JPH06162958A - Color cathode-ray tube device - Google Patents

Color cathode-ray tube device

Info

Publication number
JPH06162958A
JPH06162958A JP31309892A JP31309892A JPH06162958A JP H06162958 A JPH06162958 A JP H06162958A JP 31309892 A JP31309892 A JP 31309892A JP 31309892 A JP31309892 A JP 31309892A JP H06162958 A JPH06162958 A JP H06162958A
Authority
JP
Japan
Prior art keywords
focusing
electrode
focusing electrode
electron beam
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31309892A
Other languages
Japanese (ja)
Other versions
JP3040269B2 (en
Inventor
Yasuyuki Ueda
康之 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP4313098A priority Critical patent/JP3040269B2/en
Publication of JPH06162958A publication Critical patent/JPH06162958A/en
Application granted granted Critical
Publication of JP3040269B2 publication Critical patent/JP3040269B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enable high resolution to be obtained over the whole area of a phosphor screen. CONSTITUTION:The first constant focusing voltage is applied to the first focusing electrode 3 and the third focusing electrode 6, while the second focusing voltage higher than the first focusing voltage and giving a gradual rise according to an increase in the deflection angle of an electron beam, is applied to the second focusing electrode 5 and the fourth focusing electrode 7. The first electrical field of an axially asymmetrical lens divergent in a horizontal direction but convergent in a vertical direction is generated between the second focusing electrode 5 and the third focusing electrode 6, while the second electrical field of an axially asymmetrical lens convergent in a horizontal direction but divergent in a vertical direction is generated between the third focusing electrode 6 and the fourth focusing electrode 7. In addition, the third electrical field of an axially asymmetrical lens for weakening a focusing effect in a horizontal direction and intensifying the effect in a vertical direction is generated between the fourth focusing electrode 7 and a final accelerating electrode 8. Furthermore, when a horizontal focusing effect due to all of the first, second and third electrical field of an axially asymmetrical lens is kept at A, and the focusing effect in a vertical direction is kept at B, the values of A and B are made approximately equal to each other with the deflection angle of an electron beam kept at zero. Also, a relationship of A>B is established, as the deflection angle increases. As a result, the spherical aberration of a main lens in a horizontal direction becomes small and high resolution characteristics can be provided, even when a large amount of beam current flows.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、蛍光体スクリーン面の
全域において高い解像度が得られるように構成したカラ
ー受像管装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a color picture tube device constructed so that a high resolution can be obtained over the entire surface of a phosphor screen.

【0002】[0002]

【従来の技術】カラー受像管装置の解像度は、ビームス
ポットの大きさおよび形状に大きく依存する。すなわ
ち、電子ビームの射突によって蛍光体スクリーン面上に
生成されるビームスポットが径小にしてかつ真円に近い
ものでなければ良好な解像度特性は得られない。
2. Description of the Related Art The resolution of a color picture tube device largely depends on the size and shape of the beam spot. That is, good resolution characteristics cannot be obtained unless the beam spot generated on the phosphor screen surface by the electron beam impingement has a small diameter and is close to a perfect circle.

【0003】3つの電子ビーム放射部を水平一直線上に
配列してなるカラー受像管では、セルフコンバーゼンス
構成となすために水平偏向磁界をピンクッション状に、
そして垂直偏向磁界をバレル状にそれぞれ歪ませてい
る。このため、偏向磁界を通過する3電子ビームは水平
方向で発散作用を、そして垂直方向では集束作用をそれ
ぞれ受ける結果となり、水平方向に長軸を置く横長偏平
の断面形状になる。
In a color picture tube in which three electron beam radiating parts are arranged in a straight line in a horizontal direction, the horizontal deflection magnetic field is pincushion-shaped in order to form a self-convergence structure.
Then, the vertical deflection magnetic field is distorted in a barrel shape. For this reason, the three electron beams passing through the deflection magnetic field are subjected to a diverging action in the horizontal direction and a focusing action in the vertical direction, respectively, and have a horizontally long flat cross-sectional shape with the long axis in the horizontal direction.

【0004】一般に、電子ビームの偏向角度が増すのに
伴い電子ビーム軌道が長大化し、ビームスポットがオー
バフォーカス化する。しかし、これが前記発散作用によ
って打ち消されるので、ビームスポットは水平方向に関
しては全偏向期間を通じて最適のフォーカス状態に保た
れる。しかし、垂直方向に関しては前記集束作用が加わ
るので、オーバフォーカスの度が増してビームスポット
に長いヘイズ部を伴う結果となり解像度が低下する。
Generally, as the deflection angle of the electron beam increases, the trajectory of the electron beam becomes longer and the beam spot becomes overfocused. However, since this is canceled by the divergence effect, the beam spot is kept in the optimum focus state in the horizontal direction during the entire deflection period. However, since the focusing action is added in the vertical direction, the degree of overfocus increases, resulting in a long haze portion in the beam spot, resulting in a reduction in resolution.

【0005】[0005]

【発明が解決しようとする課題】かかる課題は、本出願
人の出願に係る特開平3−95835号公報に記載の発
明によってかなり改善できた。しかし、最終集束電極と
最終加速電極との間に生成される3つの主レンズ電界は
水平方向にインライン配列されるので、その垂直方向径
を大きく設定できても水平方向径は大きくし難く、3つ
の主レンズ電界を通過する電子ビームは横長の断面形状
となりやすい。このため、水平方向球面収差が大とな
り、とくに大ビーム電流時における解像度がかえって低
下する。
This problem has been considerably improved by the invention described in Japanese Patent Application Laid-Open No. 3-95835 filed by the present applicant. However, since the three main lens electric fields generated between the final focusing electrode and the final accelerating electrode are arranged inline in the horizontal direction, it is difficult to increase the horizontal diameter even if the vertical diameter can be set large. The electron beam passing through the electric fields of the two main lenses tends to have a horizontally long cross-sectional shape. Therefore, the spherical aberration in the horizontal direction becomes large, and the resolution is deteriorated, especially at a large beam current.

【0006】[0006]

【課題を解決するための手段】本発明は、かかる課題を
解決すべくなされたもので、制御格子電極と最終加速電
極との間に加速電極、平板状の第1集束電極、平板状の
第2集束電極、第1集束電極に接続された第3集束電極
および第2集束電極に接続された第4集束電極を順次に
配設する。そして、第1集束電極および第3集束電極に
一定の第1フォーカス電圧を印加する一方、第2集束電
極および第4集束電極には第1フォーカス電圧よりも高
く、かつ、電子ビームの偏向角度の増大に伴い漸次に上
昇する第2フォーカス電圧を印加し、水平方向において
発散形の、そして垂直方向においては集束形の第1の軸
非対称レンズ電界を第2集束電極と第3集束電極との間
に生成せしめ、水平方向において集束形の、そして垂直
方向においては発散形の第2の軸非対称レンズ電界を第
3集束電極と第4集束電極との間に生成せしめ、水平方
向の集束作用を弱めて垂直方向の集束作用を強める第3
の軸非対称レンズ電界を第4集束電極と最終加速電極と
の間に生成せしめる。そして、第1、第2および第3の
軸非対称レンズ電界のすべてによる水平方向集束作用を
A、垂直方向の集束作用をBとするとき、電子ビームの
偏向角度が0の場合にA≒B、前記偏向角度が増大する
のに伴いA>Bならしめる。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an acceleration electrode, a flat plate-shaped first focusing electrode, and a flat plate-shaped first electrode are provided between a control grid electrode and a final acceleration electrode. The second focusing electrode, the third focusing electrode connected to the first focusing electrode, and the fourth focusing electrode connected to the second focusing electrode are sequentially arranged. Then, a constant first focus voltage is applied to the first focusing electrode and the third focusing electrode, while the second focusing electrode and the fourth focusing electrode are higher than the first focusing voltage and the deflection angle of the electron beam is By applying a second focus voltage that gradually increases with an increase, a first axially asymmetric lens electric field that is divergent in the horizontal direction and convergent in the vertical direction is applied between the second focusing electrode and the third focusing electrode. To generate a second axially asymmetric lens electric field, which is horizontally focused and divergent in the vertical direction, between the third focusing electrode and the fourth focusing electrode to weaken the horizontal focusing action. Third to enhance vertical focusing action
An axially asymmetric lens electric field is generated between the fourth focusing electrode and the final accelerating electrode. When the horizontal focusing action by all of the first, second and third axial asymmetric lens electric fields is A and the vertical focusing action is B, A≈B when the deflection angle of the electron beam is 0, As the deflection angle increases, A> B.

【0007】[0007]

【作用】かかる構成では、主レンズにおける水平方向の
レンズ作用が弱まるので、水平方向球面収差を小さくす
ることができる。また、軸非対称レンズ電界の球面収差
は軸対称レンズのそれに比べて小さいので、各段でのレ
ンズ作用を合成した合成レンズの水平方向収差を小さく
でき、したがって、主レンズ電界を通過する電子ビーム
が横長の断面形状を有していても、水平方向球面収差を
小さくすることができる。
In such a structure, the horizontal lens action of the main lens is weakened, so that the horizontal spherical aberration can be reduced. Further, since the spherical aberration of the axially asymmetric lens electric field is smaller than that of the axially symmetric lens, it is possible to reduce the horizontal aberration of the synthetic lens that combines the lens action at each stage, and thus the electron beam passing through the main lens electric field is reduced. Even if it has a laterally long cross-sectional shape, horizontal spherical aberration can be reduced.

【0008】[0008]

【実施例】つぎに、本発明を図示した実施例とともに説
明する。図1に示すように、水平一直線上にインライン
配列された3個の陰極1a,1b,1cは、制御格子電
極2、加速電極3、平板状の第1集束電極4、平板状の
第2集束電極5、第1集束電極4に接続された第3集束
電極6、第2集束電極5に接続された第4集束電極7お
よび最終加速電極8とともにインライン型の電子銃を構
成している。
The present invention will be described below with reference to the illustrated embodiments. As shown in FIG. 1, the three cathodes 1a, 1b, 1c arranged inline on a horizontal straight line include a control grid electrode 2, an acceleration electrode 3, a plate-shaped first focusing electrode 4, and a plate-shaped second focusing. The electrode 5, the third focusing electrode 6 connected to the first focusing electrode 4, the fourth focusing electrode 7 connected to the second focusing electrode 5, and the final accelerating electrode 8 constitute an in-line type electron gun.

【0009】図2にも示すように、第1集束電極4は円
形の電子ビーム通過孔4a,4b,4cを有し、第2集
束電極5は垂直方向に長軸を置く長方形または長円形の
電子ビーム通過孔5a,5b,5cを第3集束電極6側
の端面に有している。また、第3集束電極6は水平方向
に長軸を置く長方形または長円形の電子ビーム通過孔6
a,6b,6cを第2集束電極5側の端面に有し、第4
集束電極7側の端面には垂直方向に長軸を置く長方形ま
たは長円形の電子ビーム通過孔6d,6e,6fを有し
ている。さらに、第4集束電極7は水平方向に長軸を置
く長方形または長円形の電子ビーム通過孔7a,7b,
7cを第3集束電極6側の端面に有し、最終加速電極8
側の端面に、主レンズ電界生成用の電子ビーム通過孔7
d,7e,7fを有している。そして、最終加速電極8
は第4集束電極7側の端面に主レンズ電界生成用の電子
ビーム通過孔8a,8b,8cを有している。
As shown in FIG. 2, the first focusing electrode 4 has circular electron beam passage holes 4a, 4b and 4c, and the second focusing electrode 5 has a rectangular or oval shape with a long axis in the vertical direction. The electron beam passage holes 5a, 5b, 5c are provided on the end surface on the third focusing electrode 6 side. The third focusing electrode 6 has a rectangular or elliptical electron beam passage hole 6 having a long axis in the horizontal direction.
a, 6b, 6c on the end face on the second focusing electrode 5 side,
The end surface on the side of the focusing electrode 7 has rectangular or elliptical electron beam passage holes 6d, 6e, and 6f having a long axis in the vertical direction. Further, the fourth focusing electrode 7 is a rectangular or elliptical electron beam passage hole 7a, 7b, which has a long axis in the horizontal direction,
7c on the end face on the third focusing electrode 6 side, and the final accelerating electrode 8
The electron beam passage hole 7 for generating the electric field of the main lens is formed on the side end surface.
It has d, 7e, and 7f. And the final acceleration electrode 8
Has electron beam passage holes 8a, 8b, 8c for generating the electric field of the main lens on the end surface on the side of the fourth focusing electrode 7.

【0010】第1集束電極4および第3集束電極6に一
定の第1フォーカス電圧V1が印加され、第2集束電極
5および第4集束電極7には第1フォーカス電圧V1よ
りも400V〜2000V高く、かつ、電子ビームの偏
向角度が0から次第に増大するのに伴い漸次に上昇する
第2フォーカス電圧(ダイナミック電圧)V2が印加さ
れる。
A constant first focus voltage V1 is applied to the first focusing electrode 4 and the third focusing electrode 6, and the second focusing electrode 5 and the fourth focusing electrode 7 are 400V to 2000V higher than the first focusing voltage V1. A second focus voltage (dynamic voltage) V2 that gradually increases as the deflection angle of the electron beam gradually increases from 0 is applied.

【0011】第2集束電極5と第3集束電極6との間に
生成されるレンズ電界は、水平方向において発散形の、
そして垂直方向においては集束形の軸非対称のもの(四
極電界)となる。また、第3集束電極と第4集束電極と
の間に生成されるレンズ電界は、水平方向において集束
形の、垂直方向においては発散形の軸非対称のもの(四
極電界)となる。そして、第4集束電極7と最終加速電
極8との間に生成されるレンズ電界は、水平方向の集束
作用を弱めて垂直方向の集束作用を強める軸非対称のも
のとなる。
The lens electric field generated between the second focusing electrode 5 and the third focusing electrode 6 is divergent in the horizontal direction.
Then, in the vertical direction, it becomes a focusing type axially asymmetrical one (quadrupole electric field). In addition, the lens electric field generated between the third focusing electrode and the fourth focusing electrode is a focusing type in the horizontal direction and a diverging type in the vertical direction (quadrupole electric field). Then, the lens electric field generated between the fourth focusing electrode 7 and the final accelerating electrode 8 is axially asymmetric, which weakens the horizontal focusing action and strengthens the vertical focusing action.

【0012】かかる電子レンズ系における電子ビームの
挙動を図3ないし図6の参照により説明すると、図3は
電子ビームの偏向角度が0の状態における水平方向断面
を、図4は同状態における垂直方向断面をそれぞれ示し
ている。クロスオーバ部9から蛍光面10に至る間にお
ける水平方向断面では、発散レンズ電界11、集束レン
ズ電界12および主レンズたる弱い集束レンズ電界13
が並ぶ。また、垂直方向断面では、集束レンズ電界1
4、発散レンズ電界15および主レンズたる強い集束レ
ンズ電界16が並ぶ。ただし、レンズ電界11,14は
第2・第3集束電極間電位差によって生成されたもの
で、レンズ電界13,16は第3・第4集束電極間電位
差によって生成されたものである。
The behavior of the electron beam in such an electron lens system will be described with reference to FIGS. 3 to 6. FIG. 3 is a horizontal cross section when the deflection angle of the electron beam is 0, and FIG. 4 is a vertical cross section in the same state. Each cross section is shown. In the horizontal cross section from the crossover portion 9 to the phosphor screen 10, the diverging lens electric field 11, the focusing lens electric field 12, and the weak focusing lens electric field 13 which is the main lens.
Are lined up. In the vertical section, the focusing lens electric field 1
4, the diverging lens electric field 15 and the strong focusing lens electric field 16 as the main lens are arranged. However, the lens electric fields 11 and 14 are generated by the potential difference between the second and third focusing electrodes, and the lens electric fields 13 and 16 are generated by the potential difference between the third and fourth focusing electrodes.

【0013】クロスオーバ部9からの電子ビーム17
は、まず、発散レンズ電界11および集束レンズ電界1
4によって水平方向で発散形の、そして垂直方向では集
束形の各レンズ作用を受ける。次いで、集束レンズ電界
12および発散レンズ電界15によって水平方向では集
束形の、そして、垂直方向では発散形の各レンズ作用を
受ける。さらに、主レンズにおいては水平方向で比較的
弱い集束作用を、垂直方向で比較的強い集束作用を受け
るので、蛍光面10における電子ビームは水平方向およ
び垂直方向ともにジャスト・フォーカスとなる。このと
き、主レンズで発生する球面収差は、集束作用が弱い水
平方向の方が垂直方向よりも小さくなる。
The electron beam 17 from the crossover section 9
First, the diverging lens electric field 11 and the focusing lens electric field 1
The lens functions of 4 are divergent in the horizontal direction and focused in the vertical direction. Then, the focusing lens electric field 12 and the diverging lens electric field 15 respectively exert a focusing lens action in the horizontal direction and a diverging lens action in the vertical direction. Further, since the main lens receives a relatively weak focusing action in the horizontal direction and a relatively strong focusing action in the vertical direction, the electron beam on the phosphor screen 10 is just focused in both the horizontal and vertical directions. At this time, the spherical aberration generated in the main lens is smaller in the horizontal direction where the focusing action is weaker than in the vertical direction.

【0014】図5および図6は電子ビームが水平方向へ
偏向した場合の水平方向断面および垂直方向断面をそれ
ぞれ示すもので、レンズ電界11,14およびレンズ電
界13,16によるレンズ作用が、図3および図4に示
した当該レンズ作用に比べて強くなる。このため、偏向
磁界中を通過する電子ビームに作用する水平方向レンズ
磁界17および垂直方向レンズ磁界18をともに相殺で
き、しかも、主レンズに入る電子ビームの断面形状を真
円に近づけることができるので、主レンズにおける水平
方向の集束作用は垂直方向の集束作用よりも小さいの
で、球面収差を小さく維持することができる。なお、以
上は電子ビームが水平方向へ偏向される場合について述
べたが、垂直方向へ偏向される場合にも前述と同様の作
用が得られる。
FIGS. 5 and 6 show a horizontal cross section and a vertical cross section when the electron beam is deflected in the horizontal direction, respectively, and the lens action by the lens electric fields 11, 14 and the lens electric fields 13, 16 is shown in FIG. And becomes stronger than the lens action shown in FIG. Therefore, both the horizontal lens magnetic field 17 and the vertical lens magnetic field 18, which act on the electron beam passing through the deflection magnetic field, can be canceled out, and the cross-sectional shape of the electron beam entering the main lens can be made close to a perfect circle. Since the focusing action in the horizontal direction of the main lens is smaller than the focusing action in the vertical direction, the spherical aberration can be kept small. Although the case where the electron beam is deflected in the horizontal direction has been described above, the same effect as described above can be obtained when the electron beam is deflected in the vertical direction.

【0015】[0015]

【発明の効果】以上のように本発明によると、主レンズ
の水平方向球面収差を小さくできるので、大ビーム電流
時においても良好な解像度特性を得ることができる。
As described above, according to the present invention, since the horizontal spherical aberration of the main lens can be reduced, good resolution characteristics can be obtained even at a large beam current.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施したカラー受像管装置の電子銃の
電極配列を示す図
FIG. 1 is a diagram showing an electrode array of an electron gun of a color picture tube device embodying the present invention.

【図2】同電子銃を構成する電極の主として電子ビーム
通過孔を示す図
FIG. 2 is a view mainly showing an electron beam passage hole of an electrode forming the electron gun.

【図3】電子ビームの偏向角度が0の状態における電子
ビームの挙動を説明するための水平方向断面図
FIG. 3 is a horizontal cross-sectional view for explaining the behavior of the electron beam when the deflection angle of the electron beam is 0.

【図4】電子ビームの偏向角度が0の状態における電子
ビームの挙動を説明するための垂直方向断面図
FIG. 4 is a vertical cross-sectional view for explaining the behavior of the electron beam when the deflection angle of the electron beam is 0.

【図5】電子ビームが水平方向へ偏向された状態におけ
る電子ビームの挙動を説明するための水平方向断面図
FIG. 5 is a horizontal sectional view for explaining the behavior of the electron beam when the electron beam is deflected in the horizontal direction.

【図6】電子ビームが水平方向へ偏向された状態におけ
る電子ビームの挙動を説明するための垂直方向断面図
FIG. 6 is a vertical cross-sectional view for explaining the behavior of the electron beam when the electron beam is deflected in the horizontal direction.

【符号の説明】[Explanation of symbols]

2 制御格子電極 3 加速電極 4 第1集束電極 5 第2集束電極 6 第3集束電極 7 第4集束電極 8 最終加速電極 2 control grid electrode 3 acceleration electrode 4 first focusing electrode 5 second focusing electrode 6 third focusing electrode 7 fourth focusing electrode 8 final accelerating electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】制御格子電極と最終加速電極との間に加速
電極、平板状の第1集束電極、平板状の第2集束電極、
第1集束電極に接続された第3集束電極および第2集束
電極に接続された第4集束電極を順次に配設し、第1集
束電極および第3集束電極に一定の第1フォーカス電圧
を印加する一方、第2集束電極および第4集束電極には
第1フォーカス電圧よりも高く、かつ、電子ビームの偏
向角度の増大に伴い漸次に上昇する第2フォーカス電圧
を印加し、水平方向において発散形の、そして垂直方向
においては集束形の第1の軸非対称レンズ電界を第2集
束電極と第3集束電極との間に生成せしめ、水平方向に
おいて集束形の、そして垂直方向においては発散形の第
2の軸非対称レンズ電界を第3集束電極と第4集束電極
との間に生成せしめ、水平方向の集束作用を弱めて垂直
方向の集束作用を強める第3の軸非対称レンズ電界を第
4集束電極と最終加速電極との間に生成せしめ、かつ、
第1、第2および第3の軸非対称レンズ電界のすべてに
よる水平方向集束作用をA、垂直方向の集束作用をBと
するとき、電子ビームの偏向角度が0の場合にA≒B、
前記偏向角度が増大するのに伴いA>Bならしめること
を特徴とするカラー受像管装置。
1. An acceleration electrode, a flat plate-shaped first focusing electrode, a flat plate-shaped second focusing electrode, between a control grid electrode and a final acceleration electrode,
A third focusing electrode connected to the first focusing electrode and a fourth focusing electrode connected to the second focusing electrode are sequentially arranged, and a constant first focus voltage is applied to the first focusing electrode and the third focusing electrode. On the other hand, a second focus voltage that is higher than the first focus voltage and that gradually increases with the increase of the deflection angle of the electron beam is applied to the second focusing electrode and the fourth focusing electrode, and the second focusing voltage is divergent in the horizontal direction. A first axially asymmetric lens field that is vertically focused and between a second focusing electrode and a third focusing electrode that is horizontally focused and divergent in the vertical direction. A second axially asymmetric lens electric field is generated between the third focusing electrode and the fourth focusing electrode to weaken the horizontal focusing action and strengthen the vertical focusing action. And the final Yielding between the fast electrode, and,
When the horizontal focusing effect due to all of the first, second and third axial asymmetric lens electric fields is A and the vertical focusing effect is B, A≈B when the deflection angle of the electron beam is 0,
A color picture tube device, wherein A> B is satisfied as the deflection angle increases.
JP4313098A 1992-11-24 1992-11-24 Color picture tube equipment Expired - Fee Related JP3040269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4313098A JP3040269B2 (en) 1992-11-24 1992-11-24 Color picture tube equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4313098A JP3040269B2 (en) 1992-11-24 1992-11-24 Color picture tube equipment

Publications (2)

Publication Number Publication Date
JPH06162958A true JPH06162958A (en) 1994-06-10
JP3040269B2 JP3040269B2 (en) 2000-05-15

Family

ID=18037139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4313098A Expired - Fee Related JP3040269B2 (en) 1992-11-24 1992-11-24 Color picture tube equipment

Country Status (1)

Country Link
JP (1) JP3040269B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0778605A2 (en) 1995-12-08 1997-06-11 Kabushiki Kaisha Toshiba An electron gun assembly for a color cathode ray tube apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0778605A2 (en) 1995-12-08 1997-06-11 Kabushiki Kaisha Toshiba An electron gun assembly for a color cathode ray tube apparatus
CN1084927C (en) * 1995-12-08 2002-05-15 东芝株式会社 Electronic gun for color cathode ray tube

Also Published As

Publication number Publication date
JP3040269B2 (en) 2000-05-15

Similar Documents

Publication Publication Date Title
JP2605202B2 (en) Electron gun for color cathode ray tube
JP2938476B2 (en) Color picture tube equipment
JP2673111B2 (en) Electron gun for beam spot distortion prevention
JP2928282B2 (en) Color picture tube equipment
JP2000182534A (en) Dynamic focusing electron gun for color cathode-ray tube
JP3040268B2 (en) Color picture tube equipment
JPH06283112A (en) Electron gun
JP3040269B2 (en) Color picture tube equipment
JP3040272B2 (en) Color picture tube equipment
JP3040271B2 (en) Color picture tube equipment
KR100719526B1 (en) Electron gun for color cathode ray tube
KR100719533B1 (en) Electron gun for color cathode ray tube
JP2644809B2 (en) Electron gun structure for color picture tube
JP3164834B2 (en) Color picture tube equipment
KR20010107098A (en) Electron gun for color picture tube
JP3457545B2 (en) Cathode ray tube
KR100829740B1 (en) Electrode and electron gun for color CRT utilizing the same
JP2962893B2 (en) In-line type electron gun
KR100869100B1 (en) Electron gun for color cathode ray tube
KR100804523B1 (en) Electron gun for color cathode ray tube
JPH09237588A (en) Color picture tube device
JP3056497B2 (en) Color picture tube equipment
KR100760778B1 (en) A voltage connection and electric-pole shape of An uni-bi electron-gun with A horizontally-amplifying uni-lens
US6448703B1 (en) Electrode unit with inverted dynamic focus voltage applied thereto for forming quadrupole lens and dynamic focus electron gun using the same
KR940010984B1 (en) Electron gun for c-crt

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080303

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090303

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100303

LAPS Cancellation because of no payment of annual fees