JPH0392263A - Specular surface finishing method for titanium alloy substrate - Google Patents

Specular surface finishing method for titanium alloy substrate

Info

Publication number
JPH0392263A
JPH0392263A JP1226745A JP22674589A JPH0392263A JP H0392263 A JPH0392263 A JP H0392263A JP 1226745 A JP1226745 A JP 1226745A JP 22674589 A JP22674589 A JP 22674589A JP H0392263 A JPH0392263 A JP H0392263A
Authority
JP
Japan
Prior art keywords
titanium alloy
alloy substrate
polishing
substrate
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1226745A
Other languages
Japanese (ja)
Inventor
Motoharu Sato
元治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1226745A priority Critical patent/JPH0392263A/en
Publication of JPH0392263A publication Critical patent/JPH0392263A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PURPOSE:To obtain a scratchless specular titanium alloy substrate by using a high-strength titanium alloy capable of being thinned, and by polishing it with an abrasive or colloidal silica solution whose pH has been controlled to be less than 8 by means of an organic acid. CONSTITUTION:In the final polishing process of a titanium alloy substrate, colloidal silica solution whose pH has been controlled to be less than 8 by means of an organic acid is used as the abrasive, and one side or both side of the titanium alloy substrate are simultaneously polished. Thus, the surfaces of the titanium alloy substrate can be finished in a scratchless specular state.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、チタン合金基板の製造に係り、より詳細には
、高密度磁気ディスク用基板、感光ドラム用基板、光学
用反射板、成膜用反射板等の如く、高精度な加工表面が
要求されるチタン合金基板の鏡面仕上げ方法に関するも
のである。 (従来の技術) 近年,情報量の増大により,外部記録装置である磁気デ
ィスクの高容量化及び磁気ディスク媒体の高密度化が図
られている。 一般に記録密度(Ds。)は次式で表わされることが知
られている。 D,。oc (g” −4− (a + d)2)−1
/zここで、g:ヘッドのギャップ長 a:媒体の磁化遷移幅 d:ヘッド浮上量 上式より、D5.を高めるには浮上量を小さくしなけれ
ばならないことがわかる。浮上量は、基板の表面粗度に
大きく左右されるが、一般に基板に要求される粗度(R
max)として浮上量の1/1o以下が必要と言われて
おり、高密度化により益々基板表面に対する要求は厳し
くなっている。 このようなことから、高精度な表面を得るためには、従
来より,アルミニウム合金基板上に無電解NiPメッキ
を行い、表面硬度を高めることにより研磨性を高めたN
iP基板が高密度用基板として使われている。 ここで、塗布メディアを得るには、一般にアルミニウム
合金基板そのものについて、鏡面を得るため、ダイヤモ
ンドターン仕上げを施した後、酸化鉄を種々の成分と共
にアルミニウム合金基板上に塗布し、塗布メディアとす
る. 他方、NiP基板を得る場合には,アルミニウム合金基
板そのものは、表面仕上げするが、ダイヤモンドターン
仕上げほどの表面仕上げの必要はなく、次いでNLPメ
ッキ後、クロス研磨によりダイヤモンドターン仕上げ以
上の高精度な表面仕上げを行い、その後、磁性金属その
ものをスパッタ或いはメッキし、高精度な薄膜メディア
が作成されている。 また、最近では、酸化鉄或いは塗布方法の改良等により
、塗布メディアにおいても薄膜メディア並みの記録密度
が達或されている。この場合、高密度化の方向として塗
布膜の薄膜化が図られており、エラー等の原因とならぬ
ようアルミニウム合金基板の表面精度の向上が望まれて
いる.一方、媒体改善による記録密度の向上及び電子機
器の小型化と共に,より小径で大容量の磁気ディスクが
開発され始めている.この場合には、従来にも増して高
精度な基板表面が要求されることになる. また、このような高精度な表面を有する基板は、,光学
用反射板,成膜用基板等として多方面で使用されている
。 (発明が解決しようとする課題) 上記要求を満たすアルミニウム合金基板に関し、本発明
者は,先に特願昭63−74925号においてアルミニ
ウム合金基板の鏡面仕上げ方法を提案した。この方法は
,最終仕上げにクロス研磨を用いることにより鏡面を得
るものであるが、この場合、以下のような問題があるこ
とが判明した。 ■ アルミニウム合金は,硬度が低いため、クロス研磨
時及び洗浄時にスクラッチが入り易い。 ■ アルミニウム合金は、長時間の研磨により晶出物が
溶出し、ピットが発生する。 ■ 磁気ディスクにおいては、装置の小型化により、よ
り小径で薄肉の基板が要求されている.しかし、アルミ
ニウム合金は強度が低いため、薄肉化にも限界がある. この点、磁気ディスク用基板として、アルミニウム合金
よりも高い強度を有するチタン合金を用いる試みがある
(特yM昭59−151335号).しかし、チタン合
金基板は高強度であるので一応の表面性は得られるもの
の、熱伝導性が悪いために鏡面加工に問題があり、実用
化に難点がある.本発明は、上記従来技術の問題点を解
決するためになされたものであって、薄肉化が可能であ
り、しかもクロス研磨時及び洗浄時のスクラッチ発生が
無く、長時間研磨によってもピット発生がなく、高品質
の鏡直を有する基板が得られるMUD仕上げ方法を提供
することを目的とするものである。 (課題を解決するための手段) 前記問題点を解決するため、本発明者は、前記提案の成
果を踏まえ、種々の基板材料及び表面加工法について検
討を重ねた。その結果、チタン合金を用い,最終表面仕
上げとして特定条件でクロス研磨加工することにより、
種々の問題点を全て解決できることを見い出したのであ
る。 まず、前述の問題点のについては、チタン合金は硬度の
高い合金であること、問題点■につぃては、チタン合金
は研磨時に溶出し難い合金であること、また問題点■に
ついては、チタン合金は強度が高く、加工のし易い合金
であること等から、基板材料としてチタン合金を選択し
た.しかし,チタン合金基板の場合、前述の如く鏡面加
工に難点があることから、更にチタン合金基板の最終表
面仕上げ方法について鋭意研究を重ねた結果、ここに本
発明をなしたものである。 すなわち、本発明は、チタン合金基板を鏡面仕上げする
に際し、最終研磨を、有Wk酸によりpHを8以下に調
整したコロイダルシリカ溶液を研磨剤として用い、チタ
ン合金基板の片面或いは両面を同時に研磨することによ
り行うことを特徴とするチタン合金基板の鏡面仕上げ方
法を要旨とするものである. 以下に本発明を更に詳細に説明する6 (作用) アルミニウム合金は反射率が高く、磁気ディスク用基板
、光学用反射板としては優れているが,硬度が低いため
に鏡面加工が非常に難しい.また、今後の薄肉化を考え
た場合には強度が不足気味である。本発明では、このよ
うな問題点を解決し、同様な用途に用いるために先ず基
板材料の選定を行った。その結果、アルミニウム合金の
数倍以上の強度を有するチタン合金を選択した。 一般に、チタン合金は切削により鏡面加工に供されるが
、熱伝導性が悪いため,加工歪みや著しい工具損耗など
のために精度加工や鏡面加工が非常に難しいといった問
題がある。このため、本発明者は切削以外の手段による
種々の鏡面仕上げ方法につき検討を行った。 先ず、両面ラッピング装置により固定砥粒を用いる場合
と、遊離砥粒を用いる場合とにおいて,チタン合金基板
の表面状態を比較した。その結果,前者の場合、300
0番程度のPVA砥石(SiC砥粒使用)による表面仕
上げにおいても、研削目が残り、鏡面は得られなかった
。 次に、砥石に代えて研磨クロス(商品名:サーフィン0
18−3)を用いて、種々の遊離砥粒により研磨試験を
実施したところ、有機酸にてPHを8以下に調整したコ
ロイダルシリカ溶液を研磨剤として用いた場合にスクラ
ッチのない鏡面が得られた. これらの結果に基づき、本発明法では、最終研磨におい
て、有機酸によりpHを8以下に調整したコロイダルシ
リカ溶液を研磨剤として用いることを骨子とするもので
あり,これによりチタン合金の鏡面仕上げを可能とした
。 コロイダルシリカ溶液は、超微粒子のシリカを溶媒に分
散させアルカリで安定化した溶液であり、種々の粒子径
、アルカリ性のものが可能である。 有機酸は洗浄性が良好であるので、洗浄時には表面を軽
く洗浄するだけでよく、アルカリ性或いは酸性の強力な
洗浄剤を使用する必要がない。有機酸は乳酸、グルコン
酸、ギ酸,その他の有機酸を適宜選択できるが、これら
の単独使用で十分であるが、何種類かを混ぜて使用して
もその効果は変わらない。 しかし、pHを・8より高くするとチタン合金基板表面
に研磨時、スクラッチが発生し易くなる.また、無機酸
を使用した場合には洗浄性が悪く、スクラッチも発生し
易い。 なお、その他の研磨条件に関しては特に制限はない。 例えば,チタン合金基板の片面又は両面を同時に研磨で
き、加工圧は格別に低くする必要はなく、50g/c♂
以上でよく、また加工速度も50cm/sec以上で行
うことができるので、生産性も向上でき、効率的である
, 上記条件による研磨にて最終研磨を行うが、最終研磨前
は切削等により仕上げ加工すればよい。 また、チタン合金としても,α型、α+β型、β型で適
宜成分組或のものが可能である。 次に本発明の実施例を示す。 (実施例) 市販の板厚1.OOmmのチタン合金板(組成:JIS
I種)を3,5インチディスク形状に打抜き、真空中に
て歪み取り焼鈍を行った。その後、端面加工を行って磁
気ディスク用基板に或形した。 更に表面を研削し、以下の条件にて研磨した後、中性洗
剤、純水にて洗浄し、IPA(イソプロビルアルコール
)、フロンにて乾燥後、表面性状を観察すると共に、洗
浄性についても調べた。それらの結果を第1表に示す。 比較のため、アルミニウム合金基板(5 0 8 6相
当)についても同様の研磨を行い、表面性状及び洗浄性
を調べた結果を第1表に併記する。 なお、洗浄性は、中性洗剤により表面洗浄を行った後,
水洗,乾燥、メディア化(Cr3 0 0 0人−+C
oNiCr6 0 0A−+c3 0 0λスパッタ)
を行った後、洗浄性良好(メディア表面にシミなく、エ
ラーなし)、洗浄性不良(メディア表面にシミ発生し、
エラー発生)により評価した。 く研磨条件〉 研磨機二両面ラッピング機D S L−9 B(スピー
ドファム社製) クロス:サーフィン018−3(商品名)加工圧: 1
 5 0g/cm” 加工時間:lO分.30分 研磨剤:コロイダルシリカ溶液(スノーテックスZL(
商品名):水=1=9 pH:2〜10(有機酸,無機酸にて調整)第1表から
明らかなように、有機酸にてPHを8以下に調整したコ
ロイダルシリカ溶液を研磨剤に用いてチタン合金基板を
研磨した場合(本発明例1〜3)は、いずれもスクラッ
チのない鏡面が得られ、長時間研磨してもピットの発生
がなく、更に洗浄性も良好である。 一方、同様の条件にて研磨したアルミニウム合金基板の
場合(比較例NQ12)には、長時間の研磨で晶出物が
溶出し、ピットが発生し、またスクラッチが発生し易い
. また、PHを調整しない場合(比較例&11)には、ス
クラッチが発生し易く、鏡面が得られ難くなっている。 pHの調整を無機酸にて行った場合(比較例Na 8〜
Nα10)にはスクラッチが発生し、洗浄性が悪い. なお,上記の実施例では,コロイダルシリカ溶液として
スノーテックスZL(商品名)を用いた例について説明
したが、他のコロイダルシリカ溶液(例えば、スノーテ
ックス20、30、40.C,N.Sなど:商品名)を
用いても同様な効果が得られる.また、被研磨物の形状
を任意に変更しても差し支えない.
(Industrial Application Field) The present invention relates to the production of titanium alloy substrates, more specifically, such as substrates for high-density magnetic disks, substrates for photosensitive drums, optical reflectors, film-forming reflectors, etc. The present invention relates to a mirror finishing method for a titanium alloy substrate that requires a highly accurate machined surface. (Prior Art) In recent years, as the amount of information has increased, efforts have been made to increase the capacity of magnetic disks, which are external recording devices, and to increase the density of magnetic disk media. It is generally known that recording density (Ds.) is expressed by the following formula. D. oc (g” -4- (a + d)2)-1
/z where, g: head gap length a: medium magnetization transition width d: head flying height From the above equation, D5. It can be seen that in order to increase the levitation height, the flying height must be reduced. The flying height is largely influenced by the surface roughness of the substrate, but it is generally determined by the roughness (R) required for the substrate.
It is said that 1/1o or less of the flying height is required as a maximum), and demands on the substrate surface are becoming increasingly strict due to higher density. For this reason, in order to obtain a high-precision surface, electroless NiP plating has traditionally been performed on aluminum alloy substrates to increase surface hardness and improve polishability.
An iP substrate is used as a high-density substrate. Here, to obtain the coating media, generally the aluminum alloy substrate itself is subjected to a diamond turn finish to obtain a mirror surface, and then iron oxide is coated on the aluminum alloy substrate together with various components to form the coating media. On the other hand, when obtaining a NiP substrate, the aluminum alloy substrate itself is surface-finished, but there is no need for a surface finish as high as diamond-turn finishing.Next, after NLP plating, cross polishing is performed to obtain a surface with higher precision than diamond-turn finishing. Finishing is performed, and then the magnetic metal itself is sputtered or plated to create highly accurate thin film media. Furthermore, recently, with improvements in iron oxide and coating methods, recording densities comparable to those of thin film media have been achieved in coated media. In this case, the trend toward higher density is to make the coating film thinner, and it is desired to improve the surface precision of the aluminum alloy substrate to avoid causing errors. On the other hand, as recording density increases due to media improvements and electronic equipment becomes smaller, smaller diameter and larger capacity magnetic disks are beginning to be developed. In this case, a substrate surface with even higher precision than before is required. Furthermore, substrates having such highly precise surfaces are used in many fields, such as optical reflectors, film-forming substrates, and the like. (Problems to be Solved by the Invention) Regarding an aluminum alloy substrate that satisfies the above requirements, the present inventor previously proposed a mirror finishing method for an aluminum alloy substrate in Japanese Patent Application No. 74925/1983. In this method, a mirror surface is obtained by using cross polishing for the final finish, but it has been found that this method has the following problems. ■ Aluminum alloy has low hardness and is easily scratched during cross-polishing and cleaning. ■ When aluminum alloys are polished for a long time, crystallized substances are eluted and pits are generated. ■ For magnetic disks, smaller diameter and thinner substrates are required due to the miniaturization of devices. However, aluminum alloys have low strength, so there is a limit to how thin they can be made. In this regard, there has been an attempt to use a titanium alloy, which has a higher strength than an aluminum alloy, as a substrate for a magnetic disk (TokuyM No. 151335/1982). However, although titanium alloy substrates have high strength and can provide a certain surface quality, their poor thermal conductivity causes problems in mirror finishing, making it difficult to put them into practical use. The present invention was made in order to solve the problems of the prior art described above, and it is possible to make the wall thinner, and there is no scratch generation during cross polishing or cleaning, and there is no pit generation even after long polishing. The object of the present invention is to provide a MUD finishing method that allows a substrate with high quality mirror straightness to be obtained. (Means for Solving the Problems) In order to solve the above-mentioned problems, the present inventors have repeatedly studied various substrate materials and surface processing methods based on the results of the above-mentioned proposals. As a result, by using a titanium alloy and cross-polishing it under specific conditions as a final surface finish,
They discovered that all the various problems could be solved. First, regarding the above-mentioned problem, titanium alloy is a highly hard alloy; regarding problem (2), titanium alloy is an alloy that is difficult to elute during polishing; and regarding problem (2), Titanium alloy was selected as the substrate material because it has high strength and is easy to process. However, in the case of titanium alloy substrates, as mentioned above, there are difficulties in mirror finishing, and as a result of intensive research into the final surface finishing method of titanium alloy substrates, the present invention has been hereby accomplished. That is, in the present invention, when mirror finishing a titanium alloy substrate, the final polishing is performed by polishing one or both sides of the titanium alloy substrate simultaneously using a colloidal silica solution whose pH is adjusted to 8 or less with a Wk acid as an abrasive. This paper focuses on a method for mirror-finishing titanium alloy substrates, which is characterized by the following methods. The present invention will be explained in more detail below.6 (Function) Aluminum alloy has a high reflectance and is excellent as a magnetic disk substrate and an optical reflector, but its low hardness makes mirror finishing very difficult. Also, considering future thinning, the strength seems to be insufficient. In the present invention, in order to solve these problems and to use the device for similar purposes, the substrate material was first selected. As a result, we selected a titanium alloy that has several times the strength of an aluminum alloy. Generally, titanium alloys are subjected to mirror finishing by cutting, but due to poor thermal conductivity, there are problems in that precision machining and mirror finishing are extremely difficult due to machining distortion and significant tool wear. For this reason, the present inventors have investigated various mirror finishing methods using means other than cutting. First, the surface conditions of titanium alloy substrates were compared when using fixed abrasive grains and when using free abrasive grains using a double-sided lapping device. As a result, in the former case, 300
Even when the surface was finished using a PVA grindstone of about No. 0 (using SiC abrasive grains), grinding marks remained and a mirror surface could not be obtained. Next, replace the whetstone with a polishing cloth (product name: Surfing 0
18-3) and a variety of free abrasive grains, it was found that a scratch-free mirror surface was obtained when a colloidal silica solution whose pH was adjusted to 8 or less with an organic acid was used as the polishing agent. Ta. Based on these results, the method of the present invention is based on the use of a colloidal silica solution whose pH is adjusted to 8 or less with an organic acid as the polishing agent in the final polishing, thereby achieving a mirror finish on titanium alloys. made possible. A colloidal silica solution is a solution in which ultrafine silica particles are dispersed in a solvent and stabilized with an alkali, and various particle sizes and alkalinities are possible. Since organic acids have good cleaning properties, it is only necessary to lightly clean the surface during cleaning, and there is no need to use strong alkaline or acidic cleaning agents. The organic acid can be appropriately selected from lactic acid, gluconic acid, formic acid, and other organic acids.It is sufficient to use these alone, but the effect will not change even if a mixture of several types is used. However, if the pH is higher than .8, scratches are likely to occur on the surface of the titanium alloy substrate during polishing. Furthermore, when an inorganic acid is used, cleaning performance is poor and scratches are likely to occur. Note that there are no particular limitations regarding other polishing conditions. For example, one or both sides of a titanium alloy substrate can be polished at the same time, and the processing pressure does not need to be particularly low; it is 50g/c♂
The above is sufficient, and the machining speed can be 50 cm/sec or higher, so productivity can be improved and it is efficient. Final polishing is performed under the above conditions, but before final polishing, finishing is done by cutting, etc. Just process it. Furthermore, titanium alloys may be of α type, α+β type, or β type, with appropriate compositions. Next, examples of the present invention will be shown. (Example) Commercially available plate thickness 1. OOmm titanium alloy plate (composition: JIS
Type I) was punched into a 3.5-inch disk shape and subjected to strain relief annealing in a vacuum. Thereafter, the end face was processed to form a magnetic disk substrate. Furthermore, after grinding the surface and polishing it under the following conditions, it was washed with a neutral detergent and pure water, and after drying with IPA (isopropyl alcohol) and Freon, the surface quality was observed and the cleanability was also evaluated. Examined. The results are shown in Table 1. For comparison, an aluminum alloy substrate (equivalent to 5086) was also polished in the same way, and the surface properties and cleanability were investigated. The results are also listed in Table 1. In addition, cleanability is determined after surface cleaning with a neutral detergent.
Washing with water, drying, mediating (Cr3000 people-+C
oNiCr6 0 0A-+c3 0 0λ sputter)
After performing this, the cleaning performance was good (no stains on the media surface, no errors), and the cleaning performance was poor (stains appeared on the media surface,
error occurrence). Polishing conditions> Polishing machine Two-sided lapping machine D S L-9 B (manufactured by Speed Fam) Cloth: Surfing 018-3 (product name) Processing pressure: 1
50g/cm" Processing time: 10 minutes.30 minutes Polishing agent: Colloidal silica solution (Snowtex ZL (
Product name): Water = 1 = 9 pH: 2 to 10 (adjusted with organic acid, inorganic acid) As shown in Table 1, a colloidal silica solution whose pH was adjusted to 8 or less with an organic acid is used as an abrasive. When titanium alloy substrates were polished using the polishing method (Examples 1 to 3 of the present invention), a scratch-free mirror surface was obtained in all cases, no pits were generated even after long-term polishing, and the cleaning performance was also good. On the other hand, in the case of an aluminum alloy substrate polished under similar conditions (Comparative Example NQ12), crystallized substances were eluted during long-term polishing, causing pits and scratches. Furthermore, when the pH is not adjusted (Comparative Example &11), scratches are likely to occur and it is difficult to obtain a mirror surface. When the pH was adjusted with an inorganic acid (comparative example Na 8~
Nα10) causes scratches and has poor cleaning performance. In the above example, an example was explained in which Snowtex ZL (trade name) was used as the colloidal silica solution, but other colloidal silica solutions (for example, Snowtex 20, 30, 40.C, N.S, etc.) may be used. :Product name) can also be used to obtain the same effect. Furthermore, the shape of the object to be polished may be changed arbitrarily.

【以下余白】[Left below]

(発明の効果) 以上説明したように、本発明によれば、基板として薄肉
化の可能な高強度なチタン合金を用い、有機酸にてpH
を8以下に調整したコロイダルシリカ溶液を研磨剤に用
いて研磨するので、スクラッチのない鏡面なチタン合金
基板を得ることができる。また、洗浄性が良好である等
、優れた効果が得られる。したがって、高精度の表面性
状を要求される各種基板の製造に適している。
(Effects of the Invention) As explained above, according to the present invention, a high-strength titanium alloy that can be thinned is used as a substrate, and the pH is adjusted by using an organic acid.
Since polishing is performed using a colloidal silica solution adjusted to 8 or less as a polishing agent, a mirror-finished titanium alloy substrate without scratches can be obtained. In addition, excellent effects such as good cleaning properties can be obtained. Therefore, it is suitable for manufacturing various substrates that require highly accurate surface texture.

Claims (1)

【特許請求の範囲】[Claims] チタン合金基板を鏡面仕上げするに際し、最終研磨を、
有機酸によりpHを8以下に調整したコロイダルシリカ
溶液を研磨剤として用い、チタン合金基板の片面或いは
両面を同時に研磨することにより行うことを特徴とする
チタン合金基板の鏡面仕上げ方法。
When finishing a titanium alloy substrate to a mirror finish, the final polishing is
A method for mirror-finishing a titanium alloy substrate, the method comprising polishing one or both sides of the titanium alloy substrate simultaneously using a colloidal silica solution whose pH has been adjusted to 8 or less with an organic acid as an abrasive.
JP1226745A 1989-09-01 1989-09-01 Specular surface finishing method for titanium alloy substrate Pending JPH0392263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1226745A JPH0392263A (en) 1989-09-01 1989-09-01 Specular surface finishing method for titanium alloy substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1226745A JPH0392263A (en) 1989-09-01 1989-09-01 Specular surface finishing method for titanium alloy substrate

Publications (1)

Publication Number Publication Date
JPH0392263A true JPH0392263A (en) 1991-04-17

Family

ID=16849943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1226745A Pending JPH0392263A (en) 1989-09-01 1989-09-01 Specular surface finishing method for titanium alloy substrate

Country Status (1)

Country Link
JP (1) JPH0392263A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0751553A2 (en) * 1995-06-29 1997-01-02 Delco Electronics Corporation No coat backside wafer grinding process
JP2010216004A (en) * 2009-02-20 2010-09-30 Hitachi Metals Ltd Method of manufacturing composite ball for electronic part
WO2016021254A1 (en) * 2014-08-07 2016-02-11 株式会社フジミインコーポレーテッド Composition for polishing titanium alloy material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0751553A2 (en) * 1995-06-29 1997-01-02 Delco Electronics Corporation No coat backside wafer grinding process
EP0751553A3 (en) * 1995-06-29 1998-10-28 Delco Electronics Corporation No coat backside wafer grinding process
JP2010216004A (en) * 2009-02-20 2010-09-30 Hitachi Metals Ltd Method of manufacturing composite ball for electronic part
WO2016021254A1 (en) * 2014-08-07 2016-02-11 株式会社フジミインコーポレーテッド Composition for polishing titanium alloy material
CN106574170A (en) * 2014-08-07 2017-04-19 福吉米株式会社 Composition for polishing titanium alloy material
JPWO2016021254A1 (en) * 2014-08-07 2017-05-25 株式会社フジミインコーポレーテッド Composition for polishing titanium alloy material

Similar Documents

Publication Publication Date Title
JP3867328B2 (en) Sputtering target and manufacturing method thereof
GB2421244A (en) Polishing composition
WO2000013917A1 (en) Method of manufacturing enhanced finish sputtering targets
US4835909A (en) Surface treatment of disk-shaped nickel-plated aluminum substrates
JPH01246068A (en) Mirror face finishing of aluminum alloy substrate
JP5454988B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JPH0392263A (en) Specular surface finishing method for titanium alloy substrate
US5902172A (en) Method of polishing memory disk substrate
JP3472687B2 (en) Method of manufacturing magnetic disk substrate
JP2001207161A (en) Composition for abrading magnetic disk substrate
US6632547B2 (en) Substrate for magnetic recording medium, manufacturing method thereof, and magnetic recording medium
MY128246A (en) Polishing composition.
US6461958B1 (en) Polishing memory disk substrates with reclaim slurry
JPH0752030A (en) Anodic oxidation surface treated base and polishing method therefor
JP2000273445A (en) Composition for polishing
JP2000144193A (en) Composition for rinse
JPS62208869A (en) Polishing method for magnetic disc substrate
JP4228902B2 (en) Magnetic recording medium and method for manufacturing the same
JP3026225B2 (en) Processing method of sputtering target
JPH03131471A (en) Mirror surface finish method for carbon substrate
JP4161869B2 (en) Magnetic recording medium and method of manufacturing the same
JPS63255821A (en) Method for preventing discoloration of substrate for magnetic disk
JPS61267931A (en) Surface treatment of magnetic disk substrate
JP2000149249A (en) Production of glass substrate for magnetic disk, glass substrate for magnetic disk, and magnetic disk
JPH0633042A (en) Abrasive composition and texturing magnetic disk substrate