal spherical aberration can be reduced.

【0008】[0008]

【実施例】つぎに、本発明を図示した実施例とともに説
明する。図1に示すように、水平一直線上にインライン
配列された3個の陰極1a,1b,1cは、制御格子電
極2、加速電極3、平板状の第1集束電極4、平板状の
第2集束電極5、第1集束電極4に接続された第3集束
電極6、第2集束電極5に接続された第4集束電極7お
よび最終加速電極8とともにインライン型の電子銃を構
成している。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. As shown in FIG. 1, three cathodes 1a, 1b, 1c arranged in a horizontal straight line include a control grid electrode 2, an acceleration electrode 3, a first plate-shaped focusing electrode 4, and a plate-shaped second focusing electrode. The electrode 5, the third focusing electrode 6 connected to the first focusing electrode 4, the fourth focusing electrode 7 connected to the second focusing electrode 5, and the final accelerating electrode 8 constitute an in-line type electron gun.

【0009】図2にも示すように、第1集束電極4は円
形の電子ビーム通過孔4a,4b,4cを有し、第2集
束電極5は垂直方向に長軸を置く長方形または長円形の
電子ビーム通過孔5a,5b,5cを第3集束電極6側
の端面に有している。また、第3集束電極6は水平方向
に長軸を置く長方形または長円形の電子ビーム通過孔6
a,6b,6cを第2集束電極5側の端面に有し、第4
集束電極7側の端面には垂直方向に長軸を置く長方形ま
たは長円形の電子ビーム通過孔6d,6e,6fを有し
ている。さらに、第4集束電極7は水平方向に長軸を置
く長方形または長円形の電子ビーム通過孔7a,7b,
7cを第3集束電極6側の端面に有し、最終加速電極8
側の端面に、主レンズ電界生成用の電子ビーム通過孔7
d,7e,7fを有している。そして、最終加速電極8
は第4集束電極7側の端面に主レンズ電界生成用の電子
ビーム通過孔8a,8b,8cを有している。
As shown in FIG. 2, the first focusing electrode 4 has circular electron beam passage holes 4a, 4b, 4c, and the second focusing electrode 5 has a rectangular or oval shape having a long axis in the vertical direction. Electron beam passage holes 5a, 5b, 5c are provided on the end face on the third focusing electrode 6 side. The third focusing electrode 6 has a rectangular or elliptical electron beam passage hole 6 having a major axis in the horizontal direction.
a, 6b, 6c on the end face on the side of the second focusing electrode 5;
The end surface on the side of the focusing electrode 7 has rectangular or oblong electron beam passage holes 6d, 6e, and 6f having a long axis in the vertical direction. Further, the fourth focusing electrode 7 has a rectangular or oval electron beam passage hole 7a, 7b,
7c on the end face on the third focusing electrode 6 side, and the final accelerating electrode 8
An electron beam passing hole 7 for generating a main lens electric field
d, 7e and 7f. And the final accelerating electrode 8
Have electron beam passage holes 8a, 8b, 8c for generating a main lens electric field on the end face on the fourth focusing electrode 7 side.

【0010】第1集束電極4および第3集束電極6に一
定の第1フォーカス電圧V1が印加され、第2集束電極
5および第4集束電極7には第1フォーカス電圧V1よ
りも400V〜2000V高く、かつ、電子ビームの偏
向角度が0から次第に増大するのに伴い漸次に上昇する
第2フォーカス電圧(ダイナミック電圧)V2が印加さ
れる。
A constant first focus voltage V1 is applied to the first focusing electrode 4 and the third focusing electrode 6, and the second focusing electrode 5 and the fourth focusing electrode 7 are higher by 400 V to 2000V than the first focusing voltage V1. In addition, a second focus voltage (dynamic voltage) V2 which gradually increases as the deflection angle of the electron beam gradually increases from 0 is applied.

【0011】第2集束電極5と第3集束電極6との間に
生成されるレンズ電界は、水平方向において発散形の、
そして垂直方向においては集束形の軸非対称のもの(四
極電界)となる。また、第3集束電極と第4集束電極と
の間に生成されるレンズ電界は、水平方向において集束
形の、垂直方向においては発散形の軸非対称のもの(四
極電界)となる。そして、第4集束電極7と最終加速電
極8との間に生成されるレンズ電界は、水平方向の集束
作用を弱めて垂直方向の集束作用を強める軸非対称のも
のとなる。
The lens electric field generated between the second focusing electrode 5 and the third focusing electrode 6 has a diverging type in the horizontal direction.
Then, in the vertical direction, it becomes a convergent axially asymmetric (quadrupole electric field). Further, the lens electric field generated between the third focusing electrode and the fourth focusing electrode is axially asymmetric (quadrupole electric field) of a focusing type in the horizontal direction and a diverging type in the vertical direction. Then, the lens electric field generated between the fourth focusing electrode 7 and the final accelerating electrode 8 becomes axially asymmetric, which weakens the horizontal focusing action and strengthens the vertical focusing action.

【0012】かかる電子レンズ系における電子ビームの
挙動を図3ないし図6の参照により説明すると、図3は
電子ビームの偏向角度が0の状態における水平方向断面
を、図4は同状態における垂直方向断面をそれぞれ示し
ている。クロスオーバ部9から蛍光面10に至る間にお
ける水平方向断面では、発散レンズ電界11、集束レン
ズ電界12および主レンズたる弱い集束レンズ電界13
が並ぶ。また、垂直方向断面では、集束レンズ電界1
4、発散レンズ電界15および主レンズたる強い集束レ
ンズ電界16が並ぶ。ただし、レンズ電界11,14は
第2・第3集束電極間電位差によって生成されたもの
で、レンズ電界13,16は第3・第4集束電極間電位
差によって生成されたものである。
The behavior of an electron beam in such an electron lens system will be described with reference to FIGS. 3 to 6. FIG. 3 is a horizontal sectional view when the deflection angle of the electron beam is 0, and FIG. Each section is shown. In a horizontal section from the crossover section 9 to the phosphor screen 10, a diverging lens electric field 11, a focusing lens electric field 12, and a weak focusing lens electric field 13 serving as a main lens.
Are lined up. In the vertical section, the focusing lens electric field 1
4. A diverging lens electric field 15 and a strong focusing lens electric field 16 serving as a main lens are arranged. However, the lens electric fields 11, 14 are generated by the potential difference between the second and third focusing electrodes, and the lens electric fields 13, 16 are generated by the potential difference between the third and fourth focusing electrodes.

【0013】クロスオーバ部9からの電子ビーム17
は、まず、発散レンズ電界11および集束レンズ電界1
4によって水平方向で発散形の、そして垂直方向では集
束形の各レンズ作用を受ける。次いで、集束レンズ電界
12および発散レンズ電界15によって水平方向では集
束形の、そして、垂直方向では発散形の各レンズ作用を
受ける。さらに、主レンズにおいては水平方向で比較的
弱い集束作用を、垂直方向で比較的強い集束作用を受け
るので、蛍光面10における電子ビームは水平方向およ
び垂直方向ともにジャスト・フォーカスとなる。このと
き、主レンズで発生する球面収差は、集束作用が弱い水
平方向の方が垂直方向よりも小さくなる。
The electron beam 17 from the crossover section 9
First, the diverging lens electric field 11 and the focusing lens electric field 1
4 causes the lenses to be divergent in the horizontal direction and convergent in the vertical direction. The focusing lens field 12 and the diverging lens field 15 then undergo a horizontal focusing and a vertical diverging lens action. Furthermore, since the main lens receives a relatively weak focusing action in the horizontal direction and a relatively strong focusing action in the vertical direction, the electron beam on the phosphor screen 10 is in just focus in both the horizontal and vertical directions. At this time, the spherical aberration generated by the main lens is smaller in the horizontal direction where the focusing action is weaker than in the vertical direction.

【0014】図5および図6は電子ビームが水平方向へ
偏向した場合の水平方向断面および垂直方向断面をそれ
ぞれ示すもので、レンズ電界11,14およびレンズ電
界13,16によるレンズ作用が、図3および図4に示
した当該レンズ作用に比べて強くなる。このため、偏向
磁界中を通過する電子ビームに作用する水平方向レンズ
磁界17および垂直方向レンズ磁界18をともに相殺で
き、しかも、主レンズに入る電子ビームの断面形状を真
円に近づけることができるので、主レンズにおける水平
方向の集束作用は垂直方向の集束作用よりも小さいの
で、球面収差を小さく維持することができる。なお、以
上は電子ビームが水平方向へ偏向される場合について述
べたが、垂直方向へ偏向される場合にも前述と同様の作
用が得られる。
FIGS. 5 and 6 show a horizontal section and a vertical section, respectively, when the electron beam is deflected in the horizontal direction. The lens action by the lens electric fields 11 and 14 and the lens electric fields 13 and 16 is shown in FIG. 4 and the lens action shown in FIG. Therefore, both the horizontal lens magnetic field 17 and the vertical lens magnetic field 18 acting on the electron beam passing through the deflection magnetic field can be offset, and the cross-sectional shape of the electron beam entering the main lens can be made closer to a perfect circle. Since the horizontal focusing action of the main lens is smaller than the vertical focusing action, the spherical aberration can be kept small. Although the case where the electron beam is deflected in the horizontal direction has been described above, the same operation as described above can be obtained when the electron beam is deflected in the vertical direction.

【0015】[0015]

【発明の効果】以上のように本発明によると、主レンズ
の水平方向球面収差を小さくできるので、大ビーム電流
時においても良好な解像度特性を得ることができる。
As described above, according to the present invention, the horizontal spherical aberration of the main lens can be reduced, so that good resolution characteristics can be obtained even at a large beam current.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施したカラー受像管装置の電子銃の
電極配列を示す図
FIG. 1 is a diagram showing an electrode arrangement of an electron gun of a color picture tube device embodying the present invention.

【図2】同電子銃を構成する電極の主として電子ビーム
通過孔を示す図
FIG. 2 is a view mainly showing an electron beam passage hole of an electrode constituting the electron gun.

【図3】電子ビームの偏向角度が0の状態における電子
ビームの挙動を説明するための水平方向断面図
FIG. 3 is a horizontal cross-sectional view for explaining the behavior of the electron beam when the deflection angle of the electron beam is 0;

【図4】電子ビームの偏向角度が0の状態における電子
ビームの挙動を説明するための垂直方向断面図
FIG. 4 is a vertical sectional view for explaining the behavior of the electron beam when the deflection angle of the electron beam is 0;

【図5】電子ビームが水平方向へ偏向された状態におけ
る電子ビームの挙動を説明するための水平方向断面図
FIG. 5 is a horizontal sectional view for explaining the behavior of the electron beam when the electron beam is deflected in the horizontal direction.

【図6】電子ビームが水平方向へ偏向された状態におけ
る電子ビームの挙動を説明するための垂直方向断面図
FIG. 6 is a vertical sectional view for explaining the behavior of the electron beam when the electron beam is deflected in the horizontal direction.

【符号の説明】[Explanation of symbols]

2 制御格子電極 3 加速電極 4 第1集束電極 5 第2集束電極 6 第3集束電極 7 第4集束電極 8 最終加速電極 2 Control grid electrode 3 Acceleration electrode 4 First focusing electrode 5 Second focusing electrode 6 Third focusing electrode 7 Fourth focusing electrode 8 Final acceleration electrode

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】制御格子電極と最終加速電極との間に加速
電極、平板状の第1集束電極、平板状の第2集束電極、
第1集束電極に接続された第3集束電極および第2集束
電極に接続された第4集束電極を順次に配設し、第1集
束電極および第3集束電極に一定の第1フォーカス電圧
を印加する一方、第2集束電極および第4集束電極には
第1フォーカス電圧よりも高く、かつ、電子ビームの偏
向角度の増大に伴い漸次に上昇する第2フォーカス電圧
を印加し、水平方向において発散形の、そして垂直方向
においては集束形の第1の軸非対称レンズ電界を第2集
束電極と第3集束電極との間に生成せしめ、水平方向に
おいて集束形の、そして垂直方向においては発散形の第
2の軸非対称レンズ電界を第3集束電極と第4集束電極
との間に生成せしめ、水平方向の集束作用を弱めて垂直
方向の集束作用を強める第3の軸非対称レンズ電界を第
4集束電極と最終加速電極との間に生成せしめ、かつ、
第1、第2および第3の軸非対称レンズ電界のすべてに
よる水平方向集束作用をA、垂直方向の集束作用をBと
するとき、電子ビームの偏向角度が0の場合にA≒B、
前記偏向角度が増大するのに伴いA>Bならしめること
を特徴とするカラー受像管装置。
An accelerating electrode, a plate-shaped first focusing electrode, a plate-shaped second focusing electrode between a control grid electrode and a final accelerating electrode;
A third focusing electrode connected to the first focusing electrode and a fourth focusing electrode connected to the second focusing electrode are sequentially arranged, and a constant first focus voltage is applied to the first focusing electrode and the third focusing electrode. On the other hand, a second focus voltage higher than the first focus voltage and gradually increasing with an increase in the deflection angle of the electron beam is applied to the second focusing electrode and the fourth focusing electrode, and the diverging type is applied in the horizontal direction. A first axially asymmetric lens field, which is of a focusing type in the vertical direction, is generated between the second and third focusing electrodes, and which is of a focusing type in the horizontal direction and a diverging type in the vertical direction. A second axially asymmetric lens electric field is generated between the third focusing electrode and the fourth focusing electrode to reduce the horizontal focusing action and enhance the vertical focusing action. And the final Yielding between the fast electrode, and,
When the horizontal focusing action by all of the first, second and third axially asymmetric lens electric fields is A, and the vertical focusing action is B, A ≒ B when the electron beam deflection angle is 0,
A color picture tube device wherein A> B is established as the deflection angle increases.
JP4313098A 1992-11-24 1992-11-24 Color picture tube equipment Expired - Fee Related JP3040269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4313098A JP3040269B2 (en) 1992-11-24 1992-11-24 Color picture tube equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4313098A JP3040269B2 (en) 1992-11-24 1992-11-24 Color picture tube equipment

Publications (2)

Publication Number Publication Date
JPH06162958A JPH06162958A (en) 1994-06-10
JP3040269B2 true JP3040269B2 (en) 2000-05-15

Family

ID=18037139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4313098A Expired - Fee Related JP3040269B2 (en) 1992-11-24 1992-11-24 Color picture tube equipment

Country Status (1)

Country Link
JP (1) JP3040269B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW312801B (en) * 1995-12-08 1997-08-11 Toshiba Co Ltd

Also Published As

Publication number Publication date
JPH06162958A (en) 1994-06-10

Similar Documents

Publication Publication Date Title
JPH0360147B2 (en)
JP2938476B2 (en) Color picture tube equipment
JP2928282B2 (en) Color picture tube equipment
JP2673111B2 (en) Electron gun for beam spot distortion prevention
JP3040268B2 (en) Color picture tube equipment
JP3040269B2 (en) Color picture tube equipment
US6144150A (en) Color picture tube apparatus
JP3040272B2 (en) Color picture tube equipment
JP3040271B2 (en) Color picture tube equipment
JPH06283112A (en) Electron gun
KR100719526B1 (en) Electron gun for color cathode ray tube
JP3164834B2 (en) Color picture tube equipment
JP4120177B2 (en) Color picture tube
JP3393426B2 (en) Electron gun for color cathode ray tube
US20030020389A1 (en) Electron gun for cathode ray tube
JP3588248B2 (en) Color picture tube equipment
JPH0437538B2 (en)
JP3050386B2 (en) Electron gun for color picture tube
JPH11120934A (en) Cathode-ray tube
JP2878731B2 (en) Color picture tube equipment
JP2962893B2 (en) In-line type electron gun
US6448703B1 (en) Electrode unit with inverted dynamic focus voltage applied thereto for forming quadrupole lens and dynamic focus electron gun using the same
JPH0360145B2 (en)
JP2001084920A (en) Electron gun for color picture tube
JPH09237588A (en) Color picture tube device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080303

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090303

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees