JPH0393058A - Signal reproduction method in magneto-optical recording medium - Google Patents

Signal reproduction method in magneto-optical recording medium

Info

Publication number
JPH0393058A
JPH0393058A JP22939589A JP22939589A JPH0393058A JP H0393058 A JPH0393058 A JP H0393058A JP 22939589 A JP22939589 A JP 22939589A JP 22939589 A JP22939589 A JP 22939589A JP H0393058 A JPH0393058 A JP H0393058A
Authority
JP
Japan
Prior art keywords
layer
recording
reproduction
magneto
reproducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22939589A
Other languages
Japanese (ja)
Other versions
JP2910084B2 (en
Inventor
Katsuhisa Araya
勝久 荒谷
Masumi Ota
太田 真澄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP22939589A priority Critical patent/JP2910084B2/en
Priority to US07/574,081 priority patent/US5168482A/en
Priority to DE69018544T priority patent/DE69018544T2/en
Priority to EP90116773A priority patent/EP0415449B1/en
Publication of JPH0393058A publication Critical patent/JPH0393058A/en
Application granted granted Critical
Publication of JP2910084B2 publication Critical patent/JP2910084B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve linear recording density and track density by arranging the direction of magnetization in a reproduction layer, and reading while transferring a magnetic signal from a recording holding layer only in an area whose temperature is raised by means of the irradiation of laser light. CONSTITUTION:The direction of magnetization in the reproduction layer 21 is arranged and it is set to a deletion state. Then, the reproduction layer 21 is raised to a prescribed temperature by irradiating the reproduction layer 21 with laser light, while the magnetic signal recorded in the recording holding layer 22 is transferred only in the area heated to the prescribed temperature of the reproduction layer 21 the magnetic signal is converted into an optical signal by a magneto-optical effect and reading is executed. Consequently, there is no influence of the adjacent tracks, crosstalk is cancelled and a signal can be reproduced at high C/N even if track density and linear recording density are high.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気光学特性によって記録信号の読み出しを
行う光磁気記録媒体における信号再生方法に関するもの
であり、特に線記録密度,トラック密度を向上するため
の技術に関するものである.〔発明の概要〕 本発明は、光磁気記録媒体の記録層を磁気的に結合され
る再生層と記録保持層とを含む多層膜で構戒し、予め再
生層の磁化の向きを揃えて消去状態としておくとともに
、再生時にはレーザ光の照射によって再生層を所定の温
度以上に昇温し、この昇渇された領域でのみ記録保持層
に書き込まれた磁気信号を再生層に転写しながら読み取
るようにすることにより、クロストークを解消して線記
録密度,トラック密度の向上を図ろうとするものである
. 〔従来の技術〕 光磁気記録方式は、磁性薄膜を部分的にキュリ一点また
は温度補償点を越えて昇温し、この部分の保磁力を消滅
させて外部から印加される記録磁界の方向に磁化の向き
を反転させることを基本原理とするもので、したがって
光磁気記録媒体の構戒としては、例えばボリカーボネー
ト等からなる透明基板の一生面に、膜面と垂直方向に磁
化容易軸を有し優れた磁気光学効果を有する記録磁性層
(例えば希土類一遷移金属合金非晶質薄膜)や反射層、
誘電体層を積層することにより記録部を設け、透明基板
側からレーザ光を照射して信号の読み取りを行うように
したものが知られている.ところで、光磁気記録媒体に
限らず、デジタル・オーディオ・ディスク(いわゆるコ
ンパクトディスク)やビデオディスク等の光ディスクの
線記録密度は、主として再生時のS/Nによって決めら
れており、また再生信号の信号量は記録されている信号
のピット列の周期と再生光学系のレーザ波長,対物レン
ズの開口数に大きく依存する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for reproducing signals in a magneto-optical recording medium in which recorded signals are read out using magneto-optical characteristics, and in particular to a method for improving linear recording density and track density. It is related to the technology to do so. [Summary of the Invention] The present invention comprises a recording layer of a magneto-optical recording medium with a multilayer film including a magnetically coupled reproduction layer and a recording layer, and erases data by aligning the direction of magnetization of the reproduction layer in advance. At the same time, during reproduction, the reproduction layer is heated to a predetermined temperature or higher by irradiation with laser light, and the magnetic signals written in the recording layer are read while being transferred to the reproduction layer only in this raised area. By doing so, the aim is to eliminate crosstalk and improve linear recording density and track density. [Conventional technology] In the magneto-optical recording method, a magnetic thin film is partially heated to exceed the Curie point or temperature compensation point, and the coercive force in this area is extinguished to magnetize it in the direction of an externally applied recording magnetic field. The basic principle is to reverse the direction of the magneto-optical recording medium. Therefore, the principle of a magneto-optical recording medium is to have an axis of easy magnetization perpendicular to the film surface on the entire surface of a transparent substrate made of polycarbonate or the like. A recording magnetic layer (e.g. rare earth-transition metal alloy amorphous thin film) and a reflective layer with excellent magneto-optical effects,
It is known that a recording section is provided by laminating dielectric layers, and signals are read by irradiating laser light from the transparent substrate side. Incidentally, the linear recording density of not only magneto-optical recording media but also optical discs such as digital audio discs (so-called compact discs) and video discs is determined mainly by the S/N during reproduction, and also by the signal-to-noise ratio of the reproduced signal. The amount depends largely on the period of the pit train of the recorded signal, the laser wavelength of the reproduction optical system, and the numerical aperture of the objective lens.

現状では再生光学系のレーザ波長λと対物レンズの開口
数N.A.が決まると、検出限界となるピット周ltl
Ifが決まる.すなわち、 r=λ/2・N.A. である. 一方、トラック密度は、主としてクロストークによって
制限されている。そして、このクロストークは、主に媒
体面上でのレーザビームの分布(プロファイル)で決ま
り、前記ビット周期と同様やはりλ/2・N.A.の関
数で概略表される。
At present, the laser wavelength λ of the reproduction optical system and the numerical aperture N. A. Once determined, the pit circumference ltl which becomes the detection limit
If is determined. That is, r=λ/2·N. A. It is. On the other hand, track density is primarily limited by crosstalk. This crosstalk is mainly determined by the distribution (profile) of the laser beam on the medium surface, and like the bit period, it is also λ/2·N. A. is schematically represented by the function of

したがって、従来の光ディスクで高密度化を実現するた
めには、再生光学系のレーザ彼長λを短くし、対物レン
ズの開口数N.八.を大きくするというのが基本姿勢で
ある。
Therefore, in order to achieve high density with conventional optical discs, it is necessary to shorten the laser beam length λ of the reproducing optical system and to reduce the numerical aperture N of the objective lens. Eight. The basic stance is to increase the .

しかしながら、レーザ波長や対物レンズの開口数の改善
にも限度があり、一方では記録媒体の構威や読み取り方
法を工夫し、記録密度を改善する技術が開発されている
However, there are limits to the improvement of the laser wavelength and the numerical aperture of the objective lens, and on the other hand, techniques have been developed to improve the recording density by devising the structure of the recording medium and the reading method.

例えば、本願出願人は、先に特開平1−143041号
 特開平1−143042号において、記録ピット(磁
区)を再生時に拡大.消滅させながら再生することによ
り再生分解能を向上さセる方式を提案している。この方
式は、再生層,中間層.記録層からなる交換結合多N膜
を記録媒体とし、再生時において再生光ビームで加熱さ
れた再生層の磁区を拡大あるいは消去することにより、
再生時の符号間干渉を減少させ、光の回折限界以下の周
期の信号を再生可能とするものである.〔発明が解決し
ようとする課題〕 しかしながら、前述の方式では、線記録密度については
改善されるものの、クロストークについては通常の光デ
ィスクと同様であり、トラック密度を改善することは難
しい。
For example, the applicant of the present application has previously disclosed in Japanese Patent Application Laid-Open Nos. 1-143041 and 1-143042 that recording pits (magnetic domains) are enlarged during reproduction. We have proposed a method that improves the reproduction resolution by reproducing the data while eliminating it. This method consists of a reproduction layer and an intermediate layer. By using an exchange-coupled polyN film consisting of a recording layer as a recording medium, and expanding or erasing the magnetic domain of the reproduction layer heated by a reproduction light beam during reproduction,
This reduces intersymbol interference during reproduction, making it possible to reproduce signals with a period below the optical diffraction limit. [Problems to be Solved by the Invention] However, in the above-mentioned method, although the linear recording density is improved, the crosstalk is similar to that of a normal optical disc, and it is difficult to improve the track density.

本発明は、かかる従来の実情に鑑みて提案されたもので
あって、クロストークを解消することができ、線記録密
度ばかりでなくトラック密度も向上することが可能な信
号再生方法を提供することを目的とする。
The present invention has been proposed in view of the conventional situation, and an object of the present invention is to provide a signal reproducing method that can eliminate crosstalk and improve not only linear recording density but also track density. With the goal.

?課題を解決するための手段〕 本発明は、上記目的を達戒するために、少なくとも磁気
的に結合される再生層と記録保持層とを有してなる多層
膜を記録H■する光磁気記録媒体の、前記記録保持層に
対し信号記録を行うとともに、再生層の磁化の向きを揃
えた後、前記再生層にレーザー光を照射することにより
当該再生層を昇温せしめ、前記記録保持層に記録された
磁気信号を再生層に転写しながら磁気光学効果により光
学信号に変換して読み取ることを特徴とするものである
? Means for Solving the Problems] In order to achieve the above object, the present invention provides a magneto-optical recording method for recording on a multilayer film having at least a magnetically coupled reproducing layer and a recording layer. After recording a signal on the recording layer of the medium and aligning the magnetization direction of the reproducing layer, the reproducing layer is heated by irradiating the reproducing layer with a laser beam, and the recording layer is heated. It is characterized by converting the recorded magnetic signal into an optical signal by the magneto-optic effect while transferring it to the reproducing layer and reading it.

すなわち、本発明は、再生層と記録保持層とを少なくと
も有する多層膜を記録媒体とし、信号の再生前には再生
層は全面同一状態(消去状態)としておき、再住光が照
射されある温度以上となった領域でのみ予め記録保持層
に記録された信号が再生層に転写されるように設定し、
前記温度以下の領域は信号に何ら関与せず光学的にはそ
の部分がマスクされてるのと等価な状態となし、線記録
密度とトラック密度の両者を改善するものである。
That is, in the present invention, a multilayer film having at least a reproducing layer and a recording layer is used as a recording medium, and the reproducing layer is kept in the same state (erased state) over the entire surface before reproducing a signal, and is heated to a certain temperature by being irradiated with re-living light. It is set so that the signal previously recorded on the recording layer is transferred to the reproduction layer only in the above areas,
The area below the temperature does not have any influence on the signal and is optically equivalent to being masked, thereby improving both the linear recording density and the track density.

本発明において、使用される光磁気記録媒体の記録層は
、少なくとも垂直磁化膜の2層膜(再生層及び記録保持
N)で構成されれば良く、例えば希土類一遷移金属合金
薄膜からなる交換結合多層膜(少なくとも2N膜.3層
膜。できれば4層膜以上であることが好ましい。)等が
好適である。
In the present invention, the recording layer of the magneto-optical recording medium used may be composed of at least two perpendicularly magnetized films (a reproducing layer and a recording holding layer), such as an exchange-coupled film made of a rare earth-transition metal alloy thin film. A multilayer film (at least a 2N film, a three-layer film, preferably a four-layer film or more) is suitable.

勿論、これに限らず、ガーネット膜やCoCr,PLC
o,PdCo等の垂直磁化膜であってもよいし、さらに
はバリウムフエライト等の六方晶系フェライ}I末を分
散した磁性塗料の塗膜であっても良い。ただし、前記再
生層と記録保持層とは、静磁結合あるいは交換結合によ
って磁気的に結合していることが必要である.また、再
生層については、大きなカー回転角,ファラデ−回転角
を有することか必要である. 前記記録保持層には、通常の光磁気記録媒体と同様、光
変調方式あるいは磁界変調方式で信号を記録するように
すればよいが、さらには記録保持層に接して垂直磁化膜
を設け、この垂直磁化膜に垂直磁気記録媒体と同様に磁
気ヘッドで磁気信号を記録した後、レーザ光の照射によ
り垂直磁化膜に記録された磁気信号を記録保持層に転写
するようにしてもよい. そして、第1図に示すように、上述の構威を有する光磁
気記録媒体の記録保持層(1)に信号を記録し、一方再
生層(2)は磁化の向きを揃えて消去?態としておく。
Of course, it is not limited to this, but garnet film, CoCr, PLC
It may be a perpendicularly magnetized film such as O, PdCo, etc., or it may be a coating film of a magnetic paint in which hexagonal ferrite I powder such as barium ferrite is dispersed. However, the reproducing layer and the recording layer must be magnetically coupled by magnetostatic coupling or exchange coupling. Furthermore, the reproducing layer must have a large Kerr rotation angle and Faraday rotation angle. Signals may be recorded on the record-holding layer using an optical modulation method or a magnetic field modulation method, similar to ordinary magneto-optical recording media. A magnetic signal may be recorded on the perpendicularly magnetized film using a magnetic head in the same manner as in a perpendicular magnetic recording medium, and then the magnetic signal recorded on the perpendicularly magnetized film may be transferred to the recording layer by irradiation with laser light. Then, as shown in FIG. 1, a signal is recorded on the recording layer (1) of the magneto-optical recording medium having the above structure, while the reproduction layer (2) aligns the direction of magnetization and erases the signal. Leave it as it is.

本例では、再生層(2)の磁化の向きは図中上向きに揃
えられている。
In this example, the direction of magnetization of the reproducing layer (2) is aligned upward in the figure.

ここで再生JiJ (2)の消去は、外部磁界H。で行
えば良い。すなわち、H■>Hc+(ただしHc+は再
生層(2)の磁化反転磁界)としておけば、再生層(2
〉の磁化の向きを前記外部磁界H!lの方向に揃えるこ
とができる。また、このときHtm<<Hcz〔ただし
Hc2は記録保持層(1)の磁化反転磁界〕としておけ
ば、記録保持層(1)に記録された信号が影響を受ける
ことはない。
Here, the reproduction JiJ (2) is erased using an external magnetic field H. You can do it with That is, if H■>Hc+ (where Hc+ is the magnetization reversal magnetic field of the reproducing layer (2)), then the reproducing layer (2)
> of the external magnetic field H! It can be aligned in the l direction. Further, at this time, if Htm<<Hcz [where Hc2 is the magnetization switching magnetic field of the recording layer (1)], the signal recorded on the recording layer (1) will not be affected.

再生時には、再生層(2)にレーザ光LBが照射され、
レーザ光LBが照射された領域が加熱されて温度が上昇
する. このとき、第2図に示すように、再生層(2)がある一
定の温度T■以上になると、記録保持N(1)に記録さ
れた信号が再生N(2)へ転写される.例えば、前記記
録保持層(1)と再生層(2)とが静磁結合によって磁
気的に結合されているとすると、記録保持層(1)から
の浮遊磁界H sL 再生層(2)の反磁界Hd,,再
生層(2)の磁区発生.磁界■1?l+ 再生時に印加
される外部印加磁界H■が、前記所定の温度T.以下の
ときに、 Hs2+Hd+±Hps<Hn+・H H (1)なる
式を満たし、また前記所定の温度T■以上のときに Hsz+Hd+fHrm>Hr++    ・ ・ ・
(2)なる式を満たすように各層の磁化,保磁力,膜厚
等を設定しておけば、前記温度T.以上に加熱された領
域でのみ前記記録保持層(1)から発生する浮am界に
従って信号が転写される。
During reproduction, the reproduction layer (2) is irradiated with laser light LB,
The area irradiated with the laser beam LB is heated and its temperature rises. At this time, as shown in FIG. 2, when the reproducing layer (2) reaches a certain temperature T■ or higher, the signal recorded in the recording holding N(1) is transferred to the reproducing N(2). For example, if the recording layer (1) and the reproducing layer (2) are magnetically coupled by magnetostatic coupling, the stray magnetic field H sL from the recording layer (1) is the reaction of the reproducing layer (2). Magnetic field Hd, magnetic domain generation in reproduction layer (2). Magnetic field■1? l+ The externally applied magnetic field H■ applied during reproduction is set to the predetermined temperature T. When the following, Hs2+Hd+±Hps<Hn+・H H H (1) is satisfied, and when the temperature is above the predetermined temperature T■, Hsz+Hd+fHrm>Hr++ ・ ・ ・
If the magnetization, coercive force, film thickness, etc. of each layer are set so as to satisfy the equation (2), then the temperature T. Signals are transferred only in the heated region according to the floating am field generated from the recording layer (1).

同様に、前記記録保持層(1)と再生層(2)とが交換
結合によって磁気的に結合されているとすると、再生層
(2)に働く交換力による等価な磁界HW+ ( − 
6 H / 2 Ms+ h +  :ただしσ一は再
生層(2)と再生層(2〉に接する磁性層との眉間に生
ずる界面磁壁エネルギー密度であり、Ms+は再生層(
2)の飽和磁化、h,は再生層(2)の膜厚である。〕
が再生層(2)の磁区発生磁界Hn.に対して、前記所
定の温度TPI以下のときに、 HwI±Hrw<Hn+     ” ’(3)?あり
、所定の温度TPI以上のときにHw+±Hr*> l
{n+     + ” (4)であれば、前記温度T
■以上に加熱された領域でのみ前記記録保持層(1)と
の交換力により信号が転写される. 転写された磁気信号は、再生層(2)の磁気光学効果(
力一効果あるいはファラデー効果)によって光学信号に
変換され、先のレーザ光LBのカー回転角を検出するこ
とで再生される. 再生に際しては、第3図に示すように、再生トラックL
.と隣接トラックt,との境界での温度T8が、TN<
TPIとなるような温度分布としておけば、隣接トラッ
クL,の下の記録保持N(1)に記録された信号が再生
層(2)に転写されてくることはなく、クロストークは
完全に解消される。
Similarly, if the recording layer (1) and the reproducing layer (2) are magnetically coupled by exchange coupling, the equivalent magnetic field HW+ (-
6 H / 2 Ms+ h + : However, σ1 is the interfacial domain wall energy density that occurs between the eyebrows of the reproduction layer (2) and the magnetic layer in contact with the reproduction layer (2>, and Ms+ is the energy density of the interfacial domain wall between the reproduction layer (2)
The saturation magnetization h in 2) is the thickness of the reproducing layer (2). ]
is the magnetic domain generated magnetic field Hn. of the reproduction layer (2). On the other hand, when the temperature is below the predetermined temperature TPI, HwI±Hrw<Hn+'' (3)? exists, and when the temperature is above the predetermined temperature TPI, Hw+±Hr*>l
{n+ + ” (4), then the temperature T
(2) Signals are transferred only in the areas heated above due to the exchange force with the recording layer (1). The transferred magnetic signal is generated by the magneto-optic effect (
It is converted into an optical signal by the Rikiichi effect or Faraday effect) and is reproduced by detecting the Kerr rotation angle of the previous laser beam LB. During playback, as shown in FIG.
.. The temperature T8 at the boundary between and the adjacent track t, is TN<
If the temperature distribution is set to be TPI, the signal recorded in the recording storage N (1) below the adjacent track L will not be transferred to the reproduction layer (2), and crosstalk will be completely eliminated. be done.

〔作用〕[Effect]

本発明の信号再生方法では、信号の読み取りを行う再生
層は、磁化の向きが揃えられ全面同一状態(消去状態)
とされており、レーザ光が照射された領域でのみ信号が
転写されて読み出される。
In the signal reproducing method of the present invention, the reproducing layer for reading the signal has the magnetization direction aligned and is in the same state (erased state) over the entire surface.
The signal is transferred and read only in the area irradiated with the laser beam.

したがって、隣接するトラックの影響は皆無となり、ク
ロストークが解消される。
Therefore, there is no influence from adjacent tracks, and crosstalk is eliminated.

また、レーザ光を照射した際の温度分布によりレーザ光
の走行方向前方端は前記消去状態が維持されてあたかも
マスクされたような形となり、ビ・冫ト周期がレーザ光
のビーム径よりも小さい場合にも見掛け上の空間周波数
が抑えられ、高C/Nで再生される。
In addition, due to the temperature distribution when the laser beam is irradiated, the front end of the laser beam in the traveling direction maintains the erased state and appears as if it were masked, and the vertical period is smaller than the beam diameter of the laser beam. In this case, the apparent spatial frequency is suppressed and reproduction is performed with a high C/N.

〔実施例〕〔Example〕

以下、本発明を適用した具体的な実施例について図面を
参照しながら説明する。
Hereinafter, specific embodiments to which the present invention is applied will be described with reference to the drawings.

m 本例は、記録保持層と再生層の磁気的な結合に静磁結合
を用いた例である。
m This example is an example in which magnetostatic coupling is used for magnetic coupling between the recording layer and the reproducing layer.

本実施例の光磁気記録媒体は、第4図に示すように、ポ
リカーボネートやガラス等からなる透明基板(11)上
に、第1の再生層(12).第2の再生層(13)及び
記録保持層(14)を、誘電体膜(15) , (16
)を介して積層形成し、さらに最外層にも講電体膜(1
7)を設けてなるものである。誘電体膜(15) , 
(16) , (17)の材料としては、窒化ケイ素,
酸化ケイ素,窒化アルくニウム等の透明誘電材料が使用
可能である. 第1の再生層(l2)は、キュリ一点が高く(例えば2
00゜C以上)、力一回転角が大きく、しかも保磁力が
数百エルステッド以下の垂直磁化膜である. 第2の再生11! (13)は、垂直磁気異方性が大き
く、キュリ一点は低く(例えば200゜C以下)、保磁
力は室温で2キロエルステッド(k(le)前後の垂直
磁化膜である. なお、これら第lの再生層(12)と第2の再生層(1
3)とは交換結合されている。
As shown in FIG. 4, the magneto-optical recording medium of this embodiment consists of a transparent substrate (11) made of polycarbonate, glass, etc., and a first reproducing layer (12). The second reproducing layer (13) and the recording layer (14) are covered with dielectric films (15) and (16).
), and furthermore, the outermost layer is also coated with a lecture electrical body film (1
7). Dielectric film (15),
Materials for (16) and (17) include silicon nitride,
Transparent dielectric materials such as silicon oxide and aluminum nitride can be used. The first reproducing layer (l2) has a high Curie point (for example, 2
00°C or higher), the perpendicularly magnetized film has a large force/rotation angle, and has a coercive force of several hundred oersted or less. Second rebirth 11! (13) is a perpendicularly magnetized film with large perpendicular magnetic anisotropy, a low Curie point (for example, below 200°C), and a coercive force of around 2 kilo Oersteds (k(le)) at room temperature. 1 reproduction layer (12) and a second reproduction layer (1
3) is exchange coupled.

このように再生層を2層構造とすると、再生層の磁化反
転磁界の温度依存性がある温度を境に急峻に変化し、し
かも第2の再生層(13)のキュリー点以上で反転磁界
を1 0 0 (Oe)程度の低い値とすることかでき
、微小ビットの安定な転写が可能となる。
When the reproduction layer has a two-layer structure in this way, the temperature dependence of the magnetization reversal magnetic field of the reproduction layer changes sharply after a certain temperature, and moreover, the reversal magnetic field changes above the Curie point of the second reproduction layer (13). The value can be as low as about 100 (Oe), making it possible to stably transfer minute bits.

一方、記録保持@ (14)は、垂直磁気異方性が大き
く、キュリー点が前記第2の再生層(13)のキュリー
点よりも高い材料によって構威される。当該記録保持層
(14)のキュリー点は、読み出しと書き込みに使用す
るレーザ光の出力のマージンを設定する目安となり、第
2の再生層(I3)のキュリー点よりも50゜C以上高
くする必要がある.実際には、第1の再生層(12)を
CdFeCo,第2の再生層(l3)をTbFe,記録
保持層(l4)をTbFeCoとし、特に記録保持層(
14)のキュリー点は280℃.保磁力はl O (k
Oe)以上に設定した. かかる光磁気記録媒体を用い、記録保持層(I4)に記
録された信号を再生光によって再生層(l2)に転写し
ながら再生したところ、非常に高いC/Nが実現された
. 実1u矩i 本例は、記録保持層と再生層の磁気的な結合に交換結合
を用いた例である。
On the other hand, the recording/retention layer (14) is made of a material that has a large perpendicular magnetic anisotropy and a Curie point higher than that of the second reproducing layer (13). The Curie point of the recording layer (14) serves as a guideline for setting the output margin of the laser beam used for reading and writing, and must be set at least 50°C higher than the Curie point of the second reproduction layer (I3). There is. Actually, the first reproducing layer (12) is made of CdFeCo, the second reproducing layer (l3) is made of TbFe, and the record-holding layer (l4) is made of TbFeCo.
The Curie point of 14) is 280℃. The coercive force is l O (k
Oe) or higher. When such a magneto-optical recording medium was used to reproduce a signal recorded on the recording layer (I4) while being transferred to the reproduction layer (I2) using reproduction light, an extremely high C/N was achieved. Real 1 u rectangle i This example is an example in which exchange coupling is used for magnetic coupling between the recording layer and the reproducing layer.

交換結合を用いた光磁気記録媒体の横戒としては、第5
図に示すように再生層(21)と記録保持層(22)か
らなる交換結合2N膜としたもの(以下、媒体Aと称す
る。)、第6図に示すように再生層(23)と記録保持
層(24)の間に中間層(25)を介在せしめたもの(
以下、媒体Bと称する。)、第7図に示すように再生層
を先の実施例lと同様に第工の再生層(26) ,第2
の再生層(27)の2層構造とし、中間層(28)を介
して記録保持層(29)を積層したもの(以下、媒体C
と称する.)が考えられる.ここで、媒体Aでは、前述
の(3)式及び(4)式の条件を満足するためには、再
生層(21)と記録保持層(22)の膜厚を厚くせざる
を得ず、レーザーバヮーに制約があるために線速度が速
い場合には記録消去を行うことができなくなる虞れがあ
る。
The fifth precept for magneto-optical recording media using exchange coupling is
As shown in the figure, there is an exchange-coupled 2N film (hereinafter referred to as medium A) consisting of a reproduction layer (21) and a recording layer (22), and as shown in FIG. An intermediate layer (25) is interposed between the retention layer (24) (
Hereinafter, it will be referred to as medium B. ), as shown in FIG.
It has a two-layer structure of a reproducing layer (27) and a recording layer (29) is laminated via an intermediate layer (28) (hereinafter referred to as medium C).
It is called. ) is possible. Here, in the medium A, in order to satisfy the conditions of the above-mentioned equations (3) and (4), it is necessary to increase the thickness of the reproducing layer (21) and the recording layer (22). Due to limitations on laser beams, there is a possibility that recording and erasing cannot be performed when the linear velocity is high.

そこで、中間層を介在せしめることで界面磁壁エネルギ
ー密度を低下させ、各層の膜厚が薄くて済むようにすれ
ばよいものと考えられるが、媒体Bでは、交換力による
等価な磁界Hw+が再生層の磁区発生磁界Hn+と等し
くなる温度がM&l成,膜淳等に非常に敏感なものとな
り、ディスク周上のムラが顕著に影響して再生時にノイ
ズやジッターが大きくなる傾向にある. これに対して、媒体Cでは、第1の再生層(26)をキ
ュリー点が高く、力一回転角が大きく、保磁力の小さい
材料で構戒し、第2の再生層(27)をキュリー点が低
く、保磁力が2 (koe)程度の材料で構威すること
で、再生S/Nの良好な光磁気記録媒体とすることがで
きる。
Therefore, it may be possible to reduce the interfacial domain wall energy density by intervening an intermediate layer so that the film thickness of each layer can be made thinner.However, in medium B, the equivalent magnetic field Hw+ due to the exchange force is applied to the reproducing layer. The temperature at which the magnetic domain becomes equal to the magnetic field Hn+ generated by the magnetic domain becomes extremely sensitive to M&L formation, film thickness, etc., and unevenness on the disk circumference has a significant effect, tending to increase noise and jitter during reproduction. On the other hand, in the medium C, the first reproducing layer (26) is made of a material with a high Curie point, a large force rotation angle, and a small coercive force, and the second reproducing layer (27) is made of a material with a high Curie point, a large force rotation angle, and a small coercive force. By using a material with a low coercivity and a coercive force of about 2 (koe), a magneto-optical recording medium with a good reproduction S/N can be obtained.

本発明者等は、ボリカーボネート基板上に、StsN−
かラナルv::t4体N (MW 8 0 0 A )
、GdFeCoからなる第1の再生N(膜厚300人)
、TbFeか6なる第2の再生層(It!!厚150人
)、GdFeCoからなる中間層(膜厚100入)、T
bFeCoからなる記録保持層(膜厚350人)、Si
.N.からなる誘電体層(lI!!厚800人)をスバ
ソタリングによ.り順次積層形威し、サンプルディスク
を作威した. そして、記録保持層に5MHzのキャリア信号を書き込
み、線速度5m/秒,再生外部磁界500(Oe)とし
て、キャリアー及びノイズの再生出力のレーザ出力依存
性を調べた.同時に、クロストークについても測定した
.クロストークは、基板に#M0.8amのグループを
0. 8 ti m間隔で形成し(したがってグループ
部の間には幅0.8μmのランド部が形成される.)、
ランド部及びグループ部にそれぞれ4.8MHzの信号
を記録して測定した.結果を第8図に示す。図中、線i
はキャリアの再生出力、liiはノイズの再生出力、線
111はクロストークを表す。
The present inventors have developed StsN-
Karanal v::t4 bodies N (MW 8 0 0 A)
, the first regenerated N consisting of GdFeCo (thickness: 300)
, a second reproduction layer made of TbFe6 (It!! thickness 150 layers), an intermediate layer made of GdFeCo (thickness 100 layers), T
Recording layer made of bFeCo (thickness: 350 mm), Si
.. N. A dielectric layer (lI!! 800 mm thick) consisting of A sample disk was created by sequentially stacking the layers. Then, a 5 MHz carrier signal was written in the recording layer, and the dependence of the carrier and noise reproduction output on the laser output was investigated at a linear velocity of 5 m/sec and a reproduction external magnetic field of 500 (Oe). At the same time, we also measured crosstalk. For crosstalk, set #M0.8am group on the board to 0. are formed at intervals of 8 tim (therefore, land portions with a width of 0.8 μm are formed between the group portions),
Measurements were made by recording a 4.8 MHz signal on each of the land and group parts. The results are shown in FIG. In the figure, line i
represents the reproduced output of the carrier, lii represents the reproduced output of the noise, and line 111 represents the crosstalk.

レーザ出力1.6mW以下でキャリアが観測されないの
は、このパワーでは媒体温度が転写に必要な温度に達し
ていないことによる。
The reason why carriers are not observed at a laser output of 1.6 mW or less is because the medium temperature does not reach the temperature required for transfer at this power.

これに対して、レーザ出力2. 0 m W以上では、
急激にキャリアが観測される.クロストークはレーザ出
力2.5mW以下ではほとんど検出されず、したがって
このサンプルディスクでは、レ,−ザ出力を2. 0 
m W以上,2.5mW以下とすることで、クロストー
クが無く高C/Nでの信号再生が可能である. そこでさらに、転写しながら再生することによる優位性
を確認するために、C/Nのピット周期依存性を調べた
.測定に際しての線速度は5m/秒.再生磁界は5 0
 0 (Oe),  レーザ波長は780nm,対物レ
ンズレンズの開口数N.A.は0.53である.結果を
第9図に示す. 第9図中、曲線aは再生層を3. 5 (koe)の外
部磁界で初期化した後、レーザ出力2.8mWで磁区を
転写しながら再生した場合の特性を示すものであり、曲
線bは同様の条件で一度再生した後、初期化せずにその
ままレーザ出力1.4mWで再生した場合の特性を示す
ものである.したがって、曲線bは、通常の再生でのC
/Hに相当する.この第9図を見ると、本発明方法を採
用することでC/Nが大幅に改善されることがわかる.
〔発明の効果] 以上の説明からも明らかなように、本発明においては、
記録保持層に記録された磁気信号を再生層に転写しなが
ら読み出すようにしているので、クロストークを解消す
ることができ、トラノク密度及び線記録密度が高い場合
にも高C/Nで信号を再生することが可能である. したがって、光磁気記録媒体における高密度記録化を達
成する上で非常に有用で、その意義は大きい。
On the other hand, the laser output 2. Above 0 mW,
Carriers are observed rapidly. Crosstalk is almost undetectable at laser outputs below 2.5mW, so in this sample disk, the laser output was set to 2.5mW. 0
By setting the power to be at least mW and at most 2.5mW, it is possible to reproduce signals at a high C/N without crosstalk. Therefore, in order to confirm the advantage of reproducing while transferring, we investigated the pit period dependence of C/N. The linear velocity during measurement was 5 m/sec. The reproduction magnetic field is 50
0 (Oe), the laser wavelength is 780 nm, and the numerical aperture of the objective lens is N. A. is 0.53. The results are shown in Figure 9. In FIG. 9, curve a indicates the reproduction layer 3. It shows the characteristics when initialized with an external magnetic field of 5 (koe) and then reproduced while transferring the magnetic domain with a laser output of 2.8 mW.Curve b shows the characteristics when initialized after initialization with an external magnetic field of 5 (koe) after reproducing once under the same conditions. This shows the characteristics when reproduced as is with a laser output of 1.4 mW. Therefore, curve b is C
Corresponds to /H. Looking at FIG. 9, it can be seen that the C/N is significantly improved by adopting the method of the present invention.
[Effect of the invention] As is clear from the above explanation, in the present invention,
Since the magnetic signals recorded in the recording layer are read out while being transferred to the reproducing layer, crosstalk can be eliminated and signals can be read with high C/N even when recording density and linear recording density are high. It is possible to play it. Therefore, it is very useful and significant in achieving high density recording in magneto-optical recording media.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の再生原理を示す模式図であ
り、第l図は初期状態,第2図は再生状態を示すもので
ある.第3図はレーザ光を照射した場合のトラック幅方
向での温度分布を示す模式図である. 第4図は静磁結合を用いた光磁気記録媒体の一構成例を
示す概略断面図である. 第5図は交換結合を用いた光磁気記録媒体の一構成例を
示す概略断面図であり、第6図は交換結合を用いた光磁
気記録媒体の他の構成例を示す概略断面図、第7図は交
換結合を用いた光磁気記録媒体のさらに他の構威例を示
す概略断面図である。 第8図は再生層に磁区を転写しながら再生したときのキ
ャリア出力及びクロストークのレーザ出力依存性を示す
特性図であり、第9図は磁区を転写しながら再生した場
合のC/Nのビット周期依存性を通常の再生の場合のそ
れと比較して示す特性図である。
FIGS. 1 and 2 are schematic diagrams showing the reproduction principle of the present invention, with FIG. 1 showing the initial state and FIG. 2 showing the reproducing state. Figure 3 is a schematic diagram showing the temperature distribution in the track width direction when laser light is irradiated. FIG. 4 is a schematic cross-sectional view showing an example of the configuration of a magneto-optical recording medium using magnetostatic coupling. FIG. 5 is a schematic sectional view showing an example of the structure of a magneto-optical recording medium using exchange coupling, and FIG. 6 is a schematic sectional view showing another example of the structure of a magneto-optical recording medium using exchange coupling. FIG. 7 is a schematic cross-sectional view showing still another example of the configuration of a magneto-optical recording medium using exchange coupling. Figure 8 is a characteristic diagram showing the dependence of carrier output and crosstalk on laser output when reproduction is performed while transferring magnetic domains to the reproduction layer, and Figure 9 is a characteristic diagram of the C/N when reproduction is performed while transferring magnetic domains. FIG. 3 is a characteristic diagram showing bit period dependence in comparison with that in normal reproduction.

Claims (1)

【特許請求の範囲】[Claims]  少なくとも磁気的に結合される再生層と記録保持層と
を有してなる多層膜を記録層とする光磁気記録媒体の、
前記記録保持層に対し信号記録を行うとともに、再生層
の磁化の向きを揃えた後、前記再生層にレーザー光を照
射することにより当該再生層を昇温せしめ、前記記録保
持層に記録された磁気信号を再生層に転写しながら磁気
光学効果により光学信号に変換して読み取ることを特徴
とする光磁気記録媒体における信号再生方法。
A magneto-optical recording medium whose recording layer is a multilayer film comprising at least a magnetically coupled reproducing layer and a recording layer,
After recording a signal on the recording layer and aligning the magnetization direction of the reproducing layer, the reproducing layer is heated by irradiating the reproducing layer with a laser beam, and the signal recorded on the recording layer is heated. A method for reproducing signals in a magneto-optical recording medium, characterized in that a magnetic signal is transferred to a reproducing layer, converted into an optical signal by a magneto-optic effect, and then read.
JP22939589A 1989-08-31 1989-09-06 Signal reproducing method in magneto-optical recording medium Expired - Lifetime JP2910084B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP22939589A JP2910084B2 (en) 1989-09-06 1989-09-06 Signal reproducing method in magneto-optical recording medium
US07/574,081 US5168482A (en) 1989-08-31 1990-08-29 Magnetooptical recording and playback method employing multi-layer recording medium with record holding layer and playback layer
DE69018544T DE69018544T2 (en) 1989-08-31 1990-08-31 Playback method for magneto-optical recording.
EP90116773A EP0415449B1 (en) 1989-08-31 1990-08-31 Playback method for magnetooptical recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22939589A JP2910084B2 (en) 1989-09-06 1989-09-06 Signal reproducing method in magneto-optical recording medium

Publications (2)

Publication Number Publication Date
JPH0393058A true JPH0393058A (en) 1991-04-18
JP2910084B2 JP2910084B2 (en) 1999-06-23

Family

ID=16891532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22939589A Expired - Lifetime JP2910084B2 (en) 1989-08-31 1989-09-06 Signal reproducing method in magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JP2910084B2 (en)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0499278A2 (en) * 1991-02-14 1992-08-19 Sony Corporation Method for recording sector control information on magneto-optical disk
EP0619577A1 (en) * 1993-04-08 1994-10-12 Canon Kabushiki Kaisha Magneto-optical recording medium and method for reproducing information therein
US5450382A (en) * 1991-10-07 1995-09-12 Canon Kabushiki Kaisha Magneto-optical recording medium having a layer that retains its state of magnetization regardless of the presence of an external magnetic field, and a recording/reproducing method therefor
EP0658891A3 (en) * 1993-12-17 1995-09-27 Sharp Kk Magneto-optical recording medium and method of reproducing magneto-optical information using thereof.
EP0686970A2 (en) 1994-06-10 1995-12-13 Canon Kabushiki Kaisha Magneto-optical recording medium and reproducing method using the medium
EP0668586A3 (en) * 1994-02-21 1996-03-06 Canon Kk Magneto-optical recording medium, and information reproducing method using the medium.
EP0701251A1 (en) 1994-09-08 1996-03-13 Canon Kabushiki Kaisha Optical recording medium and method of recording and/or reproducing on the medium
US5616428A (en) * 1992-08-28 1997-04-01 Canon Kabushiki Kaisha Magnetooptical recording medium and information recording and reproducing methods using the recording medium
US5627777A (en) * 1994-09-05 1997-05-06 Fujitsu Limited Magneto-optical recording medium
US5717662A (en) * 1995-05-12 1998-02-10 Canon Kabushiki Kaisha Super-resolution magneto-optical recording medium using magnetostatic coupling and information reproduction method using the medium
US5740133A (en) * 1995-06-09 1998-04-14 Fujitsu Limited Magneto-optical recording medium capable of double mask readout
US5747136A (en) * 1992-02-14 1998-05-05 Fujitsu, Ltd. High-density magneto-optic disk and method of manufacturing the same
US5754500A (en) * 1996-10-25 1998-05-19 Fujitsu Limited Magneto-optical recording medium and method of reading the same
US5774429A (en) * 1994-02-18 1998-06-30 Canon Kabushiki Kaisha Magneto-optical recording medium, and information recording/reproduction method using the medium
US5790513A (en) * 1995-04-14 1998-08-04 Canon Kabushiki Kaisha Magneto-optical recording medium capable of super resolution reproduction and information reproduction method using the same
US5796704A (en) * 1995-02-17 1998-08-18 Fujitsu Limited Optical disk apparatus and recording and reproducing method of optical recording medium
US5818811A (en) * 1994-09-08 1998-10-06 Canon Kabushiki Kaisha Information recording and reproducing method for recording information on and reproducing information from an optical recording medium including a land portion divided into a plurality of information tracks
US5821004A (en) * 1991-11-29 1998-10-13 Matsushita Electric Industrial Co., Ltd Magneto-optical recording medium and recording and reading out process using the same
US5862105A (en) * 1994-03-16 1999-01-19 Canon Kabushiki Kaisha Information recording method capable of verifying recorded information simultaneously with recording, and magneto-optical recording medium used in the method
US5879822A (en) * 1995-08-15 1999-03-09 Canon Kabushiki Kaisha Magneto-optical recording medium using in-plane magnetization film and capable of reproducing at super-high resolution and method of reproducing for such medium
US5883863A (en) * 1997-03-25 1999-03-16 Fujitsu Limited Magneto-optical reading method and apparatus and magneto-optical recording medium used for execution of the method
US5896365A (en) * 1995-04-28 1999-04-20 Canon Kabushiki Kaisha Optical information recording medium capable of recording in lands and grooves without a track-jumping operation; optical information recording/reproducing apparatus using, and master disk exposure apparatus for producing the same
US5896350A (en) * 1996-10-18 1999-04-20 Fujitsu Limited Magneto-optical recording medium and method of producing the same
US5909410A (en) * 1996-02-09 1999-06-01 Hitachi, Ltd. Optical magnetic recording medium and optical magnetic reproducing method
US5936915A (en) * 1996-09-19 1999-08-10 Canon Kabushiki Kaisha Magneto-optical medium for reproducing information by the utilization of magnetic wall movement, and signal reproducing method
US5956297A (en) * 1996-09-19 1999-09-21 Canon Kabushiki Kaisha Signal reproducing apparatus using movement of magnetic wall
US5956296A (en) * 1996-09-18 1999-09-21 Canon Kabushiki Kaisha Information reproducing apparatus for reproducing information by magnetic wall movement
US5959942A (en) * 1996-12-17 1999-09-28 Fujitsu Limited Method and apparatus for reading a magneto-optical recording medium with asymmetrical edges
US5966347A (en) * 1996-06-26 1999-10-12 Lg Electronics Inc. Apparatus and method for reproducing data from a magneto-optic recording medium
US5993937A (en) * 1993-11-30 1999-11-30 Matsushita Electric Industrial Co., Ltd. Magneto-optic recording medium and method of fabricating the same
US6146740A (en) * 1994-11-28 2000-11-14 Matsushita Electric Industrial Co., Ltd. Magnetic recording medium and method of fabricating the same
US6180268B1 (en) 1997-10-01 2001-01-30 Fujitsu Limited Magneto-optical recording medium
US6197440B1 (en) 1998-10-16 2001-03-06 Canon Kabushiki Kaisha Magnetic recording medium
US6265062B1 (en) 1996-09-19 2001-07-24 Canon Kabushiki Kaisha Magnetic recording medium capable of reproducing information by displacing magnetic wall and recording-reproducing method therefor
US6345016B1 (en) 1997-09-01 2002-02-05 Canon Kabushiki Kaisha Signal-reproducing method and apparatus utilizing light beam generated temperature distribution and magnetic domain wall displacement
US6399227B1 (en) 1992-12-01 2002-06-04 Matsushita Electric Industrial Co., Ltd. Magneto-optical recording medium
US6399174B1 (en) 1993-04-02 2002-06-04 Canon Kabushiki Kaisha Magnetooptical recording medium on which high-density information can be recorded and method of reproducing the recorded information
US6442120B2 (en) 1998-08-31 2002-08-27 Hitachi, Ltd. Optical reproduction method and optical information device
US6608799B2 (en) 2000-04-25 2003-08-19 Canon Kabushiki Kaisha Magneto-optical reproduction apparatus with detecting of displacement of domain wall of recording domain
KR100403138B1 (en) * 2001-03-24 2003-10-30 위아 주식회사 a Q-setter for a vertical lathe
USRE38501E1 (en) * 1992-08-28 2004-04-20 Canon Kabushiki Kaisha Magnetooptical recording medium and information recording and reproducing methods using the recording medium
US6754141B1 (en) 1999-06-11 2004-06-22 Fujitsu Limited Recording medium, method for recording and reproducing data using the medium, and magneto-optical recording apparatus
US6767656B2 (en) 2000-10-26 2004-07-27 Fujitsu Limited Magneto-optical recording medium and method of reproducing the same
US6770387B2 (en) 2000-10-26 2004-08-03 Fujitsu Limited Magneto-optical recording medium and method of reproducing the same
US6894954B2 (en) 2001-01-12 2005-05-17 Canon Kabushiki Kaisha Domain wall-displacement type magneto-optical medium and reproducing method for the same
US6980491B2 (en) 2002-04-26 2005-12-27 Canon Kabushiki Kaisha Domain wall displacement type magneto-optical recording medium and recording method
US7210155B2 (en) 2003-07-30 2007-04-24 Canon Kabushiki Kaisha Magneto-optical recording medium having in-plane magnetizing layer
US8243577B2 (en) 2006-07-27 2012-08-14 Sharp Kabushiki Kaisha Optical information recording medium, reproducing device for optical information recording medium, and reproducing method for optical information recording medium
US10410667B2 (en) 2015-12-02 2019-09-10 Sony Corporation High density optical disk processing apparatus, method, and computer-readable medium

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5371722A (en) * 1991-02-14 1994-12-06 Sony Corporation Method for recording sector control information on magneto-optical disk
EP0499278A2 (en) * 1991-02-14 1992-08-19 Sony Corporation Method for recording sector control information on magneto-optical disk
EP0715305A2 (en) * 1991-02-14 1996-06-05 Sony Corporation Method for recording sector control information on magneto-optical disk
EP0715304A2 (en) * 1991-02-14 1996-06-05 Sony Corporation Method and recording sector control information on magneto-optical disk
EP0715304A3 (en) * 1991-02-14 1997-01-22 Sony Corp Method and recording sector control information on magneto-optical disk
EP0715305A3 (en) * 1991-02-14 1997-01-22 Sony Corp Method for recording sector control information on magneto-optical disk
US5450382A (en) * 1991-10-07 1995-09-12 Canon Kabushiki Kaisha Magneto-optical recording medium having a layer that retains its state of magnetization regardless of the presence of an external magnetic field, and a recording/reproducing method therefor
US5821004A (en) * 1991-11-29 1998-10-13 Matsushita Electric Industrial Co., Ltd Magneto-optical recording medium and recording and reading out process using the same
US5747136A (en) * 1992-02-14 1998-05-05 Fujitsu, Ltd. High-density magneto-optic disk and method of manufacturing the same
US5616428A (en) * 1992-08-28 1997-04-01 Canon Kabushiki Kaisha Magnetooptical recording medium and information recording and reproducing methods using the recording medium
US5889739A (en) * 1992-08-28 1999-03-30 Canon Kabushiki Kaisha Magnetooptical recording medium and information recording and reproducing methods using the recording medium
USRE38501E1 (en) * 1992-08-28 2004-04-20 Canon Kabushiki Kaisha Magnetooptical recording medium and information recording and reproducing methods using the recording medium
US6811889B2 (en) 1992-12-01 2004-11-02 Matsushita Electric Industrial Co., Ltd. Magneto-optical recording medium having a GDFECO readout magnetic film
US6399227B1 (en) 1992-12-01 2002-06-04 Matsushita Electric Industrial Co., Ltd. Magneto-optical recording medium
US6521357B1 (en) 1992-12-01 2003-02-18 Matsushita Electric Industrial Co,. Ltd. Magneto-optical recording medium
US6399174B1 (en) 1993-04-02 2002-06-04 Canon Kabushiki Kaisha Magnetooptical recording medium on which high-density information can be recorded and method of reproducing the recorded information
US6403148B1 (en) 1993-04-02 2002-06-11 Canon Kabushiki Kaisha Magnetooptical recording medium on which high-density information can be recorded and method of reproducing the recorded information
US6187460B1 (en) 1993-04-08 2001-02-13 Canon Kabushiki Kaisha Magneto-optical recording medium and method for reproducing information therein
EP0619577A1 (en) * 1993-04-08 1994-10-12 Canon Kabushiki Kaisha Magneto-optical recording medium and method for reproducing information therein
US5993937A (en) * 1993-11-30 1999-11-30 Matsushita Electric Industrial Co., Ltd. Magneto-optic recording medium and method of fabricating the same
EP0658891A3 (en) * 1993-12-17 1995-09-27 Sharp Kk Magneto-optical recording medium and method of reproducing magneto-optical information using thereof.
US5637394A (en) * 1993-12-17 1997-06-10 Sharp Kabushiki Kaisha Magneto-optical recording medium and method of reproducing magneto-optical information using thereof
US5774429A (en) * 1994-02-18 1998-06-30 Canon Kabushiki Kaisha Magneto-optical recording medium, and information recording/reproduction method using the medium
US5830589A (en) * 1994-02-21 1998-11-03 Canon Kabushiki Kaisha Magneto-optical recording medium, and information reproducing method using the medium
US6307816B1 (en) 1994-02-21 2001-10-23 Canon Kabushiki Kaisha Magneto-optical recording medium, and information reproducing method using the medium
EP0668586A3 (en) * 1994-02-21 1996-03-06 Canon Kk Magneto-optical recording medium, and information reproducing method using the medium.
US5862105A (en) * 1994-03-16 1999-01-19 Canon Kabushiki Kaisha Information recording method capable of verifying recorded information simultaneously with recording, and magneto-optical recording medium used in the method
US6125083A (en) * 1994-06-10 2000-09-26 Canon Kabushiki Kaisha Magneto-optical recording method and medium comprising three layers, whose middle layer has a lower curie temperature than the other layers
EP0686970A2 (en) 1994-06-10 1995-12-13 Canon Kabushiki Kaisha Magneto-optical recording medium and reproducing method using the medium
US5627777A (en) * 1994-09-05 1997-05-06 Fujitsu Limited Magneto-optical recording medium
EP0701251A1 (en) 1994-09-08 1996-03-13 Canon Kabushiki Kaisha Optical recording medium and method of recording and/or reproducing on the medium
US5818811A (en) * 1994-09-08 1998-10-06 Canon Kabushiki Kaisha Information recording and reproducing method for recording information on and reproducing information from an optical recording medium including a land portion divided into a plurality of information tracks
US6146740A (en) * 1994-11-28 2000-11-14 Matsushita Electric Industrial Co., Ltd. Magnetic recording medium and method of fabricating the same
US5796704A (en) * 1995-02-17 1998-08-18 Fujitsu Limited Optical disk apparatus and recording and reproducing method of optical recording medium
US5790513A (en) * 1995-04-14 1998-08-04 Canon Kabushiki Kaisha Magneto-optical recording medium capable of super resolution reproduction and information reproduction method using the same
US5896365A (en) * 1995-04-28 1999-04-20 Canon Kabushiki Kaisha Optical information recording medium capable of recording in lands and grooves without a track-jumping operation; optical information recording/reproducing apparatus using, and master disk exposure apparatus for producing the same
US5717662A (en) * 1995-05-12 1998-02-10 Canon Kabushiki Kaisha Super-resolution magneto-optical recording medium using magnetostatic coupling and information reproduction method using the medium
US5740133A (en) * 1995-06-09 1998-04-14 Fujitsu Limited Magneto-optical recording medium capable of double mask readout
US6096444A (en) * 1995-06-09 2000-08-01 Fujitsu Limited Magneto-optical recording medium capable of double mask readout
US5879822A (en) * 1995-08-15 1999-03-09 Canon Kabushiki Kaisha Magneto-optical recording medium using in-plane magnetization film and capable of reproducing at super-high resolution and method of reproducing for such medium
US5909410A (en) * 1996-02-09 1999-06-01 Hitachi, Ltd. Optical magnetic recording medium and optical magnetic reproducing method
US5966347A (en) * 1996-06-26 1999-10-12 Lg Electronics Inc. Apparatus and method for reproducing data from a magneto-optic recording medium
US5956296A (en) * 1996-09-18 1999-09-21 Canon Kabushiki Kaisha Information reproducing apparatus for reproducing information by magnetic wall movement
US6265062B1 (en) 1996-09-19 2001-07-24 Canon Kabushiki Kaisha Magnetic recording medium capable of reproducing information by displacing magnetic wall and recording-reproducing method therefor
US5956297A (en) * 1996-09-19 1999-09-21 Canon Kabushiki Kaisha Signal reproducing apparatus using movement of magnetic wall
US6403205B1 (en) 1996-09-19 2002-06-11 Canon Kabushiki Kaisha Magnetic recording medium capable of reproducing information by displacing magnetic wall and recording-reproducing method therefor
US5936915A (en) * 1996-09-19 1999-08-10 Canon Kabushiki Kaisha Magneto-optical medium for reproducing information by the utilization of magnetic wall movement, and signal reproducing method
US6031794A (en) * 1996-10-18 2000-02-29 Fujitsu Limited Magneto-optical recording medium and method of producing the same
US5896350A (en) * 1996-10-18 1999-04-20 Fujitsu Limited Magneto-optical recording medium and method of producing the same
US5966350A (en) * 1996-10-25 1999-10-12 Fujitsu Limited Magneto-optical recording medium and method of reading the same
US5754500A (en) * 1996-10-25 1998-05-19 Fujitsu Limited Magneto-optical recording medium and method of reading the same
US5959942A (en) * 1996-12-17 1999-09-28 Fujitsu Limited Method and apparatus for reading a magneto-optical recording medium with asymmetrical edges
US5883863A (en) * 1997-03-25 1999-03-16 Fujitsu Limited Magneto-optical reading method and apparatus and magneto-optical recording medium used for execution of the method
US6345016B1 (en) 1997-09-01 2002-02-05 Canon Kabushiki Kaisha Signal-reproducing method and apparatus utilizing light beam generated temperature distribution and magnetic domain wall displacement
US6180268B1 (en) 1997-10-01 2001-01-30 Fujitsu Limited Magneto-optical recording medium
US6442120B2 (en) 1998-08-31 2002-08-27 Hitachi, Ltd. Optical reproduction method and optical information device
US6614737B2 (en) 1998-08-31 2003-09-02 Hitachi, Ltd. Optical reproduction method and optical information device
US6197440B1 (en) 1998-10-16 2001-03-06 Canon Kabushiki Kaisha Magnetic recording medium
US6754141B1 (en) 1999-06-11 2004-06-22 Fujitsu Limited Recording medium, method for recording and reproducing data using the medium, and magneto-optical recording apparatus
US6608799B2 (en) 2000-04-25 2003-08-19 Canon Kabushiki Kaisha Magneto-optical reproduction apparatus with detecting of displacement of domain wall of recording domain
US6767656B2 (en) 2000-10-26 2004-07-27 Fujitsu Limited Magneto-optical recording medium and method of reproducing the same
US6770387B2 (en) 2000-10-26 2004-08-03 Fujitsu Limited Magneto-optical recording medium and method of reproducing the same
US6894954B2 (en) 2001-01-12 2005-05-17 Canon Kabushiki Kaisha Domain wall-displacement type magneto-optical medium and reproducing method for the same
KR100403138B1 (en) * 2001-03-24 2003-10-30 위아 주식회사 a Q-setter for a vertical lathe
US6980491B2 (en) 2002-04-26 2005-12-27 Canon Kabushiki Kaisha Domain wall displacement type magneto-optical recording medium and recording method
US7210155B2 (en) 2003-07-30 2007-04-24 Canon Kabushiki Kaisha Magneto-optical recording medium having in-plane magnetizing layer
US8243577B2 (en) 2006-07-27 2012-08-14 Sharp Kabushiki Kaisha Optical information recording medium, reproducing device for optical information recording medium, and reproducing method for optical information recording medium
US10410667B2 (en) 2015-12-02 2019-09-10 Sony Corporation High density optical disk processing apparatus, method, and computer-readable medium

Also Published As

Publication number Publication date
JP2910084B2 (en) 1999-06-23

Similar Documents

Publication Publication Date Title
JP2910084B2 (en) Signal reproducing method in magneto-optical recording medium
US5168482A (en) Magnetooptical recording and playback method employing multi-layer recording medium with record holding layer and playback layer
JP2910250B2 (en) Magneto-optical recording medium
KR100238874B1 (en) Method of reproduction from magneto-optical recording medium
JP3114204B2 (en) Recording / reproducing method for optical recording medium
JPS60236137A (en) Simultaneously erasing-recording type photomagnetic recording system and recording device and medium used for this system
JP3111479B2 (en) Magneto-optical recording medium
US5175714A (en) Method of magneto-optically recording/erasing information and magneto-optical information storage medium including recording and bias layers satisfying certain conditions
JPH0393056A (en) Magneto-optical recording medium
JP3786426B2 (en) Magneto-optical recording medium and reproducing method thereof
JP3106514B2 (en) Magneto-optical recording / reproducing method
JP3585671B2 (en) Magneto-optical recording medium and reproducing method thereof
KR100201450B1 (en) Magneto-optical recording medium
JP2910082B2 (en) Magneto-optical recording / reproducing method
JP3108397B2 (en) Magneto-optical recording medium
JP3333389B2 (en) Magneto-optical information storage medium and reproducing method thereof
JPH03242845A (en) Magneto-optical recording method
KR100246003B1 (en) Magneto-optical recording medium and reproducing method thereof
JP3111960B2 (en) Signal reproducing method in magneto-optical recording medium
JPH03130945A (en) Magnetic recording medium and method of recording/ reproducing using this medium
JP2913875B2 (en) Magneto-optical recording medium and recording / reproducing method thereof
JP2800444B2 (en) Magneto-optical recording medium and recording / reproducing method thereof
JP3789194B2 (en) Magneto-optical recording medium and reproducing method thereof
JP2607476B2 (en) Magneto-optical recording method
JPH087351A (en) Magneto-optical recording medium and method and magneto-optical recording and reproducing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080409

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 11