JPH0393056A - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JPH0393056A
JPH0393056A JP22939689A JP22939689A JPH0393056A JP H0393056 A JPH0393056 A JP H0393056A JP 22939689 A JP22939689 A JP 22939689A JP 22939689 A JP22939689 A JP 22939689A JP H0393056 A JPH0393056 A JP H0393056A
Authority
JP
Japan
Prior art keywords
layer
magneto
recording
magnetic
transfer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22939689A
Other languages
Japanese (ja)
Inventor
Katsuhisa Araya
勝久 荒谷
Atsushi Fukumoto
敦 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP22939689A priority Critical patent/JPH0393056A/en
Priority to US07/574,081 priority patent/US5168482A/en
Priority to DE69018544T priority patent/DE69018544T2/en
Priority to EP90116773A priority patent/EP0415449B1/en
Publication of JPH0393056A publication Critical patent/JPH0393056A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To allow overwriting and to improve a linear recording density and track density by constituting a recording layer of a perpendicularly magnetized layer and a magneto-optical recording layer and forming the magneto-optical recording layer into multilayered structure having a transfer layer and a reproducing layer. CONSTITUTION:The perpendicularly magnetized film 20 and the transfer layer 13 of the magneto-optical recording layer 10 are so set as to attain Tc2<Tc1, Hc1<Hc2 when the coercive force of the magnetized film 20 is designated as Hc1, the Curie point as Tc1, the coercive force of the transfer layer 13 as Hc2, and the Curie point as Tc2. Only the magnetized film 20 is subjected to recording by a magnetic head at the time of recording. The magnetically recorded signals are transferred to the transfer layer 13 by irradiation with a laser beam. Simultaneously an intermediate layer 12 and a reproducing layer 11 are formed with magnetic domain patterns as well. The reproducing layer 11 is shut off from the magnetic coupling with the transfer layer 13 by the irradiation with the laser beam and the magnetic domain patterns are formed at the time of reproducing. As a result, the magnetic domain patterns in the diameter of the laser beam are read out in a partly masked form. Even the signals formed to the pitch below the diameter of the laser beam are reproduced with high S/N.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、磁気光学特性によって記録信号の読み出しを
行う光磁気記録媒体に関するものであり、特に磁気ヘッ
ドで信号を記録しこれを光磁気記録層に転写して光学的
に記録信号の読み出しを行う光磁気記録媒体の改良に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a magneto-optical recording medium in which recorded signals are read out using magneto-optical characteristics, and in particular, the present invention relates to a magneto-optical recording medium in which a recorded signal is read out using magneto-optical characteristics. This invention relates to an improvement in a magneto-optical recording medium in which recorded signals are optically read out by transferring them onto a layer.

〔発明の概要) 本発明は、光磁気記録媒体の記録層を、磁気ヘッドによ
る記録が可能な垂直磁化膜と、当該垂直磁化膜に記録し
た記録信号が転写される光磁気記録層とから構成するこ
とで、いわゆるオーバーライトを可能とすると同時に、
前記光磁気記録層を少なくとも再生層と転写層とを有す
る多層構造とし、読み出し時に当該再生層の記録磁区を
反転,縮小もしくは拡大することで、線記録密度の改善
を図ろうとするものである。
[Summary of the Invention] The present invention provides a recording layer of a magneto-optical recording medium composed of a perpendicularly magnetized film that can be recorded by a magnetic head, and a magneto-optically recorded layer to which recording signals recorded on the perpendicularly magnetized film are transferred. By doing so, it is possible to perform so-called overwriting, and at the same time,
The magneto-optical recording layer has a multilayer structure including at least a reproducing layer and a transfer layer, and the recording magnetic domain of the reproducing layer is reversed, reduced or expanded during reading, thereby improving the linear recording density.

〔従来の技術〕[Conventional technology]

光磁気記録方式は、磁性薄膜を部分的にキュリ一点また
は温度補償点を越えて昇温し、この部分の保磁力を消滅
させて外部から印加される記録磁界の方向に磁化の向き
を反転させることを基本原理とするもので、したがって
光磁気記録媒体の構成としては、例えばポリカーポネー
ト等からなる透明基板の一生面に、膜面と垂直方向に磁
化容易軸を有し優れた磁気光学効果を有する記録磁性層
(例えば希土類一遷移金属合金非品質薄膜)や反射層、
誘電体層を積層することにより記録部を設け、透明基板
側からレーザ光を照射して信号の読み取りを行うように
したものが知られている。
In the magneto-optical recording method, the temperature of a magnetic thin film is partially raised to exceed the Curie point or the temperature compensation point, thereby eliminating the coercive force in this area and reversing the direction of magnetization in the direction of the externally applied recording magnetic field. Therefore, the structure of a magneto-optical recording medium is to have an axis of easy magnetization perpendicular to the film surface on the entire surface of a transparent substrate made of, for example, polycarbonate, which has an excellent magneto-optic effect. recording magnetic layer (e.g. rare earth-transition metal alloy non-quality thin film) or reflective layer,
It is known that a recording section is provided by laminating dielectric layers, and signals are read by irradiating laser light from the transparent substrate side.

そして、この光磁気記録媒体への記録方式としては、光
変調方式や磁界変調方式が採用されており、特にいわゆ
るオーバーライト(重ね書き)可能であるという点で磁
界変調方式の方が有利であると考えられている。
As a recording method for this magneto-optical recording medium, an optical modulation method or a magnetic field modulation method is adopted, and the magnetic field modulation method is particularly advantageous in that it is possible to overwrite. It is believed that.

しかしながら、磁界変調方式により信号記録を行った場
合、記録磁性層の冷却時における等温線で磁化方向の境
界線が決まるため、通常は記録される磁区形状が矢羽根
状(あるいは三日月状)となる傾向にある。このような
形状で磁区が形成されると、信号の周期が短くなるにつ
れてキャリアが減少してジッタが増加することになり、
線記録密度は自ずと制約されることになる。
However, when recording signals using the magnetic field modulation method, the boundary line of the magnetization direction is determined by the isothermal line during cooling of the recording magnetic layer, so the shape of the recorded magnetic domain usually becomes feather-shaped (or crescent-shaped). There is a tendency. When a magnetic domain is formed in this shape, carriers decrease and jitter increases as the signal period becomes shorter.
Linear recording density is naturally limited.

線記録密度やオーバーライト特性の点では、磁気へ冫ド
で記録を行う垂直磁気記録方式が有利であり、記録磁区
の形状も矩形に近いものとすることができるが、この場
合には磁気ヘッドの制約からトラック密度に限界がある
In terms of linear recording density and overwrite characteristics, the perpendicular magnetic recording method, which records by direct magnetic field, is advantageous, and the shape of the recording magnetic domain can be made close to a rectangle, but in this case, the magnetic head There is a limit to track density due to constraints.

このような状況から、光磁気記録方式と垂直磁気記録方
式を組み合わせた新たな記録方式が、大谷等によって第
36応用物理学関係連合講演会(Ia−2B−6)にお
いて報告されている。この記録方式は、垂直磁化膜に磁
気へ冫ドで記録を行い、その直後にトラッキング制御さ
れた光ビームで当該垂直磁化膜の信号を光磁気記録層へ
転写するというもので、記録の本質は磁気記録であるの
でオーバーライトが可能で、トラック密度や線記録密度
に関しても磁気記録と光記録の長所を併せ持たせること
ができるものと期待される。
Under these circumstances, a new recording method that combines the magneto-optical recording method and the perpendicular magnetic recording method was reported by Otani et al. at the 36th Applied Physics Conference (Ia-2B-6). In this recording method, recording is performed magnetically on a perpendicularly magnetized film, and immediately after that, the signal of the perpendicularly magnetized film is transferred to the magneto-optical recording layer using a tracking-controlled light beam.The essence of recording is Since it is magnetic recording, overwriting is possible, and it is expected that it will be able to combine the advantages of magnetic recording and optical recording in terms of track density and linear recording density.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このように、前述の記録方式は、記録時における記録密
度やオーバーライト特性の点で優れたものであるが、書
き込まれた信号の再生を光学的に行うが故に、S/Nを
確保する上で再生時のレーザー波長やレンズの開口数に
より大きな制約を受ける。
In this way, the above-mentioned recording method is excellent in terms of recording density and overwriting characteristics during recording, but because the written signal is reproduced optically, it is difficult to ensure the S/N ratio. There are major restrictions on the laser wavelength and numerical aperture of the lens during playback.

すなわち、光ビーム径以下の信号を再生しようとする場
合、通常はS/Nが著しく低下してしまい、例えば直径
0.2μmの情報ビット(磁区)をスポット径がltl
mのレーザー光で読み出すことは現状では不可能である
In other words, when trying to reproduce a signal smaller than the optical beam diameter, the S/N usually drops significantly, and for example, when an information bit (magnetic domain) with a diameter of 0.2 μm is
At present, it is impossible to read out using a laser beam of m.

したがって、実質的な記録密度が低下し、前述の記録方
式が有する利点を十分に生かしきれないのが実情である
. そこで本発明は、かかる従来の実情に鑑みて提案された
ものであって、特に再生時における記録密度の制約を改
善することを目的とし、記録時,再生時共に優れたトラ
ック密度,線記録密度を達威することが可能で、しかも
磁気ヘッドによるオーバーライトが可能な光磁気記録媒
体を提供することを目的とする. 〔課題を解決するための手段] 本発明の光磁気記録媒体は、上述の目的を達或するため
に、基板上に光磁気記録層と垂直磁化膜が積層形成され
てなり、前記光磁気記録層は、前記垂直磁化膜の記録信
号が転写される転写層と当該転写層と室温で磁気的に結
合され磁気光学効果により前記記録信号を光学信号に変
換する再生層とを少なくとも有し、前記垂直磁化膜の保
磁力をHc,,キュリー点をTc.、転写層の保磁力を
He2、キュリー点をTctとしたときにTcz<Tc
,,Hc<Hczであり、前記再生層は再生時のレーザ
光照射による昇温により転写層との磁気的な結合が遮断
されて記録磁区が変形されることを特徴とするものであ
る. 〔作用〕 本発明の光磁気記録媒体において、信号の書き込みは、
磁気ヘソドによって垂直磁化膜に対して行われる.この
とき、垂直磁化膜の保磁力Hc+<転写層の保磁力He
.であることから、転写層は何ら影響を受けない. そして、この垂直磁化膜に記録された信号は、この垂直
磁化膜に接して設けられた転写層にレーザ光を照射し昇
温することで、これら垂直磁化膜と転写層間の交換結合
あるいは静磁結合を利用して該転写層へ転写される。こ
こで、転写される磁区パターンの線記録密度は、前記磁
気ヘッドによる書き込み時の線記録密度によって決まり
、これに対してトランク幅は、照射されるレーザ光のス
ポット径によって決まる。また、転写層と磁気的に結合
される再生層も、これに従って磁化の向きが変わり、転
写層に対応した磁区パターンが形成される. 一方、再生時には、再生層にレーザ光を照射することで
、当該再生層に記録された磁化信号が磁気光学効果(磁
気カー効果.ファラデー効果)によって光学的信号に変
換されて読みだされる。
Therefore, the actual situation is that the actual recording density decreases and the advantages of the above-mentioned recording methods cannot be fully utilized. Therefore, the present invention has been proposed in view of the above-mentioned conventional situation, and is intended to improve the limitations of recording density especially during reproduction, and to achieve excellent track density and linear recording density during both recording and reproduction. The purpose of the present invention is to provide a magneto-optical recording medium that can achieve the above-mentioned functions and can be overwritten by a magnetic head. [Means for Solving the Problems] In order to achieve the above-mentioned object, the magneto-optical recording medium of the present invention includes a magneto-optical recording layer and a perpendicularly magnetized film formed on a substrate, and the magneto-optical recording The layer has at least a transfer layer to which the recording signal of the perpendicularly magnetized film is transferred, and a reproduction layer that is magnetically coupled to the transfer layer at room temperature and converts the recording signal into an optical signal by a magneto-optic effect, The coercive force of the perpendicularly magnetized film is Hc, and the Curie point is Tc. , when the coercive force of the transfer layer is He2 and the Curie point is Tct, Tcz<Tc
,,Hc<Hcz, and the reproducing layer is characterized in that magnetic coupling with the transfer layer is cut off by temperature rise due to laser beam irradiation during reproduction, and the recording magnetic domain is deformed. [Function] In the magneto-optical recording medium of the present invention, writing a signal is performed by:
It is performed on a perpendicularly magnetized film using a magnetic hesode. At this time, the coercive force Hc+ of the perpendicularly magnetized film<the coercive force He of the transfer layer
.. Therefore, the transfer layer is not affected in any way. The signals recorded on this perpendicularly magnetized film can be generated by irradiating a laser beam onto the transfer layer provided in contact with this perpendicularly magnetized film and raising its temperature, thereby creating an exchange coupling between the perpendicularly magnetized film and the transfer layer or magnetostatic coupling. It is transferred to the transfer layer using bonding. Here, the linear recording density of the magnetic domain pattern to be transferred is determined by the linear recording density during writing by the magnetic head, whereas the trunk width is determined by the spot diameter of the irradiated laser beam. Furthermore, the direction of magnetization of the reproducing layer that is magnetically coupled to the transfer layer changes accordingly, and a magnetic domain pattern corresponding to the transfer layer is formed. On the other hand, during reproduction, by irradiating the reproduction layer with laser light, the magnetization signal recorded in the reproduction layer is converted into an optical signal by the magneto-optic effect (magnetic Kerr effect, Faraday effect) and read out.

このとき、レーザビーム径内の温度分布によって再生層
と転写層の磁気的結合が部分的に切断され、例えば外部
磁界を印加することで前記磁気的結合が切断された部分
の磁区が変形(外部磁界の向きによって拡大,wJ小あ
るいは反転)される。
At this time, the magnetic coupling between the reproducing layer and the transfer layer is partially severed due to the temperature distribution within the laser beam diameter, and for example, by applying an external magnetic field, the magnetic domain in the portion where the magnetic coupling is severed is deformed (external Depending on the direction of the magnetic field, wJ is enlarged, wJ is small, or reversed).

その結果、レーザビーム径内の磁区バクーンが一部マス
クされた形で読み出され、レーザービーム径以下のピッ
チで形成された信号であっても高S/Nで再生される。
As a result, the magnetic domain backoon within the laser beam diameter is read out in a partially masked form, and even signals formed at a pitch smaller than the laser beam diameter are reproduced with a high S/N.

〔実施例〕〔Example〕

以下、本発明を具体的な実施例に基づいて図面を参照し
ながら説明する。
Hereinafter, the present invention will be explained based on specific embodiments with reference to the drawings.

本実施例の光磁気記録媒体は、第1図に示すように、透
明基板(1)上に再生層(11),中間層(12)転写
層(13)からなる光磁気記録層(10)と、垂直磁化
膜(20)とを積層形成してなるものである。
As shown in FIG. 1, the magneto-optical recording medium of this example includes a magneto-optical recording layer (10) consisting of a reproduction layer (11), an intermediate layer (12), and a transfer layer (13) on a transparent substrate (1). and a perpendicularly magnetized film (20) are laminated.

ここで、上記垂直磁化膜(20)は、垂直磁気異方性を
有するものであれば如何なるものであってもよく、Co
Cr,PtCo,PdCo,TbFeCo,TbFe等
の合金Fs膜が好適である.この垂直磁化膜(20)の
膜厚は、100人以上であればよく、通常は100人〜
3000入程度の範囲に設定される。
Here, the perpendicularly magnetized film (20) may be of any material as long as it has perpendicular magnetic anisotropy.
An alloy Fs film such as Cr, PtCo, PdCo, TbFeCo, TbFe, etc. is suitable. The film thickness of this perpendicular magnetization film (20) may be 100 or more, and usually 100 or more.
It is set to be around 3,000 pieces.

一方、光磁気記録層(10)を構威する再生層(11)
,中間層(12)及び転写層(13)も垂直磁化膜であ
るが、特に再生層(11)には、磁気光学効果によって
磁化信号を光学信号に変換する必要があることから、カ
ー回転角ないしはファラデー回転角が大きな磁性膜が用
いられ、通常は希土類一遷移金属系合金膜が使用される
.また、再生層(11),中間J!(12)及び転写層
〈13〉は交換結合によって室温で磁気的に結合されて
いることが好ましく、したがって中間層(12)及び転
写層(13)も前記再生層(11)と同様希土類一遷移
金属系合金膜とされる。これら再生層(11),中間層
(12)及び転写層(13)に使用される希土類一遷移
金属系合金膜としては、TbFeCo,TbFe,Gd
FeCo等が例示され、後述の条件に適合するように種
類.&tl戊等を選定すればよい。
On the other hand, the reproducing layer (11) comprising the magneto-optical recording layer (10)
, the intermediate layer (12) and the transfer layer (13) are also perpendicularly magnetized films, but the reproducing layer (11) in particular requires a magneto-optic effect to convert the magnetization signal into an optical signal. Alternatively, a magnetic film with a large Faraday rotation angle is used, and usually a rare earth-transition metal alloy film is used. In addition, a reproduction layer (11), an intermediate J! (12) and the transfer layer <13> are preferably magnetically coupled at room temperature by exchange coupling. Therefore, the intermediate layer (12) and the transfer layer (13) also contain a rare earth transition like the reproduction layer (11). It is considered to be a metal alloy film. The rare earth-transition metal alloy films used for the reproduction layer (11), intermediate layer (12), and transfer layer (13) include TbFeCo, TbFe, and Gd.
FeCo, etc. are exemplified, and types. &tl戊 etc. should be selected.

上記構成の光磁気記録層(IO)において、再生層(l
1)の膜厚は、再生時のS/Nを考慮すると250入以
上であることが好ましい。また、中間層(I2)の膜厚
は、昇温時に再生層(11)と転写層(l3)との磁気
的結合を確実に遮断するという観点から、50入以上と
することが好ましい。転写層(l3)の膜厚は、垂直磁
化膜(20)との交換結合による等価な磁界あるいは浮
M磁界を当該転写層(1l)の保磁力よりも小さくする
必要があることから、100大以上とすることが好まし
く、200〜500入とすることがより好ましい。
In the magneto-optical recording layer (IO) having the above structure, the reproducing layer (l
The film thickness of 1) is preferably 250 or more in consideration of the S/N during reproduction. Further, the thickness of the intermediate layer (I2) is preferably 50 mm or more from the viewpoint of reliably blocking the magnetic coupling between the reproducing layer (11) and the transfer layer (13) during temperature rise. The film thickness of the transfer layer (l3) is 100 or more because it is necessary to make the equivalent magnetic field or floating M magnetic field due to exchange coupling with the perpendicular magnetization film (20) smaller than the coercive force of the transfer layer (1l). It is preferable to set it as above, and it is more preferable to set it as 200-500 pieces.

上記垂直磁化膜(20)と転写層(13)とは′、交換
結合あるいは静磁結合している必要があり、さらに垂直
磁化膜の保磁力をHc.キュリー点をTc,、転写層の
保磁力をHcz,キュリー点をTc.としたときにTc
,<Tc+,  HC,<HC!となるように設定され
ている。
The perpendicular magnetization film (20) and the transfer layer (13) must be exchange-coupled or magnetostatically coupled, and the coercive force of the perpendicular magnetization film must be set to Hc. The Curie point is Tc, the coercive force of the transfer layer is Hcz, and the Curie point is Tc. When Tc
, <Tc+, HC, <HC! It is set so that

これに対して、光磁気記録層(10)を構成する再生層
(11),中間層(12).転写層(l3)  の保磁
力並びにキュリー点は、これら各層のキュリー点をT?
■Tcb, Tcc ( = ’rag)とし、保磁力
をHc2、Hcb.  Hc( (=Hcz)としたと
きに、T Cb > T llt(一室温)で、かつ’
l”a.<Tc■Tccとされ、再生層(11)の保磁
力He.が中間層(l2)のキュリー点Tc6近傍で十
分小さく、転写層(13)の保磁力Hecが室温TII
Tから中間層(l2)のキエリー点Tabより高い所定
の温度Trm(読み出し時に昇温される温度)までの温
度範囲で所要の磁場(読み出し時に加わる磁場)よりも
十分大きいように設定されている. なお、前記光磁気記録層(10)と透明基板(1)の間
には誘電体層が、また垂直磁化膜(20)の表面には保
護膜等が必要に応して形成されていてもよいが、ここで
は図示は省略する. 次に、上述の#I威を有する光磁気記録媒体における記
録再生の原理について説明する.先ず、記録に際しては
、通常の垂直磁気記録方式と同様に、磁気へッドMによ
り垂直磁化膜(20)にのみ記録を行う.このとき、前
記垂直磁化膜(20)と接して設けられた転写層(l3
)は、何ら影響を受けないようにしてある.例えば、転
写H(,13)の室温での保磁力Hc!を磁気へッドM
がら生ずる磁界Hmに比べHc2>>Hmとしておけば
よい.次いで、垂直磁化膜(20)に磁気記録された信
号(磁区パターン)を、集光されたレーザービームを転
写7!(13)に照射することで当該転写層〈l3)に
転写する. 以上を模式的に図示すると、第2図及び第3図に示すよ
うになる。なお、第3図においては、垂直磁化膜(20
)及び転写層(l3)のみを図示し、中間II (12
)及び再生層(11)の図示は省略した。また、第3図
において、垂直磁化膜(2o)及び転写!(13)の矢
印は、磁化もしくは原子磁気モーメントの方向を表す. 光磁気記録媒体の走行方向を矢印X方向とすると、先行
する磁気ヘッドMによって垂直磁化1t!(20)には
、第2図中斜線で示すような磁区パターンP1が形成さ
れる.この磁区パターンP,は、磁気へッドMの磁気ギ
ャップ幅に対応して幅広のトラック幅W1を有している
が、線記録密度は高く、またその形状も矩形状となって
いる. 次に、集光されたレーザービームLBを転写層(13)
に照射すると、転写層(13)の温度が上がり、保磁力
が急激に低下し、ついには磁化が消失する.すると、当
該転写N (13)が前記垂直磁化膜(20)と静磁結
合あるいは交換結合されているが故に、冷却過程におい
て垂直磁化III(20)に磁気記録された信号が転写
される. 例えば、転写層(13)と垂直磁化膜(20)とが静磁
結合されている場合には、垂直磁化Ill(20>の磁
化によって浮遊磁界が発生する.この状態で、転写層(
13)にレーザービームを照射し、当該転写111(1
3)のキュリー点Tc.近傍に加熱すると、冷却過程で
転写層(l3)の磁化方向は前記浮遊磁界方向を向き、
信号が転写される.このとき、垂直磁化膜(20)のキ
ュリー点Tc.は、Tcz<Tc+されているので、前
記レーザービームの照射による温度上昇が当該キュリー
点Tc+を越えない限り、垂直磁化膜(20)の磁化が
消失することはない.同様に、垂直磁化膜(20)と転
写層(l3)とが交換結合されている場合には、次のよ
うな理由によって垂直磁化膜(20)の信号が転写層(
13)へ転写される.すなわち、強磁性の起源が同一な
いし類似している積層された2層膜では、互いの層の原
子磁気モーメント(i6i化とは異なる)がある特定の
方向に揃うと磁気的な力が作用する.例えば、垂直磁化
膜(20)の原子磁気モーメントが第3図中上方向を向
いていれば、その真上の転写7!(13)の原子磁気モ
ーメントも上方向を向くというような力である.この方
(交換力)は磁界と等価的に働き、静磁結合されている
場合と同様に、転写Ji (13)にレーザービームを
照射し、当該転写層(13)のキュリー点Tc.近傍に
加熱すると、冷却過程で転写層(l3)の原子磁気モー
メントの方向は垂直磁化膜(20)の原子磁気モーメン
トの方向に向き、信号が転写される. ここで、前記静磁結合,交換結合のいずれの場合におい
ても、信号が転写されるのはレーザービームのビーム径
の範囲に限られ、したがって転写N (13)には第2
図中黒く塗り潰して示すような磁区パターンP2が形成
される.なお、かかる磁区パターンは、転写71 (1
3)ばかりでなく、これと磁気的に結合(交換結合)さ
れる中間N(12>及び再生層(11)にも同時に形成
される。
On the other hand, a reproducing layer (11), an intermediate layer (12) . The coercive force and Curie point of the transfer layer (l3) are T?
■Tcb, Tcc (='rag), and the coercive forces are Hc2, Hcb. When Hc( (=Hcz), T Cb > Tllt (one room temperature), and'
l”a.<Tc■Tcc, the coercive force He of the reproducing layer (11) is sufficiently small near the Curie point Tc6 of the intermediate layer (l2), and the coercive force He of the transfer layer (13) is at room temperature TII.
It is set to be sufficiently larger than the required magnetic field (the magnetic field applied during reading) in the temperature range from T to a predetermined temperature Trm (temperature raised during reading) higher than the Chierie point Tab of the intermediate layer (l2). .. Note that a dielectric layer may be formed between the magneto-optical recording layer (10) and the transparent substrate (1), and a protective film or the like may be formed on the surface of the perpendicular magnetization film (20), if necessary. Okay, but illustration is omitted here. Next, the principle of recording and reproducing in the magneto-optical recording medium having the above-mentioned #I strength will be explained. First, during recording, the magnetic head M records only on the perpendicularly magnetized film (20), similar to the normal perpendicular magnetic recording method. At this time, the transfer layer (l3) provided in contact with the perpendicular magnetization film (20)
) are not affected in any way. For example, the coercive force Hc of the transfer H(,13) at room temperature! The magnetic head M
It is sufficient to set Hc2>>Hm compared to the magnetic field Hm generated by the magnetic field. Next, the signal (magnetic domain pattern) magnetically recorded on the perpendicular magnetization film (20) is transferred with a focused laser beam 7! (13) is transferred to the transfer layer <l3). The above is schematically illustrated in FIGS. 2 and 3. In addition, in FIG. 3, the perpendicular magnetization film (20
) and the transfer layer (13) are shown, and the intermediate II (12
) and the reproduction layer (11) are not shown. In addition, in FIG. 3, the perpendicular magnetization film (2o) and the transfer! The arrow in (13) represents the direction of magnetization or atomic magnetic moment. If the traveling direction of the magneto-optical recording medium is the direction of arrow X, the preceding magnetic head M causes perpendicular magnetization 1t! (20), a magnetic domain pattern P1 as shown by diagonal lines in FIG. 2 is formed. This magnetic domain pattern P has a wide track width W1 corresponding to the magnetic gap width of the magnetic head M, but has a high linear recording density and is rectangular in shape. Next, the focused laser beam LB is applied to the transfer layer (13).
When the transfer layer (13) is irradiated with light, the temperature of the transfer layer (13) increases, the coercive force rapidly decreases, and the magnetization finally disappears. Then, since the transfer N (13) is magnetostatically or exchange-coupled with the perpendicular magnetization film (20), the signal magnetically recorded on the perpendicular magnetization III (20) is transferred during the cooling process. For example, when the transfer layer (13) and the perpendicular magnetization film (20) are magnetostatically coupled, a stray magnetic field is generated by the magnetization of the perpendicular magnetization Ill (20>. In this state, the transfer layer (
13) with a laser beam, the transfer 111 (1
3) Curie point Tc. When the vicinity is heated, the magnetization direction of the transfer layer (l3) is oriented in the direction of the floating magnetic field during the cooling process,
The signal is transcribed. At this time, the Curie point Tc of the perpendicularly magnetized film (20). Since Tcz<Tc+, the magnetization of the perpendicularly magnetized film (20) will not disappear unless the temperature rise due to the laser beam irradiation exceeds the Curie point Tc+. Similarly, when the perpendicular magnetization film (20) and the transfer layer (l3) are exchange-coupled, the signal of the perpendicular magnetization film (20) is transferred to the transfer layer (l3) for the following reasons.
13). In other words, in stacked two-layer films with the same or similar origin of ferromagnetism, a magnetic force acts when the atomic magnetic moments of each layer (different from i6i) are aligned in a certain direction. .. For example, if the atomic magnetic moment of the perpendicularly magnetized film (20) points upward in FIG. 3, the transfer 7! directly above it! The atomic magnetic moment in (13) is also a force that points upward. This force (exchange force) acts equivalently to the magnetic field, and similarly to the case of magnetostatic coupling, the transfer Ji (13) is irradiated with a laser beam and the Curie point Tc of the transfer layer (13) is reached. When the vicinity is heated, the direction of the atomic magnetic moment of the transfer layer (l3) is oriented in the direction of the atomic magnetic moment of the perpendicularly magnetized film (20) during the cooling process, and the signal is transferred. In both cases of magnetostatic coupling and exchange coupling, the signal is transferred only within the beam diameter range of the laser beam, so the transfer N (13) has a second
A magnetic domain pattern P2 as shown in black in the figure is formed. Note that such a magnetic domain pattern is transferred to the transfer 71 (1
3), but also on the intermediate N (12>) and the reproducing layer (11) which are magnetically coupled (exchange coupled) thereto.

この[区パターンP2は、レーザービームLBのビーム
径によってトラック幅Wtが決まり、微細な矩形状の磁
区バクーンとされる.これは、従来の磁界変調方式にお
いて記録される矢羽根状の磁区パターンと比べてパター
ン形状の点で対照的である. このように、本実施例の光磁気記録媒体の記録密度に関
しては、書き込み時の線記録密度は磁気ヘッドで、トラ
ック密度は集光ビーム照射時の温度プロファイルで決ま
る.一方、再生の点からは、線記録密度はレーザービー
ムの波長,レンズの開口数でほぼ決まり、トラック密度
はクロストークで決まる.ここで、磁気ヘッドにより書
き込み可能な線記録密度と、レーザービームによる再生
可能な線記録密度を比べると、現状では後者の再生性能
が律速となり、実質的な記録密度を向上するためには、
これを改善する必要がある。
This pattern P2 has a track width Wt determined by the beam diameter of the laser beam LB, and is formed into a fine rectangular magnetic domain pattern. This is in contrast to the feather-shaped magnetic domain pattern recorded in conventional magnetic field modulation methods in terms of pattern shape. As described above, regarding the recording density of the magneto-optical recording medium of this embodiment, the linear recording density during writing is determined by the magnetic head, and the track density is determined by the temperature profile during focused beam irradiation. On the other hand, from the viewpoint of reproduction, the linear recording density is determined mostly by the wavelength of the laser beam and the numerical aperture of the lens, and the track density is determined by crosstalk. Here, when comparing the linear recording density that can be written with a magnetic head and the linear recording density that can be reproduced with a laser beam, the reproduction performance of the latter is currently rate-limiting, and in order to improve the actual recording density,
This needs to be improved.

そこで、再生に際しては、再生層(11)に記録される
磁区パターンを変形させ、記録ビットの見掛け上の空間
周波数を低くすることで、高密度記録に対処する.以下
、再生の原理について説明する。
Therefore, during reproduction, high-density recording is handled by changing the magnetic domain pattern recorded in the reproduction layer (11) and lowering the apparent spatial frequency of the recorded bits. The principle of reproduction will be explained below.

いま、第4図及び第5図に示すように、再生層(11)
,中間層(12)及び転写層(l3)に所定の磁気信号
が転写され、磁区パターンが形成されているとする.な
お、第4図においては、垂直磁化膜〈2o)は図示を省
略してあり、また第5図においては、磁化の向きが上向
きの領域を黒く塗り潰して示している. ここで、レーザービームLBによって信号を読み出そう
とする場合、当該レーザービームLBのビーム径が記録
ピット(磁区パターン)のピッチよりも大きいと、ビー
ム径内に複数の記録ピットが存在してしまい、これまで
の光磁気記録媒体では個々に読み取ることは不可能であ
る。
Now, as shown in FIGS. 4 and 5, the reproduction layer (11)
, a predetermined magnetic signal is transferred to the intermediate layer (12) and the transfer layer (l3) to form a magnetic domain pattern. Note that in FIG. 4, the perpendicular magnetization film <2o) is not shown, and in FIG. 5, the region where the direction of magnetization is upward is shown blacked out. Here, when trying to read a signal using the laser beam LB, if the beam diameter of the laser beam LB is larger than the pitch of the recording pits (magnetic domain pattern), multiple recording pits will exist within the beam diameter. , it is impossible to read them individually with conventional magneto-optical recording media.

しかしながら、本実施例の光記録媒体では、光磁気記録
J!J(10)を再生Ji(11),中間層(12冫及
び転?N (13)から構成される多層膜としているこ
とから、再生層(1l)の磁区パターンを変形させるこ
とができ、ビーム径が記録ピットのピッチよりも大きく
ても、個々の記録ビットを高S/Nで読み取ることがで
きる. 先ず、前述のような多層膜から構威される光磁気記録J
i(10)に対してレーザービームLBを照射すると、
ビーム径内で温度分布が生じ、第6図に示すように、媒
体走行方向で見てレーザービームの前方部分(斜線SI
 fii )の温度が高くなる.このとき、前記斜線領
域の温度TP.が、中間層(l2)のキュリー点Tch
以上であれば、当該中間層(12)の磁化が消失し、再
生層(11)と転写層(13)の磁気的結合(交換結合
)は遮断されることになる.この状態で、再生層(11
)の保磁力He.より大きな外部磁界H.を印加すると
、第7図に示すように、前記斜線領域の再生層(11)
の磁化の向きは反転され、前記外部磁界H■の向き(こ
こでは下向き)に揃えられる.一方、前記斜線領域以外
の部分.すなわち温度が低い領域では、再生層(l1)
と転写Fl(13)の磁気的な結合が維持されており、
転写Fl(13)に転写された磁区パターンがそのまま
保たれている. したがって、第8図に示すように、ビーム径内の斜線領
域は、あたかもマスクされたかのようになり、この部分
に記録された磁区パターンは奥掛け上消失し、ビーム径
内には単一の磁区パターンのみが存在するかの如くなる
.すなわち、再生時の再生光から見た記録ピットの空間
周波数は、実際よりも低く見え、光学伝達関数(o”r
F:oρticat Transfer Functi
on )の絶対値(MTF:ModulaLion T
ransfer Function)が大きくなり、再
生分解能が向上する.この方法では、空間周波数ν>2
N.A./λ(ただし、N.^.は対物レンズレンズの
開口数であり、λはレーザービームの波長である.)な
るピット列に対しても、再生時にはMTF>Oとするこ
とが可能で、信号検出が可能となる. ここで、転写層(l3)の保磁力Hccを前記外部磁界
HPIの強さよりも大としておけば、前述の外部磁界■
{,.の印加によって転写層(13〉の磁化(磁区パタ
ーン)が変化することはない。
However, in the optical recording medium of this embodiment, magneto-optical recording J! Since J (10) is a multilayer film composed of a reproduction layer (11), an intermediate layer (12) and a transfer layer (13), the magnetic domain pattern of the reproduction layer (1l) can be deformed, and the beam Even if the diameter is larger than the pitch of the recording pits, each recorded bit can be read with a high S/N ratio.
When i(10) is irradiated with laser beam LB,
A temperature distribution occurs within the beam diameter, and as shown in FIG.
fii ) temperature increases. At this time, the temperature TP in the shaded area. is the Curie point Tch of the intermediate layer (l2)
If this is the case, the magnetization of the intermediate layer (12) will disappear, and the magnetic coupling (exchange coupling) between the reproduction layer (11) and the transfer layer (13) will be interrupted. In this state, playback layer (11
) coercive force He. Larger external magnetic field H. When the reproducing layer (11) in the shaded area is applied, as shown in FIG.
The direction of magnetization of is reversed and aligned with the direction of the external magnetic field H (here, downward). On the other hand, the area other than the shaded area. That is, in the region where the temperature is low, the reproducing layer (l1)
The magnetic coupling between and transfer Fl (13) is maintained,
The magnetic domain pattern transferred to transfer Fl (13) is maintained as it is. Therefore, as shown in Fig. 8, the shaded area within the beam diameter appears as if it were masked, and the magnetic domain pattern recorded in this area disappears due to the depth, and there is only a single magnetic domain within the beam diameter. It becomes as if only patterns exist. In other words, the spatial frequency of the recording pit seen from the reproduction light during reproduction appears lower than it actually is, and the optical transfer function (o”r
F:oρticat Transfer Function
on ) absolute value (MTF: ModulaLion T
transfer function) becomes larger, and the reproduction resolution improves. In this method, the spatial frequency ν>2
N. A. /λ (where N.^. is the numerical aperture of the objective lens, and λ is the wavelength of the laser beam.) It is possible to set MTF>O during reproduction, and the signal Detection becomes possible. Here, if the coercive force Hcc of the transfer layer (l3) is set larger than the strength of the external magnetic field HPI, the external magnetic field
{,. The magnetization (magnetic domain pattern) of the transfer layer (13) does not change due to the application of .

また、冷却時に温度T=Tc.となったところで再び交
換力が働き、以下の条件が満足される場合に転写層(l
3)の磁化パターンが中間N(12)と再生層(11)
に転写され、再生前と同し状態に戻る。
Also, during cooling, the temperature T=Tc. When , the exchange force comes into play again, and if the following conditions are satisfied, the transfer layer (l
3) The magnetization pattern is between the intermediate N (12) and the reproduction layer (11).
, and the state returns to the same state as before playback.

すなわち、T≦Tc1,〜ΔTで、 2MsaHcaha +2Ms.HBhi <aw2M
scHcchc+2MscHrshc >σ.ただし、
中間層(12)の膜厚は転写層(13)と再生層(l1
)の間に生しる界而磁壁幅に比べて無視できるものとし
、Ms&は再生層(11)の飽和磁化.h.は再生層(
1l)の膜厚、M s cは転写! (13)の飽和磁
化,hCは転写層(l3)の膜厚、σ1は界面磁壁工不
ルギー(erg/cd)である。
That is, T≦Tc1, ~ΔT, and 2MsaHcaha +2Ms. HBhi <aw2M
scHcchc+2MscHrshc>σ. however,
The thickness of the intermediate layer (12) is the same as that of the transfer layer (13) and the reproduction layer (l1).
) is negligible compared to the domain wall width, and Ms& is the saturation magnetization of the reproduction layer (11). h. is the playback layer (
1l) film thickness, M sc is transfer! (13) is the saturation magnetization, hC is the thickness of the transfer layer (l3), and σ1 is the interfacial domain wall density (erg/cd).

上式は、再生I’!(11)及び転写層(l3)がフエ
口磁性材料もしくはフエリ磁性材料であっても同一な副
格子磁化が優勢な場合の条件例である。
The above formula is Regeneration I'! This is an example of a condition where the same sublattice magnetization is dominant even if the transfer layer (11) and the transfer layer (l3) are made of a ferrimagnetic material or a ferrimagnetic material.

以上、再生層(l1)及び転写N(13)がフエ口磁性
材料もしくはフェリ磁性材料であっても同一な副格子磁
化が優勢な場合を例にして、外部磁界によって再生i(
11)の記録磁区を反転させながら再生する読み出し方
法について説明したが、例えば光磁気記録層(IO)を
構成する再生層(1.1),中間層(12)及び転写層
(l3)が、希土類一遷移金属磁性膜であって、その遷
移金属の副格子磁化と希土類元素の副格子磁化が互いに
逆向きのフエリ磁性を有ずる場合、各層が遷移金属副格
子磁化優勢膜であるか、希土類元素副格子磁化優勢膜で
あるかによって、再生時に与える外部磁界HPI+の向
きを選定することで、磁区パターンを反転,縮小あるい
は拡大することができ、前述の実施例と同様に見掛け上
の空間周波数を抑え、再生分解能を向上することができ
る。
In the above, we have taken as an example the case where the same sublattice magnetization is dominant even if the reproduction layer (l1) and the transfer N (13) are made of Huet magnetic material or ferrimagnetic material, and reproduction i(
11) The reading method of reproducing while reversing the recorded magnetic domain has been described. When a rare earth-transition metal magnetic film has ferrimagnetism in which the sublattice magnetization of the transition metal and the sublattice magnetization of the rare earth element are opposite to each other, each layer is a transition metal sublattice magnetization dominant film or a rare earth By selecting the direction of the external magnetic field HPI+ applied during reproduction depending on whether the film is an elemental sublattice magnetization dominant film, the magnetic domain pattern can be reversed, reduced or expanded, and the apparent spatial frequency can be changed as in the previous embodiment. can be suppressed and the reproduction resolution can be improved.

次に、実際にサンプルディスクを作戒して記録再生特性
を評価したので、その結果を示す。
Next, we actually tested a sample disc and evaluated its recording and playback characteristics, and the results are shown below.

z益班 トラックピンチ1.6μmのトラック溝を有するガラス
基板上に、窒化ケイ素よりなる誘電体膜を成膜し、この
上にGdFeCoよりなる再生層,TbFeよりなる中
間層,TbFeCoよりなる転写層を積層形成し、さら
にその上にTbFeCOよりなる垂直磁化膜を形成した
.各層の或膜は、高周波マグネトロンスバッタ装置を用
いて連続スパンタリングによって行った. 各層の膜厚,キュリー点.磁気特性(保磁力)は第1表
に示す通りである。
Z Masu Team Track Pinch A dielectric film made of silicon nitride is formed on a glass substrate having a track groove of 1.6 μm, and on this a reproduction layer made of GdFeCo, an intermediate layer made of TbFe, and a transfer layer made of TbFeCo are formed. A perpendicularly magnetized film made of TbFeCO was formed on top of the TbFeCO film. A film of each layer was formed by continuous sputtering using a high frequency magnetron battering device. Thickness of each layer, Curie point. The magnetic properties (coercive force) are as shown in Table 1.

第1表 実施例と同様のガラス基板上に、単層の光磁気記録層及
び垂直磁化膜を積層形成した.各層の膜厚,キュリー点
,磁気特性(保磁力)は第2表に示す通りである。
A single-layer magneto-optical recording layer and a perpendicular magnetization film were laminated on a glass substrate similar to the example in Table 1. The film thickness, Curie point, and magnetic properties (coercive force) of each layer are shown in Table 2.

第2表 これら実施例,比較例のサンプルディスクに対し、磁気
ヘッドにより信号を記録し、光学ピックアップを用いて
転写した後、再生して信号対ノイズレベル比(S/N)
の記録周波数依存性を調べた。結果を第9図に示す。
Table 2 Signals were recorded on the sample disks of these Examples and Comparative Examples using a magnetic head, transferred using an optical pickup, and then reproduced to determine the signal-to-noise level ratio (S/N).
We investigated the recording frequency dependence of The results are shown in Figure 9.

なお、再生時に使用したピックアップの対物レンズの開
口数N.A.は0.50,  レーザ波長は780nm
であり、線速度を7.5m/秒とし、実施例のサンプル
ディスクについては400エルステッドの外部磁界を再
生時に印加した。
Note that the numerical aperture N. of the objective lens of the pickup used during reproduction. A. is 0.50, laser wavelength is 780nm
The linear velocity was set to 7.5 m/sec, and an external magnetic field of 400 oersteds was applied to the sample disk of the example during reproduction.

その結果、実施例と比較例とでは、特に高周波帯域で著
しい差が認められた。
As a result, a significant difference was observed between the example and the comparative example, especially in the high frequency band.

(発明の効果〕 以上の説明からも明らかなように、本発明の光磁気記録
媒体においては、信号の記録を磁気ヘッドで行いこれを
光磁気記録層に転写しているので、オーバーライトが可
能であり、また線記録密度,トランク密度共に大幅に改
善することができる.また、再生時に記録磁区を変形さ
せながら読み出すようにしているので、特に高密度記録
を行った場合にも高いS/Nを確保することが可能であ
る。
(Effects of the Invention) As is clear from the above explanation, in the magneto-optical recording medium of the present invention, signals are recorded using a magnetic head and transferred to the magneto-optical recording layer, so overwriting is possible. In addition, both linear recording density and trunk density can be significantly improved.Also, since the recorded magnetic domain is read out while deforming during playback, a high S/N can be achieved especially when performing high-density recording. It is possible to ensure that

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用した光磁気記録媒体の構成例を拡
大して示す要部概略断面図である。 第2図は垂直磁化膜及び転写層に書き込まれる磁区パタ
ーンを模式的に示す平面図であり、第3図はこのときの
磁化状態を示す模式図である。 第4図は光磁気記録層の初期磁化状態を示す模弐図であ
り、第5図はこのときの再生層の磁区パターンを示す模
式図である。 第6図は再生時のレーザ照射による温度プロファイルを
示す特性図であり、第7図はこのときの光磁気記録層の
磁化状態を示す模式図、第8図は再生層の磁区パターン
を示す模式図である。 第9図は実際に作威した光磁気記録媒体におけるS/N
の記録周波数依存性を比較例のそれと比較して示す特性
図である。
FIG. 1 is an enlarged schematic cross-sectional view of a main part of a configuration example of a magneto-optical recording medium to which the present invention is applied. FIG. 2 is a plan view schematically showing the magnetic domain pattern written in the perpendicular magnetization film and the transfer layer, and FIG. 3 is a schematic diagram showing the magnetization state at this time. FIG. 4 is a schematic diagram showing the initial magnetization state of the magneto-optical recording layer, and FIG. 5 is a schematic diagram showing the magnetic domain pattern of the reproducing layer at this time. Fig. 6 is a characteristic diagram showing the temperature profile due to laser irradiation during reproduction, Fig. 7 is a schematic diagram showing the magnetization state of the magneto-optical recording layer at this time, and Fig. 8 is a schematic diagram showing the magnetic domain pattern of the reproducing layer. It is a diagram. Figure 9 shows the S/N of an actually produced magneto-optical recording medium.
FIG. 4 is a characteristic diagram showing the recording frequency dependence of the sample in comparison with that of a comparative example.

Claims (1)

【特許請求の範囲】  基板上に光磁気記録層と磁気記録用垂直磁化膜が積層
形成されてなり、 前記光磁気記録層は、前記垂直磁化膜の記録信号が転写
される転写層と当該転写層と室温で磁気的に結合され磁
気光学効果により前記記録信号を光学信号に変換する再
生層とを少なくとも有し、前記垂直磁化膜の保磁力をH
c_1、キュリー点をTc_1、転写層の保磁力をHc
_2、キュリー点をTc_2としたときに、Tc_2<
Tc_1、Hc_1<Hc_2であり、前記再生層は再
生時のレーザ光照射による昇温により転写層との磁気的
な結合が遮断されて記録磁区が変形されることを特徴と
する光磁気記録媒体。
[Scope of Claims] A magneto-optical recording layer and a perpendicularly magnetized film for magnetic recording are laminated on a substrate, and the magneto-optically recorded layer includes a transfer layer to which a recording signal of the perpendicularly magnetized film is transferred, and a transfer layer to which a recording signal of the perpendicularly magnetized film is transferred. and a reproducing layer that is magnetically coupled to the perpendicularly magnetized film at room temperature and converts the recorded signal into an optical signal by a magneto-optic effect, and
c_1, the Curie point is Tc_1, and the coercive force of the transfer layer is Hc.
_2, when the Curie point is Tc_2, Tc_2<
A magneto-optical recording medium, wherein Tc_1, Hc_1<Hc_2, and the reproducing layer is magnetically coupled to the transfer layer by being heated by laser beam irradiation during reproduction, thereby deforming the recording magnetic domain.
JP22939689A 1989-08-31 1989-09-06 Magneto-optical recording medium Pending JPH0393056A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP22939689A JPH0393056A (en) 1989-09-06 1989-09-06 Magneto-optical recording medium
US07/574,081 US5168482A (en) 1989-08-31 1990-08-29 Magnetooptical recording and playback method employing multi-layer recording medium with record holding layer and playback layer
DE69018544T DE69018544T2 (en) 1989-08-31 1990-08-31 Playback method for magneto-optical recording.
EP90116773A EP0415449B1 (en) 1989-08-31 1990-08-31 Playback method for magnetooptical recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22939689A JPH0393056A (en) 1989-09-06 1989-09-06 Magneto-optical recording medium

Publications (1)

Publication Number Publication Date
JPH0393056A true JPH0393056A (en) 1991-04-18

Family

ID=16891548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22939689A Pending JPH0393056A (en) 1989-08-31 1989-09-06 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPH0393056A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0608643A2 (en) * 1993-01-29 1994-08-03 Sharp Kabushiki Kaisha Magneto-optical recording medium and method for reproducing from the magneto-optical recording medium
JPH07192342A (en) * 1993-12-28 1995-07-28 Nec Corp Method for reproducing magneto-optical recording medium
EP0686970A2 (en) 1994-06-10 1995-12-13 Canon Kabushiki Kaisha Magneto-optical recording medium and reproducing method using the medium
US5702793A (en) * 1993-02-25 1997-12-30 Nippon Steel Corporation Magneto-optical recording medium, disk and method of manufacturing the same
US5717662A (en) * 1995-05-12 1998-02-10 Canon Kabushiki Kaisha Super-resolution magneto-optical recording medium using magnetostatic coupling and information reproduction method using the medium
US5747136A (en) * 1992-02-14 1998-05-05 Fujitsu, Ltd. High-density magneto-optic disk and method of manufacturing the same
US5754500A (en) * 1996-10-25 1998-05-19 Fujitsu Limited Magneto-optical recording medium and method of reading the same
US5790513A (en) * 1995-04-14 1998-08-04 Canon Kabushiki Kaisha Magneto-optical recording medium capable of super resolution reproduction and information reproduction method using the same
US5821004A (en) * 1991-11-29 1998-10-13 Matsushita Electric Industrial Co., Ltd Magneto-optical recording medium and recording and reading out process using the same
US5867455A (en) * 1993-12-07 1999-02-02 Hitachi, Ltd. Optical method and device for irradiating domains at predetermined positions
US5879822A (en) * 1995-08-15 1999-03-09 Canon Kabushiki Kaisha Magneto-optical recording medium using in-plane magnetization film and capable of reproducing at super-high resolution and method of reproducing for such medium
US5909410A (en) * 1996-02-09 1999-06-01 Hitachi, Ltd. Optical magnetic recording medium and optical magnetic reproducing method
US5965285A (en) * 1995-03-27 1999-10-12 Fujitsu Limited Magneto-optical recording medium and reproducing method for the same
US6442120B2 (en) 1998-08-31 2002-08-27 Hitachi, Ltd. Optical reproduction method and optical information device
US6767656B2 (en) 2000-10-26 2004-07-27 Fujitsu Limited Magneto-optical recording medium and method of reproducing the same
US6770387B2 (en) 2000-10-26 2004-08-03 Fujitsu Limited Magneto-optical recording medium and method of reproducing the same

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5821004A (en) * 1991-11-29 1998-10-13 Matsushita Electric Industrial Co., Ltd Magneto-optical recording medium and recording and reading out process using the same
US5747136A (en) * 1992-02-14 1998-05-05 Fujitsu, Ltd. High-density magneto-optic disk and method of manufacturing the same
EP0608643A3 (en) * 1993-01-29 1996-08-28 Sharp Kk Magneto-optical recording medium and method for reproducing from the magneto-optical recording medium.
EP0608643A2 (en) * 1993-01-29 1994-08-03 Sharp Kabushiki Kaisha Magneto-optical recording medium and method for reproducing from the magneto-optical recording medium
US5962126A (en) * 1993-01-29 1999-10-05 Sharp Kabushiki Kaisha Method and apparatus for reproducing data from a magneto-optical recording medium having a readout layer, transfer layer and recording layer
US5702793A (en) * 1993-02-25 1997-12-30 Nippon Steel Corporation Magneto-optical recording medium, disk and method of manufacturing the same
US5867455A (en) * 1993-12-07 1999-02-02 Hitachi, Ltd. Optical method and device for irradiating domains at predetermined positions
US5946275A (en) * 1993-12-07 1999-08-31 Hitachi, Ltd. And Hitachi Maxell, Ltd. Optical readout method with a direction of a magnetic field applied to a recording medium changed with a signal, and a system therefor
JPH07192342A (en) * 1993-12-28 1995-07-28 Nec Corp Method for reproducing magneto-optical recording medium
EP0686970A2 (en) 1994-06-10 1995-12-13 Canon Kabushiki Kaisha Magneto-optical recording medium and reproducing method using the medium
CN1066561C (en) * 1994-06-10 2001-05-30 佳能株式会社 Magneto-optical recording medium for realizing super resolution and reproducing method using the medium
US6125083A (en) * 1994-06-10 2000-09-26 Canon Kabushiki Kaisha Magneto-optical recording method and medium comprising three layers, whose middle layer has a lower curie temperature than the other layers
US5965285A (en) * 1995-03-27 1999-10-12 Fujitsu Limited Magneto-optical recording medium and reproducing method for the same
US5790513A (en) * 1995-04-14 1998-08-04 Canon Kabushiki Kaisha Magneto-optical recording medium capable of super resolution reproduction and information reproduction method using the same
US5717662A (en) * 1995-05-12 1998-02-10 Canon Kabushiki Kaisha Super-resolution magneto-optical recording medium using magnetostatic coupling and information reproduction method using the medium
US5879822A (en) * 1995-08-15 1999-03-09 Canon Kabushiki Kaisha Magneto-optical recording medium using in-plane magnetization film and capable of reproducing at super-high resolution and method of reproducing for such medium
US5909410A (en) * 1996-02-09 1999-06-01 Hitachi, Ltd. Optical magnetic recording medium and optical magnetic reproducing method
US5966350A (en) * 1996-10-25 1999-10-12 Fujitsu Limited Magneto-optical recording medium and method of reading the same
US5754500A (en) * 1996-10-25 1998-05-19 Fujitsu Limited Magneto-optical recording medium and method of reading the same
US6442120B2 (en) 1998-08-31 2002-08-27 Hitachi, Ltd. Optical reproduction method and optical information device
US6614737B2 (en) 1998-08-31 2003-09-02 Hitachi, Ltd. Optical reproduction method and optical information device
US6767656B2 (en) 2000-10-26 2004-07-27 Fujitsu Limited Magneto-optical recording medium and method of reproducing the same
US6770387B2 (en) 2000-10-26 2004-08-03 Fujitsu Limited Magneto-optical recording medium and method of reproducing the same

Similar Documents

Publication Publication Date Title
US5168482A (en) Magnetooptical recording and playback method employing multi-layer recording medium with record holding layer and playback layer
US5723227A (en) Magneto-optical recording medium and reproducing method for information recorded on the medium
US5278810A (en) Magneto-optical recording medium whereon recording is carried out with an overwriting function
JPH0393058A (en) Signal reproduction method in magneto-optical recording medium
KR100238874B1 (en) Method of reproduction from magneto-optical recording medium
US5204193A (en) Recording magnetooptical recording medium
US5357494A (en) Magneto-optical playback method
JPH0393056A (en) Magneto-optical recording medium
US5862105A (en) Information recording method capable of verifying recorded information simultaneously with recording, and magneto-optical recording medium used in the method
JP3477384B2 (en) Magneto-optical recording medium
JP2809991B2 (en) Magneto-optical recording medium and method of reproducing information recorded on the medium
EP0522840B1 (en) Magneto-optical recording medium
JP3786426B2 (en) Magneto-optical recording medium and reproducing method thereof
JPH07169123A (en) Over-write allowable magneto-optical medium
US5736265A (en) Magneto-optical recording medium and recording method using the same
US5240784A (en) Magnetooptical recording medium
KR100201450B1 (en) Magneto-optical recording medium
JP3474464B2 (en) Magneto-optical recording medium
EP0385786A1 (en) Magnetooptical recording medium
JP3108397B2 (en) Magneto-optical recording medium
US7313055B2 (en) Magnetic domain wall displacement type magneto-optical recording medium
JP3381960B2 (en) Magneto-optical recording medium
KR100209584B1 (en) Magneto-optical disk
KR100209284B1 (en) Magneto-optical direct recording medium
JPH10149589A (en) Magneto-optical recording medium