JPS61267931A - Surface treatment of magnetic disk substrate - Google Patents

Surface treatment of magnetic disk substrate

Info

Publication number
JPS61267931A
JPS61267931A JP10859285A JP10859285A JPS61267931A JP S61267931 A JPS61267931 A JP S61267931A JP 10859285 A JP10859285 A JP 10859285A JP 10859285 A JP10859285 A JP 10859285A JP S61267931 A JPS61267931 A JP S61267931A
Authority
JP
Japan
Prior art keywords
layer
alloy
substrate
magnetic
magnetic disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10859285A
Other languages
Japanese (ja)
Other versions
JPH0451885B2 (en
Inventor
Tomonobu Ogasawara
小笠原 友信
Fusaji Shimada
嶋田 房次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP10859285A priority Critical patent/JPS61267931A/en
Publication of JPS61267931A publication Critical patent/JPS61267931A/en
Publication of JPH0451885B2 publication Critical patent/JPH0451885B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain appropriate surface roughness by pretreating an Ni-Cu-P layer with an abrasive at specified pH when the titled disk substrate is obtained by providing the Ni-Cu-P plated layer on an Al alloy substrate and depositing a magnetic plated layer thereon through a magnetic plated layer. CONSTITUTION:An electroless-plated Ni-Cu-P ternary alloy layer 2 is coated in 20mum thickness on an Al-Mg alloy substrate 1 by using a bath composition consisting of 0.085-0.095mol/l Na sulfate, 0.005-0.015mol/l Cu sulfate, 0.2mol/l Na hypophosphite, 0.1mol/l Na malonate, 0.2mol/l Na citrate and 3cc/l nonionic surfactant and whose pH is regulated to 10. Then the surface is mecha nochemically polished by using an abrasive whose pH is regulated to 8-11 or to 3-5 and an Ni-P alloy plated layer 3, a Co-P alloy magnetic plated layer 4, an SiO2 protective layer 5 and a surface lubricating layer 6 consisting of a 0.01% freon soln. are successively coated on the surface. The surface rough ness is thus controlled to 0.008-0.013mum and the deposition of the layer 6 is maintained.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

本発明は、高密度記録再生用の磁気ディスクの磁性層の
非磁性支持体として用いられるアルミニウム合金からな
る基板の表面処理方法に関する。
The present invention relates to a method for surface treatment of a substrate made of an aluminum alloy used as a nonmagnetic support for a magnetic layer of a magnetic disk for high-density recording and reproduction.

【従来技術とその問題点】[Prior art and its problems]

近年、磁気ディスク装置においては、高記録密度化、高
信頼性の要求からコンタクト・スタート・ストップ型ヘ
ッド浮揚システムの使用が一般化されている。高記録密
度化にあたっては媒体層の薄膜化、保磁力Heの増大化
1表面欠陥の大幅な低減などと共にヘッド浮上量の低減
が必要条件になっている。 この中でヘッド浮上量の低減を目的とした場合、ディス
ク基板の鏡面性の追求が課題で°あった。しカーしなが
ら鏡面性が高すぎる基板を用いると磁気ディスクの表面
も平滑になり過ぎ、磁気ヘッドとディスクの隙間に潤滑
剤あるいは結露した大気中の水分が表面張力によって入
り込むことにより、磁気ヘッドがディスクに吸着されて
ディスクの起動時に損傷、即ちヘンドクラッシェを起こ
すことがしばしばあった。又鏡面性が高すぎる為に、液
体潤滑剤の場合はディスクの回転により飛散してしまう
欠点をも有していた。これを防止する為に、Co−Ni
−PあるいはCo−Pめっき型磁気ディスクにおいては
、AI−?1g合金基板に無電解NILP合金めっき後
、表面粗さRaO,005〜0.01#lI程度にポリ
シェ加工し、IIA” 4000〜10000かGC@
4000〜10000のテープバニシェ加工により同心
円状に規則的な加工すじを設けてRa0.008〜0.
013−程度の粗さを得るいわゆるテクスチャリング処
理するのが−般になっている。又T−Pesosスパフ
タ型媒体用の基板には従来からアルマイト処理されたA
I −Mg合金基板を精密ポリシェ加工し、粗さRa0
.OIIrm以下を得たのち、磁性層表面に液体潤滑剤
の溜りを得るための中間層をもうけたり、ポリシェ加工
された基板をプラズマエツチング加工して潤滑剤の溜り
を得るような適度の粗さに加工し直していた(特開昭5
9−82625号公報参照)、シかし、潤滑剤の溜りを
得るための中間層をもうけることは、空間損失を増大さ
せ高密度記録上の利害を大きく損なうものであった。 以上、めっき型ディスク基板あるいはr −We茸02
スパッタ型ディスク用アルマイト基板においては特別な
処理を施して潤滑剤の溜りを維持すぺ(工程の挿入を必
要とする欠点があった。
In recent years, contact start-stop type head floating systems have become common in magnetic disk drives due to demands for higher recording density and higher reliability. In order to increase the recording density, it is necessary to reduce the flying height of the head, as well as to make the medium layer thinner, to increase the coercive force He, and to significantly reduce surface defects. Among these, when the objective was to reduce the flying height of the head, the pursuit of specularity of the disk substrate was an issue. However, if a substrate with too high specularity is used, the surface of the magnetic disk will become too smooth, and surface tension will cause lubricant or condensed atmospheric moisture to enter the gap between the magnetic head and the disk, causing the magnetic head to fail. It was often attracted to the disk and caused damage when the disk was started, ie, hend crush. In addition, because the specularity is too high, liquid lubricants also have the disadvantage of scattering when the disk rotates. To prevent this, Co-Ni
-P or Co-P plated magnetic disk, AI-? After electroless NILP alloy plating on a 1g alloy substrate, it is polished to a surface roughness of RaO, 005 to 0.01#lI, and then polished to a roughness of IIA" 4000 to 10000 or GC@
4,000 to 10,000 tape burnishing to provide regular machining lines in a concentric circle to achieve Ra of 0.008 to 0.
It has become common to perform a so-called texturing process to obtain a roughness of approximately 0.013 mm. In addition, the substrate for T-Pesos spafter type media has traditionally been anodized A.
The I-Mg alloy substrate is precision polished to a roughness of Ra0.
.. After obtaining OIIrm or less, an intermediate layer is formed on the surface of the magnetic layer to create a reservoir of liquid lubricant, or a polished substrate is plasma etched to obtain a suitable roughness to create a reservoir of lubricant. It was reprocessed (Unexamined Japanese Patent Publication No. 5
9-82625), the provision of an intermediate layer for obtaining a reservoir of lubricant increases space loss and greatly impairs the interest in high-density recording. Above, plating type disk substrate or r-We mushroom 02
The alumite substrate for sputter type disks requires special treatment to maintain the lubricant pool (it has the drawback of requiring an additional process).

【発明の目的] 本発明は、上述の欠点を除去し、特別な処理を施すこと
なくその上に形成される磁性層の表面に液体潤滑剤の溜
り用の微小くぼみを有し、かつ要求されるRa0.00
8〜0.013−程度の表面粗さを有する磁気ディスク
基板を得るための表面処理方法を提供することを目的と
する。 【発明の要点】 本発明によれば、アルミニウム合金基板に無電解めっき
法によりNi−Cu−P合金をめっきしζ次いでPH8
〜11あるいはPf13〜5に調整された研摩剤を用い
てメカノケミカルポリシュするこ□とにより、Cu含有
部分が浸食されることによって適度の微小くぼみが形成
されて上記の目的が達成される。
[Object of the invention] The present invention eliminates the above-mentioned drawbacks, has minute depressions for liquid lubricant reservoirs on the surface of the magnetic layer formed thereon without special treatment, and has the required features. Ra0.00
An object of the present invention is to provide a surface treatment method for obtaining a magnetic disk substrate having a surface roughness of about 8 to 0.013. [Summary of the Invention] According to the present invention, an aluminum alloy substrate is plated with a Ni-Cu-P alloy by an electroless plating method, and then PH8
By performing mechanochemical polishing using an abrasive whose Pf is adjusted to 11 or 13 to 5, the Cu-containing portion is eroded to form appropriate micro-dents, thereby achieving the above objective.

【発明の実施例】[Embodiments of the invention]

以下、図を引用し、本発明の実施例について比較例の参
照のもとに説明する。 実施例1: JIS A3086のAl−Mg合金板を加圧焼鈍、内
外径加工後表面ラッピング加工して外径130fi、内
径40簡、厚さ2.0簡の第1図に符号1で示した5A
Vデイスク用基板を得、脱脂、活性化、ジンケート処理
を経て無電解Ni−Cu−P3元合金めっ°きを次の条
件にて行い、20−の厚さのめっき層2を形成した。 浴組成・・・硫酸ニッケル 0.085〜0.095 
tル/It硫fk[0,005〜0.015 i%/ 
1次亜りん酸ナトリウム 0.2  モル/1マロン酸
ナトリウム  0.1  u/ 1くえん酸ナトリウム
  0.2  モル/l非イオン系界面活性M  3 
 cc/IIPH(NaOHで調整)    10 めっき温度     80℃ めっき時間     膜厚に対応 めっき液中の硫酸ニッケルと硫酸銅の比率をかえること
により合金組成は変化するが、Ni30〜75%。 Cu15〜75%、PH〜11%の範囲の中に入るよう
に適宜調整する。その後、両面研摩盤により平均粒径1
 n、PIIIOのメタライ)−01(不二見研摩剤工
業商品名)をスラリーとして5〜10分間のポリシェを
行い表面厚さ5−を除去した。このようにして得られた
表面は、スラリーがアルカリ性であるためNi−Cu−
Pの合金めっき中Cuに富む部分が選択的に化学エツチ
ングされ微小(ぼみを生じる。 しかし、表面粗さはRa0.009〜0.013−の中
に維持される0次いで、Ni−P合金めっき層3を0.
3〜0.5nの厚さで形成後、無電解めっき法によりC
o−P合金磁性めっき層4を0.07〜0.08#ll
Iの厚さにさらに保護層としてRFスパッタリング法に
て5lot膜5を0.07〜0.08#lIの厚さに形
成し、最後は潤滑剤としてタライトックス143AD(
デュポン社商品名)0.01%フレオン溶液をスピンコ
ード法により塗布して表面潤滑層6とした磁気ディスク
を得た。 実施例2: 実施例1と同様な方法でA1合金基板1の上にNi−C
u−Pめっき層2を形成したのち、次の組成の研摩剤を
作成し両面ポリシェを行った。 Altos(050の粒径1.0〜1.I Q)  1
2.5重量%非イオン系界面活性剤      2.5
重量%イオン交換水           残量研摩剤
のPHはNa0IlおよびllOHのいずれかを用いて
9.5〜10.5に調整した。この研摩で得られた表面
粗さは実施例1と同様であった。 以下、実施例1と同様にNi−Pめっき層3.C。 −P磁性めっき層4.SiO鵞保護膜5.クライトック
スの潤滑膜6を順につけて磁気ディスクを作成した。 実施例3: 実施例1と同様にして、但し両面ポリシュ時の研摩剤と
してポリプラ103(不二見研摩剤工業商品名、PI1
3〜3.5)で研摩してエッチピットにより微小くぼみ
を発生させ、かつ所定の表面粗さを得て磁気ディスクを
作った。 実施例4 実施例1と同様にし、但し研摩剤としては下記の組成の
ものを作成して使用し、同様なエッチピントによるくぼ
みと適度な表面粗さを得て磁気ディスクを作った。 Altos(050の粒径1.0〜1.1 n>  8
  重量%さく酸セルローズ       0.5重量
%イオン交換水          残量研摩剤のPR
は硫酸で調整して3.0〜3.5とした。 実施例5: 実施例1と同様な方法でNi−Cu−Pめっきとメタラ
イト01(不二見研摩剤工業商品名)を用いてボリシェ
を行ったのち、第2図に示すように反応スパッタリング
により0.16〜0.18−の厚さのFe、O。 薄膜7を形成する。なおスパッタリング条件は次に示す
とおりである。 使用ターゲット 2.5%Co−3%Cu−Fe全圧力
     2 Xl0−” Torr酸素・アルゴンガ
ス混合比 1:lO 高周波電力   soow 基板回転    20rpm 次に大気中にて300℃で3時間の加熱処理を行いr 
 Feudsとする0次に潤滑剤としてクライトックス
143AD(デエポン社商品名)0.01%フレオン溶
液をスピンコードして磁気ディスクを作成した。 実施例6= 実施例5と同様にし、但し両面研摩時の研摩剤としてポ
リプラ103(不二見研摩剤工業商品名、PH360〜
3.5)で研摩してエッチピットにより微小(ぼみを発
生させ、かつ所定の表面粗さを得て磁気ディスクを作っ
た。 比較例1: 実施例1と同様にNi−Cu−P合金めっきを行った後
、両面ポリシェ盤によりHA” 800Gの水系懸濁液
の上澄液(ロート油2%添加)を用いて表面粗さRaO
,008〜Q、01JllIの鏡面加工をした。この上
に無電解めらき法により0.07〜0.08nの厚さの
Co −P合金磁性めっき層を形成、さらに実施例1と
同様に保護層、潤滑層を被覆した。 比較例2: 高純度AI4%Mg合金系の5!4Pデイスク用基板に
クロム酸アルマイト皮膜を13uの厚さに形成したのち
、両面研摩盤により−A″8000の水系懸濁液の上澄
液によりボリシェを行い、表面粗さRa0.007〜0
.009 amの焼面を得た。この表面に直接法により
y−Fe*Os磁性膜を0.16〜0.18−の厚さで
形成した。さらにその上に実施例1あるいは比較例1と
同様に潤滑剤を塗布した試料を作成した。 実施例1〜6および比較例1.2で作成した磁気ディス
ク試料を用いて次の比較試験を行うた。 (1)Mn−Znフェライト製磁気ヘッドと磁気ディス
クを常温、常温下で24時間接触放置させた後、ディス
ク吸着力を測定する。 (2) 2万回のC3S (コンタクト・スタート・ス
トップの略字)試験後のディスク起動トルクの測定と、
C8S試験中のきすの発生状態を調べる。 比較試験の結果を製造原価の比較と含めて第1表に示す
。 第1表 上表かられかるように本発明による基板を用いた磁気デ
ィスクは、潤滑特性に優れ、基板原価が大幅に低減され
ている。
Hereinafter, examples of the present invention will be described with reference to comparative examples with reference to the drawings. Example 1: A JIS A3086 Al-Mg alloy plate was subjected to pressure annealing, inner and outer diameter machining, and then surface lapping to produce a material with an outer diameter of 130 fi, an inner diameter of 40 fi, and a thickness of 2.0 fi, as shown in Figure 1 with reference numeral 1. 5A
A V disk substrate was obtained, and after degreasing, activation, and zincate treatment, electroless Ni--Cu--P ternary alloy plating was performed under the following conditions to form a plating layer 2 with a thickness of 20 mm. Bath composition: Nickel sulfate 0.085-0.095
tru/It sulfur fk [0,005 to 0.015 i%/
Sodium hypophosphite 0.2 mol/1 Sodium malonate 0.1 u/1 Sodium citrate 0.2 mol/l Nonionic surfactant M 3
cc/IIPH (adjusted with NaOH) 10 Plating temperature 80°C Plating time Corresponding to the film thickness The alloy composition changes by changing the ratio of nickel sulfate and copper sulfate in the plating solution, but Ni is 30 to 75%. Adjust as appropriate so that the Cu is within the range of 15 to 75% and the pH is within the range of 11%. After that, the average particle size is 1
The surface thickness 5- was removed by polishing for 5 to 10 minutes using a slurry of PIIIO (Metalli)-01 (trade name of Fujimi Abrasive Industries). Since the slurry is alkaline, the surface obtained in this way is Ni-Cu-
The Cu-rich portion of the P alloy plating is selectively chemically etched, resulting in minute pits. However, the surface roughness is maintained within Ra of 0.009 to 0.013. Plating layer 3 is 0.
After forming with a thickness of 3 to 0.5 nm, C is coated by electroless plating.
o-P alloy magnetic plating layer 4 of 0.07 to 0.08 #ll
Further, 5 lots of film 5 was formed as a protective layer on the thickness of 0.07 to 0.08 #lI by RF sputtering method as a protective layer, and finally, TALITOX 143AD (
A magnetic disk having a surface lubricating layer 6 was obtained by applying a 0.01% Freon solution (trade name of DuPont Co., Ltd.) by a spin code method. Example 2: Ni-C was deposited on the A1 alloy substrate 1 in the same manner as in Example 1.
After forming the u-P plating layer 2, an abrasive having the following composition was prepared and both sides were polished. Altos (050 particle size 1.0-1.IQ) 1
2.5% by weight nonionic surfactant 2.5
Weight % ion-exchanged water Residual amount The pH of the abrasive was adjusted to 9.5 to 10.5 using either Na0Il or 11OH. The surface roughness obtained by this polishing was similar to that of Example 1. Hereinafter, as in Example 1, the Ni-P plating layer 3. C. -P magnetic plating layer 4. SiO protective film 5. A magnetic disk was prepared by sequentially applying the Krytox lubricating film 6. Example 3: Same as Example 1, except that Polypla 103 (Fujimi Abrasive Industries trade name, PI1) was used as an abrasive for double-sided polishing.
3 to 3.5) to generate minute depressions due to etch pits and obtain a predetermined surface roughness to produce a magnetic disk. Example 4 A magnetic disk was manufactured in the same manner as in Example 1, except that an abrasive having the following composition was prepared and used to obtain similar etch-focused depressions and appropriate surface roughness. Altos (050 particle size 1.0-1.1 n>8
Weight % cellulose saccharide 0.5 weight % ion exchange water Residual amount PR of abrasive
was adjusted to 3.0 to 3.5 with sulfuric acid. Example 5: Bolishing was performed using Ni-Cu-P plating and Metalite 01 (trade name of Fujimi Abrasive Industries) in the same manner as in Example 1, and then 0 was removed by reactive sputtering as shown in Figure 2. Fe, O with a thickness of .16-0.18-. A thin film 7 is formed. Note that the sputtering conditions are as shown below. Target used: 2.5%Co-3%Cu-FeTotal pressure: 2 Xl0-” TorrOxygen/argon gas mixture ratio: 1:1O High frequency power: Soow Substrate rotation: 20 rpm Next, heat treatment was performed at 300°C for 3 hours in the air. act r
A magnetic disk was prepared by spin-coding a 0.01% Freon solution of Krytox 143AD (trade name of Depond Co., Ltd.) as a zero-order lubricant. Example 6 = Same as Example 5, except that Polypla 103 (Fujimi Abrasive Industries trade name, PH360~) was used as the abrasive for double-sided polishing.
3.5) to generate minute depressions with etch pits and obtain a predetermined surface roughness to produce a magnetic disk. Comparative Example 1: Ni-Cu-P alloy as in Example 1. After plating, the surface roughness is RaO using a supernatant liquid (2% funnel oil added) of an aqueous suspension of HA" 800G using a double-sided polisher.
, 008~Q, 01JllI mirror finishing. A Co--P alloy magnetic plating layer having a thickness of 0.07 to 0.08 nm was formed thereon by electroless plating, and a protective layer and a lubricating layer were further coated in the same manner as in Example 1. Comparative Example 2: After forming a chromate alumite film to a thickness of 13u on a 5!4P disk substrate made of a high purity AI4%Mg alloy, a supernatant liquid of an aqueous suspension of -A″8000 was prepared using a double-sided polisher. The surface roughness Ra0.007~0
.. A baked surface of 009 am was obtained. A y-Fe*Os magnetic film was formed on this surface by a direct method to a thickness of 0.16 to 0.18. Furthermore, a sample was prepared by applying a lubricant thereon in the same manner as in Example 1 or Comparative Example 1. The following comparative tests were conducted using the magnetic disk samples prepared in Examples 1 to 6 and Comparative Examples 1.2. (1) A magnetic head made of Mn--Zn ferrite and a magnetic disk are left in contact with each other at room temperature for 24 hours, and then the disk adsorption force is measured. (2) Measurement of disc starting torque after 20,000 C3S (abbreviation for contact start stop) tests;
Investigate the occurrence of scratches during the C8S test. The results of the comparative tests are shown in Table 1, including a comparison of manufacturing costs. As can be seen from the upper table of Table 1, the magnetic disk using the substrate according to the present invention has excellent lubrication properties and the cost of the substrate is significantly reduced.

【発明の効果】【Effect of the invention】

本発明は、でき上がった磁気ディスクと磁気へラドの間
の吸着力低減のために、非磁性基板の下地めっき層面に
所望の表面粗さを形成するための研摩をするときに、ア
ルカリ性または酸性の研摩剤を用いてメカノケミカルポ
リシエを行うことにより、液体潤滑剤保持のための微小
(ぼみを有する磁気ディスク用基板を得るものである。 これによりこの基板を用いて製作される磁気ディスク表
面の潤滑特性が良好に維持され、信鯨性も向上する。 また、本発明により表面処理される基板は次の理由で製
造原価が大幅に低減できる。 +11潤滑剤保持のための粗面化工程を必要とせず、ポ
リシュ時に同時にその効果が得られる。 (2)従来のr−Fez02スパッタ型ディスク用A1
合金のようなアルマイト処理に適した超高純度材料の使
用を必要とせず、めっき法の特徴である一括同時処理の
利点が活かせる。 さらに本発明によれば、r−We@02スパッタ型ディ
スクに見られる特別の中間層の挿入も不要になり、ヘッ
ドと磁性層間の距離を縮小できるので結果的に記録密度
が向上する。 なお、本発明により表面処理された基板はCO系スパッ
タ型ディスクに用いても同様の効果が期待できることは
明白である。
In order to reduce the adsorption force between the completed magnetic disk and the magnetic helad, the present invention uses alkaline or acidic polishing to form a desired surface roughness on the surface of the base plating layer of the non-magnetic substrate. By performing mechanochemical polishing using an abrasive, a magnetic disk substrate with microscopic depressions for retaining liquid lubricant is obtained. As a result, the magnetic disk surface manufactured using this substrate The lubricating properties of the substrate are maintained well, and the reliability is improved.Furthermore, the manufacturing cost of the substrate whose surface is treated according to the present invention can be significantly reduced for the following reasons.+11 Surface roughening process for retaining lubricant (2) Conventional r-Fez02 sputter type disk A1
It does not require the use of ultra-high-purity materials suitable for alumite treatment, such as alloys, and can take advantage of the advantage of batch simultaneous processing, which is a feature of plating methods. Further, according to the present invention, there is no need to insert a special intermediate layer as seen in the r-We@02 sputter type disk, and the distance between the head and the magnetic layer can be reduced, resulting in an increase in recording density. It is clear that the same effect can be expected even when the substrate surface-treated according to the present invention is used in a CO-based sputter type disk.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による基板を使用した磁気ディスクの一
例の断面図、第2図は別の例の断面図である。 lニアルミニウム合金基板、2:Ni−Cu−Pめっき
層、3:NI−Pめっき層、4:磁性めっき層、5:保
護層、6:潤滑層、7:磁性スパッタ層。
FIG. 1 is a sectional view of an example of a magnetic disk using a substrate according to the present invention, and FIG. 2 is a sectional view of another example. 2: Ni-Cu-P plating layer, 3: NI-P plating layer, 4: magnetic plating layer, 5: protective layer, 6: lubricant layer, 7: magnetic sputter layer.

Claims (1)

【特許請求の範囲】[Claims] 1)アルミニウム合金基板に無電解めっき法によりNi
−Cu−P合金をめっきしたのち、PH8〜11あるい
はPH3〜5に調整した研摩剤を用いてメカノケミカル
ポリシュすることを特徴とする磁気ディスク基板の表面
処理方法。
1) Ni is deposited on an aluminum alloy substrate by electroless plating.
- A method for surface treatment of a magnetic disk substrate, which comprises plating with a Cu-P alloy and then performing mechanochemical polishing using an abrasive whose pH is adjusted to 8 to 11 or 3 to 5.
JP10859285A 1985-05-21 1985-05-21 Surface treatment of magnetic disk substrate Granted JPS61267931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10859285A JPS61267931A (en) 1985-05-21 1985-05-21 Surface treatment of magnetic disk substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10859285A JPS61267931A (en) 1985-05-21 1985-05-21 Surface treatment of magnetic disk substrate

Publications (2)

Publication Number Publication Date
JPS61267931A true JPS61267931A (en) 1986-11-27
JPH0451885B2 JPH0451885B2 (en) 1992-08-20

Family

ID=14488714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10859285A Granted JPS61267931A (en) 1985-05-21 1985-05-21 Surface treatment of magnetic disk substrate

Country Status (1)

Country Link
JP (1) JPS61267931A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63313322A (en) * 1987-06-17 1988-12-21 Toshiba Corp Production of magnetic recording medium
JP2003027249A (en) * 2001-05-10 2003-01-29 Ebara Corp Method and equipment for electroless plating, and method and equipment for substrate treatment
JP2015195072A (en) * 2014-03-28 2015-11-05 株式会社神戸製鋼所 GROUND LAYER COATING SUBSTRATE USED FOR Ni PLATING TREATMENT, Ni PLATING LAYER CONTAINING LAMINATE, AND MAGNETIC RECORDING MEDIUM
RU2592601C1 (en) * 2015-07-16 2016-07-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет имени Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) Method of chemical coating from nickel-copper-phosphorus alloy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63313322A (en) * 1987-06-17 1988-12-21 Toshiba Corp Production of magnetic recording medium
JP2003027249A (en) * 2001-05-10 2003-01-29 Ebara Corp Method and equipment for electroless plating, and method and equipment for substrate treatment
JP2015195072A (en) * 2014-03-28 2015-11-05 株式会社神戸製鋼所 GROUND LAYER COATING SUBSTRATE USED FOR Ni PLATING TREATMENT, Ni PLATING LAYER CONTAINING LAMINATE, AND MAGNETIC RECORDING MEDIUM
RU2592601C1 (en) * 2015-07-16 2016-07-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет имени Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) Method of chemical coating from nickel-copper-phosphorus alloy

Also Published As

Publication number Publication date
JPH0451885B2 (en) 1992-08-20

Similar Documents

Publication Publication Date Title
US6316097B1 (en) Electroless plating process for alternative memory disk substrates
CN112002351B (en) Non-magnetic substrate for magnetic disk and magnetic disk
US5441788A (en) Method of preparing recording media for a disk drive and disk drive recording media
JPH08102033A (en) Thin-film magnetic recording disk and manufacture thereof
JPH0319130A (en) Production of magnetic disk substrate made of titanium
JPS61267931A (en) Surface treatment of magnetic disk substrate
JPH0253222A (en) Magnetic recording medium
JPS6038720A (en) Substrate for magnetic disk
JPS613317A (en) Magnetic recording medium
JPS59217225A (en) Base plate for magnetic disc
JPH0752030A (en) Anodic oxidation surface treated base and polishing method therefor
JPS62134826A (en) Production of magnetic memory body
JPS59142735A (en) Magnetic recording medium
JP2834391B2 (en) Method of manufacturing magnetic recording medium substrate and method of manufacturing magnetic recording medium using the substrate
JP2704615B2 (en) Magnetic recording device
JPS60127532A (en) Magnetic disc base and its manufacture
JPS62243115A (en) Magnetic recording medium
JPH11250438A (en) Magnetic recording medium, production of magnetic recording medium and magnetic recorder
JPS62209719A (en) Magnetic recording medium
JPH01251313A (en) Magnetic recording medium
JPH11175963A (en) Aluminum alloy substrate for magnetic disk and magnetic disk
JPH0291813A (en) Magnetic recording medium
JP2004127493A (en) Magnetic disk
JPH0428012A (en) Magnetic disk and production thereof as well as magnetic disk device
JP2007184099A (en) Magnetic disk