JP2910084B2 - Signal reproducing method in magneto-optical recording medium - Google Patents

Signal reproducing method in magneto-optical recording medium

Info

Publication number
JP2910084B2
JP2910084B2 JP22939589A JP22939589A JP2910084B2 JP 2910084 B2 JP2910084 B2 JP 2910084B2 JP 22939589 A JP22939589 A JP 22939589A JP 22939589 A JP22939589 A JP 22939589A JP 2910084 B2 JP2910084 B2 JP 2910084B2
Authority
JP
Japan
Prior art keywords
layer
reproducing
signal
magneto
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22939589A
Other languages
Japanese (ja)
Other versions
JPH0393058A (en
Inventor
勝久 荒谷
真澄 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP22939589A priority Critical patent/JP2910084B2/en
Priority to US07/574,081 priority patent/US5168482A/en
Priority to DE69018544T priority patent/DE69018544T2/en
Priority to EP90116773A priority patent/EP0415449B1/en
Publication of JPH0393058A publication Critical patent/JPH0393058A/en
Application granted granted Critical
Publication of JP2910084B2 publication Critical patent/JP2910084B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気光学特性によって記録信号の読み出し
を行う光磁気記録媒体における信号再生方法に関するも
のであり、特に線記録密度,トラック密度を向上するた
めの技術に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a signal reproducing method for a magneto-optical recording medium for reading a recording signal by using magneto-optical characteristics, and particularly to improving a linear recording density and a track density. It is related to the technology for performing.

〔発明の概要〕[Summary of the Invention]

本発明は、光磁気記録媒体の記録層を磁気的に結合さ
れる再生層と記録保持層とを含む多層膜で構成し、予め
再生層の磁化の向きを揃えて消去状態としておくととも
に、再生時にはレーザ光の照射によって再生層を所定の
温度以上に昇温し、この昇温された領域でのみ記録保持
層に書き込まれた磁気信号を再生層に転写しながら読み
取るようにすることにより、クロストークを解消して線
記録密度,トラック密度の向上を図ろうとするものであ
る。
According to the present invention, the recording layer of the magneto-optical recording medium is composed of a multilayer film including a reproducing layer and a recording holding layer that are magnetically coupled, and the magnetization direction of the reproducing layer is set in advance to be in the erased state, In some cases, the reproducing layer is heated to a predetermined temperature or higher by laser beam irradiation, and the magnetic signal written in the recording holding layer is read only while transferring the magnetic signal to the reproducing layer only in the region where the temperature has been raised. This is intended to eliminate the talk and improve the linear recording density and the track density.

〔従来の技術〕[Conventional technology]

光磁気記録方式は、磁性薄膜を部分的にキュリー点ま
たは温度補償点を越えて昇温し、この部分の保磁力を消
滅させて外部から印加される記録磁界の方向に磁化の向
きを反転させることを基本原理とするもので、したがっ
て光磁気記録媒体の構成としては、例えばポリカーボネ
ート等からなる透明基板の一主面に、膜面と垂直方向に
磁化容易軸を有し優れた磁気光学効果を有する記録磁性
層(例えば希土類−遷移金属合金非晶質薄膜)や反射
層、誘電体層を積層することにより記録部を設け、透明
基板側からレーザ光を照射して信号の読み取りを行うよ
うにしたものが知られている。
In the magneto-optical recording method, the temperature of the magnetic thin film is partially raised beyond the Curie point or the temperature compensation point, the coercive force in this part is eliminated, and the direction of magnetization is reversed to the direction of the externally applied recording magnetic field. Therefore, as a configuration of the magneto-optical recording medium, for example, one main surface of a transparent substrate made of polycarbonate or the like has an excellent magneto-optical effect having an easy axis of magnetization in a direction perpendicular to the film surface. A recording section is provided by laminating a recording magnetic layer (for example, a rare earth-transition metal alloy amorphous thin film), a reflective layer, and a dielectric layer, and a signal is read by irradiating a laser beam from the transparent substrate side. Is known.

ところで、光磁気記録媒体に限らず、デジタル・オー
ディオ・ディスク(いわゆるコンパクトディスク)やビ
デオディスク等の光ディスクの線記録密度は、主として
再生時のS/Nによって決められており、また再生信号の
信号量は記録されている信号のピット列の周期と再生光
学系のレーザ波長,対物レンズの開口数に大きく依存す
る。
Incidentally, the linear recording density of optical disks such as digital audio disks (so-called compact disks) and video disks is not limited to magneto-optical recording media, and is mainly determined by the S / N ratio during reproduction. The amount greatly depends on the period of the pit train of the recorded signal, the laser wavelength of the reproducing optical system, and the numerical aperture of the objective lens.

現状では再生光学系のレーザ波長λと対物レンズの開
口数N.A.が決まると、検出限界となるピット周期fが決
まる。すなわち、 f=λ/2・N.A. である。
At present, when the laser wavelength λ of the reproducing optical system and the numerical aperture NA of the objective lens are determined, the pit period f serving as a detection limit is determined. That is, f = λ / 2 · NA.

一方、トラック密度は、主としてクロストークによっ
て制限されている。そして、このクロストークは、主に
媒体面上でのレーザビームの分布(プロフィル)で決ま
り、前記ピット周期と同様やはりλ/2・N.A.の関数で概
略表される。
On the other hand, track density is mainly limited by crosstalk. The crosstalk is mainly determined by the distribution (profile) of the laser beam on the medium surface, and is also roughly expressed by a function of λ / 2 · NA, similarly to the pit period.

したがって、従来の光ディスクで高密度化を実現する
ためには、再生光学系のレーザ波長λを短くし、対物レ
ンズの開口数N.A.を大きくするというのが基本姿勢であ
る。
Therefore, in order to realize a higher density in a conventional optical disc, the basic attitude is to shorten the laser wavelength λ of the reproducing optical system and increase the numerical aperture NA of the objective lens.

しかしながら、レーザ波長や対物レンズの開口数の改
善にも限度があり、一方では記録媒体の構成や読み取り
方法を工夫し、記録密度を改善する技術が開発されてい
る。
However, there is a limit to the improvement of the laser wavelength and the numerical aperture of the objective lens. On the other hand, techniques for improving the recording density by devising the configuration and reading method of the recording medium have been developed.

例えば、本願出願人は、先に特開平1−143041号,特
開平1−143042号において、記録ピット(磁区)を再生
時に拡大,消滅させながら再生することにより再生分解
能を向上させる方式を提案している。この方式は、再生
層,中間層,記録層からなる交換結合多層膜を記録媒体
とし、再生時において再生光ビームで加熱された再生層
の磁区を拡大あるいは消去することにより、再生時の符
号間干渉を減少させ、光の回折限界以下の周期の信号を
再生可能とするものである。
For example, the applicant of the present application has previously proposed in Japanese Patent Application Laid-Open Nos. 1-130441 and 1-143042 a method in which a recording pit (magnetic domain) is reproduced while being enlarged and disappeared during reproduction to improve the reproduction resolution. ing. This method uses an exchange-coupling multilayer film composed of a reproducing layer, an intermediate layer, and a recording layer as a recording medium, and expands or erases magnetic domains of the reproducing layer heated by a reproducing light beam during reproduction, thereby forming a code between codes during reproduction. The interference is reduced, and a signal having a period equal to or less than the diffraction limit of light can be reproduced.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、前述の方式では、線記録密度について
は改善されるものの、クロストークについては通常の光
ディスクと同様であり、トラック密度を改善することは
難しい。
However, in the above-described method, although the linear recording density is improved, the crosstalk is the same as that of an ordinary optical disk, and it is difficult to improve the track density.

本発明は、かかる従来の実情に鑑みて提案されたもの
であって、クロストークを解消することができ、線記録
密度ばかりでなくトラック密度も向上することが可能な
信号再生方法を提供することを目的とする。
The present invention has been proposed in view of such conventional circumstances, and provides a signal reproducing method capable of eliminating crosstalk and improving not only linear recording density but also track density. With the goal.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、上記目的を達成するために、互いに交換結
合された再生層と記録保持層とが積層形成された多層膜
を有する光磁気記録媒体を用い、前記記録保持層に対し
信号記録を行うとともに、再生に先立って再生層の磁化
の向きを揃え、再生時に、前記再生層にレーザ光を照射
することにより当該再生層を昇温させ、前記記録保持層
に記録された信号を、前記昇温による再生層の温度分布
に応じて再生スポット内の一部でのみ転写させながら磁
気光学効果により光学信号に変換して読み取ることを特
徴とするものである。
In order to achieve the above object, the present invention uses a magneto-optical recording medium having a multilayer film in which a reproduction layer and a recording holding layer exchange-coupled to each other are formed, and performs signal recording on the recording holding layer. At the same time, the magnetization direction of the reproduction layer is aligned prior to reproduction, and at the time of reproduction, the reproduction layer is irradiated with a laser beam to raise the temperature of the reproduction layer, and the signal recorded on the recording holding layer is raised. It is characterized in that it is converted into an optical signal by the magneto-optical effect and read out while transferring only a part of the reproducing spot in accordance with the temperature distribution of the reproducing layer due to the temperature.

すなわち、本発明は、再生層と記録保持層とを少なく
とも有する多層膜を記録媒体とし、信号の再生前には再
生層は全面同一状態(消去状態)としておき、再生光が
照射されある温度以上となった領域でのみ予め記録保持
層に記録された信号が再生層に転写されるように設定
し、前記温度以下の領域は信号に何ら関与せず光学的に
はその部分がマスクされてるのと等価な状態となし、線
記録密度とトラック密度の両者を改善するものである。
That is, in the present invention, a multilayer film having at least a reproducing layer and a recording holding layer is used as a recording medium, and before reproducing a signal, the reproducing layer is kept in the same state (erased state) over a certain temperature at which the reproducing light is irradiated. It is set so that the signal recorded in the recording holding layer in advance is transferred to the reproducing layer only in the area where the area has become, and in the area below the temperature, the part is optically masked without being involved in the signal at all. And improve both the linear recording density and the track density.

本発明において、使用される光磁気記録媒体の記録層
は、少なくとも垂直磁化膜の2層膜(再生層及び記録保
持層)で構成されれば良く、例えば希土類−遷移金属合
金薄膜からなる交換結合多層膜(少なくとも2層膜,3層
膜。できれば4層膜以上であることが好ましい。)等が
好適である。勿論、これに限らず、ガーネット膜やCoC
r,PtCo,PdCo等の垂直磁化膜であってもよいし、さらに
はバリウムフェライト等の六方晶系フェライト粉末を分
散した磁性塗料の塗膜であっても良い。ただし、前記再
生層と記録保持層とは、静磁結合あるいは交換結合によ
って磁気的に結合していることが必要である。また、再
生層については、大きなカー回転角,ファラデー回転角
を有することが必要である。
In the present invention, the recording layer of the magneto-optical recording medium used may be composed of at least two layers of a perpendicular magnetization film (reproducing layer and recording holding layer). For example, exchange coupling made of a rare earth-transition metal alloy thin film A multilayer film (at least a two-layer film, a three-layer film, preferably a four-layer film or more is preferable) is suitable. Of course, not limited to this, garnet film or CoC
It may be a perpendicular magnetization film of r, PtCo, PdCo or the like, or may be a coating film of a magnetic paint in which hexagonal ferrite powder such as barium ferrite is dispersed. However, it is necessary that the reproducing layer and the recording holding layer are magnetically coupled by magnetostatic coupling or exchange coupling. Also, the reproducing layer needs to have a large Kerr rotation angle and a large Faraday rotation angle.

前記記録保持層には、通常の光磁気記録媒体と同様、
光変調方式あるいは磁界変調方式で信号を記録するよう
にすればよいが、さらには記録保持層に接して垂直磁化
膜を設け、この垂直磁化膜に垂直磁気記録媒体と同様に
磁気ヘッドで磁気信号を記録した後、レーザ光の照射に
より垂直磁化膜に記録された磁気信号を記録保持層に転
写するようにしてもよい。
In the recording holding layer, similar to a normal magneto-optical recording medium,
The signal may be recorded by an optical modulation method or a magnetic field modulation method.However, a perpendicular magnetization film is provided in contact with the recording holding layer, and a magnetic signal is applied to the perpendicular magnetization film by a magnetic head in the same manner as a perpendicular magnetic recording medium. After recording, the magnetic signal recorded on the perpendicular magnetization film by laser light irradiation may be transferred to the recording holding layer.

そして、第1図に示すように、上述の構成を有する光
磁気記録媒体の記録保持層(1)に信号を記録し、一方
再生層(2)は磁化の向きを揃えて消去状態としてお
く。本例では、再生層(2)の磁化の向きは図中上向き
に揃えられている。
Then, as shown in FIG. 1, a signal is recorded on the recording holding layer (1) of the magneto-optical recording medium having the above-mentioned configuration, while the reproducing layer (2) is kept in the erased state with the magnetization directions aligned. In this example, the direction of magnetization of the reproducing layer (2) is aligned upward in the figure.

ここで再生層(2)の消去は、外部磁界HERで行えば
良い。すなわち、HER>Hc1〔ただしHc1は再生層(2)
の磁化反転磁界〕としておけば、再生層(2)の磁化の
向きを前記外部磁界HERの方向に揃えることができる。
また、このときHER<<Hc2〔ただしHc2は記録保持層
(1)の磁化反転磁界〕としておけば、記録保持層
(1)に記録された信号が影響を受けることはない。
Here, the erasing of the reproducing layer (2) may be performed by the external magnetic field HER . That is, HER > Hc 1 [where Hc 1 is the reproducing layer (2)
Once you have the magnetization reversal field], it is possible to align the direction of magnetization of the reproducing layer (2) in the direction of the external magnetic field H ER.
Also, at this time, if HER << Hc 2 [where Hc 2 is the magnetization reversal magnetic field of the recording holding layer (1)], the signal recorded on the recording holding layer (1) is not affected.

再生時には、再生層(2)にレーザ光LBが照射され、
レーザ光LBが照射された領域が加熱されて温度が上昇す
る。
During reproduction, the reproduction layer (2) is irradiated with laser light LB,
The area irradiated with the laser beam LB is heated and the temperature rises.

このとき、第2図に示すように、再生層(2)がある
一定の温度TPB以上になると、記録保持層(1)に記録
された信号が再生層(2)へ転写される。
At this time, as shown in FIG. 2, when the reproducing layer (2) reaches a certain temperature TPB or higher, a signal recorded in the recording holding layer (1) is transferred to the reproducing layer (2).

例えば、前記記録保持層(1)と再生層(2)とが静
磁結合によって磁気的に結合されているとすると、記録
保持層(1)からの浮遊磁界Hs2,再生層(2)の反磁界
Hd1,再生層(2)の磁区発生磁界Hn1,再生時に印加され
る外部印加磁界HPBが、前記所定の温度TPB以下のとき
に、 Hs2+Hd1±HPB<Hn1 ・・・(1) なる式を満たし、また前記所定の温度TPB以上のときに Hs2+Hd1±HPB>Hn1 ・・・(2) なる式を満たすように各層の磁化,保磁力,膜厚等を設
定しておけば、前記温度TPB以上に加熱された領域での
み前記記録保持層(1)から発生する浮遊磁界に従って
信号が転写される。
For example, if the recording holding layer (1) and the reproducing layer (2) are magnetically coupled by magnetostatic coupling, the floating magnetic field Hs 2 from the recording holding layer (1), Demagnetizing field
Hd 1, the magnetic domain generated magnetic field Hn 1 of the reproducing layer (2), the external applied magnetic field H PB applied during reproduction, when: the predetermined temperature T PB, Hs 2 + Hd 1 ± H PB <Hn 1 ·· The magnetization, coercive force, and film of each layer satisfy the expression (1) and satisfy the expression Hs 2 + Hd 1 ± H PB > Hn 1 when the temperature is equal to or higher than the predetermined temperature T PB. If the thickness or the like is set, a signal is transferred according to the stray magnetic field generated from the recording holding layer (1) only in a region heated to the temperature TPB or higher.

同様に、前記記録保持層(1)と再生層(2)とが交
換結合によって磁気的に結合されているとすると、再生
層(2)に働く交換力による等価な磁界Hw1〔=σw/2Ms
1h1:ただしσwは再生層(2)と再生層(2)に接する
磁性層との層間に生ずる界面磁壁エネルギー密度であ
り、Ms1は再生層(2)の飽和磁化、h1は再生層(2)
の膜厚である。〕が再生層(2)の磁区発生磁界Hn1
対して、前記所定の温度TPB以下のときに、 Hw1±HPB<Hn1 ・・・(3) であり、所定の温度TPB以上のときに Hw1±HPB>Hn1 ・・・(4) であれば、前記温度TPB以上に加熱された領域でのみ前
記記録保持層(1)との交換力により信号が転写され
る。
Similarly, assuming that the recording holding layer (1) and the reproducing layer (2) are magnetically coupled by exchange coupling, an equivalent magnetic field Hw 1 [= σw / 2Ms
1 h 1 : where σw is an interface domain wall energy density generated between the reproducing layer (2) and the magnetic layer in contact with the reproducing layer (2), Ms 1 is the saturation magnetization of the reproducing layer (2), and h 1 is the reproducing Layer (2)
Is the film thickness. ] Is less than or equal to the predetermined temperature T PB with respect to the magnetic domain generated magnetic field Hn 1 of the reproducing layer (2), Hw 1 ± H PB <Hn 1 (3), and the predetermined temperature T PB In the above case, if Hw 1 ± H PB > Hn 1 (4), the signal is transferred by the exchange force with the recording holding layer (1) only in the region heated to the temperature T PB or higher. You.

転写された磁気信号は、再生層(2)の磁気光学効果
(カー効果あるいはファラデー効果)によって光学信号
に変換され、先のレーザ光LBのカー回転角を検出するこ
とで再生される。
The transferred magnetic signal is converted into an optical signal by the magneto-optical effect (Kerr effect or Faraday effect) of the reproducing layer (2), and is reproduced by detecting the Kerr rotation angle of the laser beam LB.

再生に際しては、第3図に示すように、再生トラック
taと隣接トラックtbとの境界での温度TNが、TN<TPB
なるような温度分布としておけば、隣接トラックtbの下
の記録保持層(1)に記録された信号が再生層(2)に
転写されてくることはなく、クロストークは完全に解消
される。
At the time of reproduction, as shown in FIG.
If the temperature T N at the boundary between t a and the adjacent track t b is a temperature distribution such that T N <T PB , the signal recorded on the recording holding layer (1) below the adjacent track t b Is not transferred to the reproducing layer (2), and the crosstalk is completely eliminated.

〔作用〕[Action]

本発明の信号再生方法では、信号の読み取りを行う再
生層は、磁化の向きが揃えられ全面同一状態(消去状
態)とされており、レーザ光が照射された領域でのみ信
号が転写されて読み出される。
According to the signal reproducing method of the present invention, the reproducing layer from which the signal is read has the same magnetization direction and is in the same state (erased state) over the entire surface, and the signal is transferred and read only in the region irradiated with the laser beam. It is.

したがって、隣接するトラックの影響は皆無となり、
クロストークが解消される。
Therefore, there is no influence of the adjacent track,
Crosstalk is eliminated.

また、レーザ光を照射した際の温度分布により、レー
ザ光の走行方向前方端は前記消去状態が維持されてあた
かもマスクされたような形となり、ピット周期がレーザ
光のビーム径よりも小さい場合にも見掛け上の空間周波
数が抑えられ、高C/Nで再生される。
Further, due to the temperature distribution at the time of irradiating the laser light, the front end in the traveling direction of the laser light has a shape as if the erased state is maintained and as if it were masked, and the pit period is smaller than the beam diameter of the laser light. Is also reduced in apparent spatial frequency, and is reproduced at high C / N.

〔実施例〕〔Example〕

以下、本発明を適用した具体的な実施例について図面
を参照しながら説明する。
Hereinafter, specific embodiments to which the present invention is applied will be described with reference to the drawings.

実施例1 本例は、記録保持層と再生層の磁気的な結合に静磁結
合を用いた例である。
Example 1 This example is an example in which magnetostatic coupling is used for magnetic coupling between the recording holding layer and the reproducing layer.

本実施例の光磁気記録媒体は、第4図に示すように、
ポリカーボネートやガラス等からなる透明基板(11)上
に、第1の再生層(12),第2の再生層(13)及び記録
保持層(14)を、誘電体膜(15),(16)を介して積層
形成し、さらに最外層にも誘電体膜(17)を設けてなる
ものである。誘電体膜(15),(16),(17)の材料と
しては、窒化ケイ素,酸化ケイ素,窒化アルミニウム等
の透明誘電材料が使用可能である。
As shown in FIG. 4, the magneto-optical recording medium of the present embodiment
A first reproducing layer (12), a second reproducing layer (13), and a recording holding layer (14) are formed on a transparent substrate (11) made of polycarbonate, glass, or the like by dielectric films (15), (16). And a dielectric film (17) is provided on the outermost layer as well. As a material for the dielectric films (15), (16), and (17), a transparent dielectric material such as silicon nitride, silicon oxide, or aluminum nitride can be used.

第1の再生層(12)は、キュリー点が高く(例えば20
0℃以上)、カー回転角が大きく、しかも保磁力が数百
エルステッド以下の垂直磁化膜である。
The first reproducing layer (12) has a high Curie point (for example, 20
(0 ° C. or higher), a perpendicular magnetization film having a large Kerr rotation angle and a coercive force of several hundred Oersteds or less.

第2の再生層(13)は、垂直磁気異方性が大きく、キ
ュリー点は低く(例えば200℃以下)、保磁力は室温で
2キロエルステッド(kOe)前後の垂直磁化膜である。
The second reproducing layer (13) is a perpendicular magnetic film having a large perpendicular magnetic anisotropy, a low Curie point (for example, 200 ° C. or less), and a coercive force of about 2 kilooersted (kOe) at room temperature.

なお、これら第1の再生層(12)と第2の再生層(1
3)とは交換結合されている。
The first reproducing layer (12) and the second reproducing layer (1
3) is exchange coupled.

このように再生層を2層構造とすると、再生層の磁化
反転磁界の温度依存性がある温度を境に急峻に変化し、
しかも第2の再生層(13)のキュリー点以上で反転磁界
を100(Oe)程度の低い値とすることができ、微小ビッ
トの安定な転写が可能となる。
When the reproducing layer has a two-layer structure as described above, the reproducing layer changes sharply at a temperature where the temperature of the magnetization reversal magnetic field of the reproducing layer has a temperature dependency.
In addition, the switching field can be set to a low value of about 100 (Oe) above the Curie point of the second reproducing layer (13), and stable transfer of minute bits can be performed.

一方、記録保持層(14)は、垂直磁気異方性が大き
く、キュリー点が前記第2の再生層(13)のキュリー点
よりも高い材料によって構成される。当該記録保持層
(14)のキュリー点は、読み出しと書き込みに使用する
レーザ光の出力のマージンを設定する目安となり、第2
の再生層(13)のキュリー点よりも50℃以上高くする必
要がある。
On the other hand, the recording holding layer (14) is made of a material having a large perpendicular magnetic anisotropy and a Curie point higher than the Curie point of the second reproducing layer (13). The Curie point of the record holding layer (14) serves as a guide for setting the output margin of the laser beam used for reading and writing.
Must be higher than the Curie point of the regeneration layer (13) by 50 ° C. or more.

実際には、第1の再生層(12)をGdFeCo,第2の再生
層(13)をTbFe,記録保持層(14)をTbFeCoとし、特に
記録保持層(14)のキュリー点は280℃,保磁力は10(k
Oe)以上に設定した。
Actually, the first reproducing layer (12) is made of GdFeCo, the second reproducing layer (13) is made of TbFe, and the recording holding layer (14) is made of TbFeCo. Coercivity is 10 (k
Oe) Set above.

かかる光磁気記録媒体を用い、記録保持層(14)に記
録された信号を再生光によって再生層(12)に転写しな
がら再生したところ、非常に高いC/Nが実現された。
Using such a magneto-optical recording medium, when a signal recorded on the recording holding layer (14) was reproduced while being transferred to the reproducing layer (12) by reproduction light, an extremely high C / N was realized.

実施例2 本例は、記録保持層と再生層の磁気的な結合に交換結
合を用いた例である。
Embodiment 2 This embodiment is an example in which exchange coupling is used for magnetic coupling between the recording holding layer and the reproducing layer.

交換結合を用いた光磁気記録媒体の構成としては、第
5図に示すように再生層(21)と記録保持層(22)から
なる交換結合2層膜としたもの(以下、媒体Aと称す
る。)、第6図に示すように再生層(23)と記録保持層
(24)の間に中間層(25)を介在せしめたもの(以下、
媒体Bと称する。)、第7図に示すように再生層を先の
実施例1と同様に第1の再生層(26),第2の再生層
(27)の2層構造とし、中間層(28)を介して記録保持
層(29)を積層したもの(以下、媒体Cと称する。)が
考えられる。
The configuration of a magneto-optical recording medium using exchange coupling is a two-layer exchange coupling film including a reproducing layer (21) and a recording holding layer (22) as shown in FIG. 5 (hereinafter referred to as medium A). ), An intermediate layer (25) interposed between the reproducing layer (23) and the recording holding layer (24) as shown in FIG.
This is referred to as medium B. As shown in FIG. 7, the reproducing layer has a two-layer structure of a first reproducing layer (26) and a second reproducing layer (27) in the same manner as in the first embodiment, and an intermediate layer (28) is provided. (Hereinafter, referred to as a medium C) in which a recording holding layer (29) is laminated.

ここで、媒体Aでは、前述の(3)式及び(4)式の
条件を満足するためには、再生層(21)と記録保持層
(22)の膜厚を厚くせざるを得ず、レーザーパワーに制
約があるために線速度が速い場合には記録,消去を行う
ことができなくなる虞れがある。
Here, in the medium A, in order to satisfy the above-mentioned expressions (3) and (4), the thickness of the reproducing layer (21) and the recording holding layer (22) must be increased. If the linear velocity is high due to the limitation of the laser power, there is a possibility that recording and erasing cannot be performed.

そこで、中間層を介在せしめることで界面磁壁エネル
ギー密度を低下させ、各層の膜厚が薄くて済むようにす
ればよいものと考えられるが、媒体Bでは、交換力によ
る等価な磁界Hw1が再生層の磁区発生磁界Hn1と等しくな
る温度が膜組成,膜厚等に非常に敏感なものとなり、デ
ィスク周上のムラが顕著に影響して再生時にノイズやジ
ッターが大きくなる傾向にある。
Therefore, it is considered that the interface magnetic wall energy density can be reduced by interposing an intermediate layer so that the thickness of each layer can be reduced. However, in the medium B, the equivalent magnetic field Hw 1 due to the exchange force is reproduced. The temperature at which the magnetic domain generated magnetic field Hn 1 becomes equal to the layer becomes very sensitive to the film composition, the film thickness, and the like, and the unevenness on the disk periphery is significantly affected, and noise and jitter tend to increase during reproduction.

これに対して、媒体Cでは、第1の再生層(26)をキ
ュリー点が高く、カー回転角が大きく、保磁力の小さい
材料で構成し、第2の再生層(27)をキュリー点が低
く、保磁力が2(kOe)程度の材料で構成することで、
再生S/Nの良好な光磁気記録媒体とすることができる。
On the other hand, in the medium C, the first reproducing layer (26) is made of a material having a high Curie point, a large Kerr rotation angle, and a small coercive force, and the second reproducing layer (27) has a Curie point. By using a material with low coercive force of about 2 (kOe),
A magneto-optical recording medium with good reproduction S / N can be obtained.

本発明者等は、ポリカーボネート基板上に、Si3N4
らなる誘電体層(膜厚800Å)、GdFeCoからなる第1の
再生層(膜厚300Å)、TbFeからなる第2の再生層(膜
厚150Å)、GdFeCoからなる中間層(膜厚100Å)、TbFe
Coからなる記録保持層(膜厚350Å)、Si3N4からなる誘
電体層(膜厚800Å)をスパッタリングにより順次積層
形成し、サンプルディスクを作成した。
On the polycarbonate substrate, the present inventors have developed a dielectric layer (thickness: 800 膜厚) made of Si 3 N 4, a first reproduction layer (thickness: 300 Å) made of GdFeCo, and a second reproduction layer (film) made of TbFe. 150 mm thick), an intermediate layer of GdFeCo (100 mm thick), TbFe
Recording holding layer made of Co (film thickness 350 Å), a dielectric layer composed of Si 3 N 4 (thickness 800 Å) are sequentially laminated by sputtering to prepare a sample disk.

そして、記録保持層に5MHzのキャリア信号を書き込
み、線速度5m/秒,再生外部磁界500(Oe)として、キャ
リアー及びノイズの再生出力のレーザ出力依存性を調べ
た。同時に、クロストークについても測定した。クロス
トークは、基板に幅0.8μmのグループを0.8μm間隔で
形成し(したがってグルーブ部の間には幅0.8μmのラ
ンド部が形成される。)、ランド部及びグルーブ部にそ
れぞれ4.8MHzの信号を記録して測定した。
Then, a carrier signal of 5 MHz was written into the recording holding layer, and the laser output dependence of the carrier and noise reproduction output was examined with a linear velocity of 5 m / sec and a reproduction external magnetic field of 500 (Oe). At the same time, crosstalk was also measured. Crosstalk is caused by forming 0.8 μm wide groups on the substrate at 0.8 μm intervals (therefore, 0.8 μm wide lands are formed between the groove portions), and 4.8 MHz signals are respectively applied to the land portions and the groove portions. Was recorded and measured.

結果を第8図に示す。図中、線iはキャリアの再生出
力、線iiはノイズの再生出力、線iiiはクロストークを
表す。
The results are shown in FIG. In the figure, the line i represents the reproduced output of the carrier, the line ii represents the reproduced output of the noise, and the line iii represents the crosstalk.

レーザ出力1.6mW以下でキャリアが観測されないの
は、このパワーでは媒体温度が転写に必要な温度に達し
ていないことによる。
The reason that no carrier is observed at a laser output of 1.6 mW or less is because the medium temperature has not reached the temperature required for transfer at this power.

これに対して、レーザ出力2.0mW以上では、急激にキ
ャリアが観測される。クロストークはレーザ出力2.5mW
以下ではほとんど検出されず、したがってこのサンプル
ディスクでは、レーザ出力を2.0mW以上,2.5mW以下とす
ることで、クロストークが無く高C/Nでの信号再生が可
能である。
On the other hand, at a laser output of 2.0 mW or more, carriers are sharply observed. Crosstalk is 2.5mW laser output
In the sample disk, the laser output is set to 2.0 mW or more and 2.5 mW or less, so that signal reproduction at high C / N without crosstalk is possible.

そこでさらに、転写しながら再生することによる優位
性を確認するために、C/Nのピット周期依存性を調べ
た。測定に際しての線速度は5m/秒,再生磁界は500(O
e),レーザ波長は780nm,対物レンズレンズの開口数N.
A.は0.53である。結果を第9図に示す。
Therefore, in order to confirm the superiority of reproducing while transferring, the pit period dependency of C / N was examined. The linear velocity for measurement was 5 m / s, and the reproducing magnetic field was 500 (O
e), laser wavelength is 780nm, numerical aperture of objective lens N.
A. is 0.53. The results are shown in FIG.

第9図中、曲線aは再生層を3.5(kOe)の外部磁界で
初期化した後、レーザ出力2.8mWで磁区を転写しながら
再生した場合の特性を示すものであり、曲線bは同様の
条件で一度再生した後、初期化せずにそのままレーザ出
力1.4mWで再生した場合の特性を示すものである。した
がって、曲線bは、通常の再生でのC/Nに相当する。
In FIG. 9, a curve a shows the characteristics when the reproducing layer is initialized with an external magnetic field of 3.5 (kOe) and then reproduced while transferring magnetic domains with a laser output of 2.8 mW, and a curve b shows the same characteristics. The graph shows the characteristics in the case where reproduction was performed once under the conditions, and then reproduction was performed without initialization at a laser output of 1.4 mW. Therefore, the curve b corresponds to C / N in normal reproduction.

この第9図を見ると、本発明方法を採用することでC/
Nが大幅に改善されることがわかる。
Referring to FIG. 9, the adoption of the method of the present invention allows C /
It can be seen that N is greatly improved.

〔発明の効果〕〔The invention's effect〕

以上の説明からも明らかなように、本発明において
は、記録保持層に記録された磁気信号を再生層に転写し
ながら読み出すようにしているので、クロストークを解
消することができ、トラック密度及び線記録密度が高い
場合にも高C/Nで信号を再生することが可能である。
As is clear from the above description, in the present invention, since the magnetic signal recorded on the recording holding layer is read while being transferred to the reproducing layer, crosstalk can be eliminated, and the track density and the track density can be reduced. Even when the linear recording density is high, it is possible to reproduce a signal with a high C / N.

したがって、光磁気記録媒体における高密度記録化を
達成する上で非常に有用で、その意義は大きい。
Therefore, it is very useful for achieving high density recording in a magneto-optical recording medium, and its significance is great.

【図面の簡単な説明】[Brief description of the drawings]

第1図及び第2図は本発明の再生原理を示す模式図であ
り、第1図は初期状態,第2図は再生状態を示すもので
ある。第3図はレーザ光を照射した場合のトラック幅方
向での温度分布を示す模式図である。 第4図は静磁結合を用いた光磁気記録媒体の一構成例を
示す概略断面図である。 第5図は交換結合を用いた光磁気記録媒体の一構成例を
示す概略断面図であり、第6図は交換結合を用いた光磁
気記録媒体の他の構成例を示す概略断面図、第7図は交
換結合を用いた光磁気記録媒体のさらに他の構成例を示
す概略断面図である。 第8図は再生層に磁区を転写しながら再生したときのキ
ャリア出力及びクロストークのレーザ出力依存性を示す
特性図であり、第9図は磁区を転写しながら再生した場
合のC/Nのピット周期依存性を通常の再生の場合のそれ
と比較して示す特性図である。
1 and 2 are schematic diagrams showing the principle of reproduction of the present invention. FIG. 1 shows an initial state, and FIG. 2 shows a reproduction state. FIG. 3 is a schematic diagram showing a temperature distribution in a track width direction when a laser beam is irradiated. FIG. 4 is a schematic sectional view showing an example of the configuration of a magneto-optical recording medium using magnetostatic coupling. FIG. 5 is a schematic cross-sectional view showing one configuration example of a magneto-optical recording medium using exchange coupling. FIG. 6 is a schematic cross-sectional view showing another configuration example of a magneto-optical recording medium using exchange coupling. FIG. 7 is a schematic sectional view showing still another configuration example of a magneto-optical recording medium using exchange coupling. FIG. 8 is a characteristic diagram showing the dependency of carrier output and crosstalk on the laser output when reproducing while transferring magnetic domains to the reproducing layer. FIG. 9 is a graph showing the C / N ratio when reproducing while transferring magnetic domains. FIG. 4 is a characteristic diagram showing the pit cycle dependency in comparison with that in the case of normal reproduction.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】互いに交換結合された再生層と記録保持層
とが積層形成された多層膜を有する光磁気記録媒体を用
い、 前記記録保持層に対し信号記録を行うとともに、再生に
先立って再生層の磁化の向きを揃え、 再生時に、前記再生層にレーザ光を照射することにより
当該再生層を昇温させ、前記記録保持層に記録された信
号を、前記昇温による再生層の温度分布に応じて再生ス
ポット内の一部でのみ転写させながら磁気光学効果によ
り光学信号に変換して読み取ること を特徴とする光磁気記録媒体における信号再生方法。
1. A magneto-optical recording medium having a multilayer film in which a read-out layer and a record-holding layer exchange-coupled to each other are formed, and signal recording is performed on the record-holding layer, and the read-out is performed prior to the read-out. The magnetization direction of the layers is aligned, and at the time of reproduction, the reproduction layer is irradiated with laser light to raise the temperature of the reproduction layer, and the signal recorded on the recording holding layer is subjected to the temperature distribution of the reproduction layer due to the temperature increase. A signal reproducing method for a magneto-optical recording medium, wherein the signal is converted into an optical signal by a magneto-optical effect and read while transferring only a part of the reproducing spot in accordance with the signal.
JP22939589A 1989-08-31 1989-09-06 Signal reproducing method in magneto-optical recording medium Expired - Lifetime JP2910084B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP22939589A JP2910084B2 (en) 1989-09-06 1989-09-06 Signal reproducing method in magneto-optical recording medium
US07/574,081 US5168482A (en) 1989-08-31 1990-08-29 Magnetooptical recording and playback method employing multi-layer recording medium with record holding layer and playback layer
DE69018544T DE69018544T2 (en) 1989-08-31 1990-08-31 Playback method for magneto-optical recording.
EP90116773A EP0415449B1 (en) 1989-08-31 1990-08-31 Playback method for magnetooptical recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22939589A JP2910084B2 (en) 1989-09-06 1989-09-06 Signal reproducing method in magneto-optical recording medium

Publications (2)

Publication Number Publication Date
JPH0393058A JPH0393058A (en) 1991-04-18
JP2910084B2 true JP2910084B2 (en) 1999-06-23

Family

ID=16891532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22939589A Expired - Lifetime JP2910084B2 (en) 1989-08-31 1989-09-06 Signal reproducing method in magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JP2910084B2 (en)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2959588B2 (en) * 1991-02-14 1999-10-06 ソニー株式会社 Magneto-optical disk and method of recording and reproducing sector management information thereof
JP3159742B2 (en) * 1991-10-07 2001-04-23 キヤノン株式会社 Magneto-optical recording / reproducing method
US5821004A (en) * 1991-11-29 1998-10-13 Matsushita Electric Industrial Co., Ltd Magneto-optical recording medium and recording and reading out process using the same
JPH05225627A (en) * 1992-02-14 1993-09-03 Fujitsu Ltd High density magneto-optical disk
DE69331924T2 (en) * 1992-08-28 2002-10-10 Canon Kk Magneto-optical recording medium and information recording and reproducing method therewith
USRE38501E1 (en) * 1992-08-28 2004-04-20 Canon Kabushiki Kaisha Magnetooptical recording medium and information recording and reproducing methods using the recording medium
JP3092363B2 (en) 1992-12-01 2000-09-25 松下電器産業株式会社 Magneto-optical recording medium
EP1158509A3 (en) 1993-04-02 2002-01-02 Canon Kabushiki Kaisha Magneto-optical recording method
JP3072812B2 (en) 1993-04-08 2000-08-07 キヤノン株式会社 Magneto-optical recording medium and method of reproducing information from the medium
US5993937A (en) * 1993-11-30 1999-11-30 Matsushita Electric Industrial Co., Ltd. Magneto-optic recording medium and method of fabricating the same
KR0157654B1 (en) * 1993-12-17 1998-12-15 쯔지 하루오 Magneto-optical recording medium and reproducing method of magneto-optically recorded information using thereof
JPH07230637A (en) * 1994-02-18 1995-08-29 Canon Inc Magneto-optical recording medium and information recording and reproducing method using this medium
CA2142767C (en) 1994-02-21 1998-11-17 Naoki Nishimura Magneto-optical recording medium, and information reproducing method using the medium
JPH07254175A (en) * 1994-03-16 1995-10-03 Canon Inc Magneto-optical recording medium and method for recording and reproducing information with same medium
EP0686970A3 (en) * 1994-06-10 1996-07-24 Canon Kk Magneto-optical recording medium and reproducing method using the medium
JP2766198B2 (en) * 1994-09-05 1998-06-18 富士通株式会社 Magneto-optical recording medium
JPH08203142A (en) 1994-09-08 1996-08-09 Canon Inc Optical recording medium, optical information recording and reproducing method, and optical information recording and reproducing device
US5818811A (en) * 1994-09-08 1998-10-06 Canon Kabushiki Kaisha Information recording and reproducing method for recording information on and reproducing information from an optical recording medium including a land portion divided into a plurality of information tracks
US6146740A (en) * 1994-11-28 2000-11-14 Matsushita Electric Industrial Co., Ltd. Magnetic recording medium and method of fabricating the same
JP3492800B2 (en) * 1995-02-17 2004-02-03 富士通株式会社 Optical recording apparatus and reproducing laser power setting method
JPH08287537A (en) * 1995-04-14 1996-11-01 Canon Inc Magneto-optical recording medium and information reproducing method using the medium
US5896365A (en) * 1995-04-28 1999-04-20 Canon Kabushiki Kaisha Optical information recording medium capable of recording in lands and grooves without a track-jumping operation; optical information recording/reproducing apparatus using, and master disk exposure apparatus for producing the same
US5717662A (en) * 1995-05-12 1998-02-10 Canon Kabushiki Kaisha Super-resolution magneto-optical recording medium using magnetostatic coupling and information reproduction method using the medium
JP3049482B2 (en) * 1995-06-09 2000-06-05 富士通株式会社 Magneto-optical recording medium and reproducing method thereof
JPH0954993A (en) * 1995-08-15 1997-02-25 Canon Inc Magneto-optical recording medium and reproducing method of information in the medium
JPH09212927A (en) * 1996-02-09 1997-08-15 Hitachi Ltd Magneto-optic recording medium and method for recording and reproducing by using the medium
JPH1074344A (en) * 1996-06-26 1998-03-17 So Fukada Reproducing device for magneto-optical data recording
JPH10149595A (en) * 1996-09-18 1998-06-02 Canon Inc Information reproducing device reproducing information by moving magnetic wall
JP3332750B2 (en) 1996-09-19 2002-10-07 キヤノン株式会社 Magnetic recording medium, recording method, reproducing method, and method of manufacturing magnetic recording medium
JPH10149592A (en) * 1996-09-19 1998-06-02 Canon Inc Magneto-optical recording medium and signal reproducing method for reproducing information by utilizing magnetic wall
JPH1092046A (en) * 1996-09-19 1998-04-10 Canon Inc Magnetooptical information reproducing device
JP3245704B2 (en) * 1996-10-18 2002-01-15 富士通株式会社 Magneto-optical recording medium and method of manufacturing the same
JPH10134429A (en) * 1996-10-25 1998-05-22 Fujitsu Ltd Magneto-optical recording medium and its reproduction method
JPH10188385A (en) * 1996-12-17 1998-07-21 Fujitsu Ltd Method for reproducing magneto-optical recording medium and device therefor
JP3551224B2 (en) * 1997-03-25 2004-08-04 富士通株式会社 Magneto-optical reproducing method and apparatus used for implementing the method
JP3647219B2 (en) 1997-09-01 2005-05-11 キヤノン株式会社 Method of reproducing signal from magnetic recording medium
JP3538727B2 (en) 1997-10-01 2004-06-14 富士通株式会社 Magneto-optical recording medium
US6442120B2 (en) 1998-08-31 2002-08-27 Hitachi, Ltd. Optical reproduction method and optical information device
JP3416548B2 (en) 1998-10-16 2003-06-16 キヤノン株式会社 Magnetic recording medium, reproducing method and reproducing apparatus
JP3781583B2 (en) 1999-06-11 2006-05-31 富士通株式会社 Magneto-optical recording medium, recording / reproducing method thereof, and magneto-optical recording apparatus
JP2001307393A (en) 2000-04-25 2001-11-02 Canon Inc Magneto-optical reproducing device
US6767656B2 (en) 2000-10-26 2004-07-27 Fujitsu Limited Magneto-optical recording medium and method of reproducing the same
US6770387B2 (en) 2000-10-26 2004-08-03 Fujitsu Limited Magneto-optical recording medium and method of reproducing the same
JP4350312B2 (en) 2001-01-12 2009-10-21 キヤノン株式会社 Domain wall moving magneto-optical recording medium and information reproducing method
KR100403138B1 (en) * 2001-03-24 2003-10-30 위아 주식회사 a Q-setter for a vertical lathe
JP2003317337A (en) 2002-04-26 2003-11-07 Canon Inc Magneto-optical recording medium and recording method
JP2005050400A (en) 2003-07-30 2005-02-24 Canon Inc Magneto-optical recording medium
WO2008013168A1 (en) 2006-07-27 2008-01-31 Sharp Kabushiki Kaisha Optical information recording medium, reproducing device for optical information recording medium, and reproducing method for optical information recording medium
EP3385952B1 (en) 2015-12-02 2020-08-26 Sony Corporation Information processing device, information processing method, and program

Also Published As

Publication number Publication date
JPH0393058A (en) 1991-04-18

Similar Documents

Publication Publication Date Title
JP2910084B2 (en) Signal reproducing method in magneto-optical recording medium
US5168482A (en) Magnetooptical recording and playback method employing multi-layer recording medium with record holding layer and playback layer
JP2910250B2 (en) Magneto-optical recording medium
US5051970A (en) Magneto-optic recording system with overwrite capability
JP2969963B2 (en) Signal reproducing method in magneto-optical recording medium
EP0524745A2 (en) Magneto-optical recording medium whereon recording is carried out with an overwriting function
JP3114204B2 (en) Recording / reproducing method for optical recording medium
JPH0432450B2 (en)
JP3111479B2 (en) Magneto-optical recording medium
US4694358A (en) Magneto-optic recording structure and method
US5175714A (en) Method of magneto-optically recording/erasing information and magneto-optical information storage medium including recording and bias layers satisfying certain conditions
JPH0393056A (en) Magneto-optical recording medium
JP3786426B2 (en) Magneto-optical recording medium and reproducing method thereof
KR100238692B1 (en) Magneto-optical recording medium
JP3585671B2 (en) Magneto-optical recording medium and reproducing method thereof
JPH0935346A (en) Magneto-optical recording medium and information recording method thereof
KR100201450B1 (en) Magneto-optical recording medium
JP2910082B2 (en) Magneto-optical recording / reproducing method
JP3108397B2 (en) Magneto-optical recording medium
JPS6314342A (en) Magneto-optical recording medium
KR0157654B1 (en) Magneto-optical recording medium and reproducing method of magneto-optically recorded information using thereof
JPH03242845A (en) Magneto-optical recording method
JP3111960B2 (en) Signal reproducing method in magneto-optical recording medium
JPH03130945A (en) Magnetic recording medium and method of recording/ reproducing using this medium
JP3789194B2 (en) Magneto-optical recording medium and reproducing method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080409

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 11