JPH0391260A - Cmos integrated circuit device - Google Patents

Cmos integrated circuit device

Info

Publication number
JPH0391260A
JPH0391260A JP1227795A JP22779589A JPH0391260A JP H0391260 A JPH0391260 A JP H0391260A JP 1227795 A JP1227795 A JP 1227795A JP 22779589 A JP22779589 A JP 22779589A JP H0391260 A JPH0391260 A JP H0391260A
Authority
JP
Japan
Prior art keywords
circuit
field effect
diode
type
overvoltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1227795A
Other languages
Japanese (ja)
Inventor
Takumi Fujimoto
卓巳 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1227795A priority Critical patent/JPH0391260A/en
Publication of JPH0391260A publication Critical patent/JPH0391260A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention

Abstract

PURPOSE:To remove the occurrence of latch-up by incorporating an overvoltage breakdown circuit including a protective diode in a chip in common for plural pieces of unit circuits inside an integrated circuit device, and besides setting this breakdown voltage higher than the regular value of the voltage between a pair of power source potential points and lower than the lowest breakdown voltage within plural pieces of unit circuits. CONSTITUTION:A unit circuit being output circuit consisting of complementary field effect transistors Tp and Tn and a unit circuit 11 being the signal circuit are constituted, and a protective diode D for an overvoltage breakdown circuit and its serial resistance R are built in being annexed to the field effect transistor inside the output circuit 10. Furthermore, the protective diode D is built in making use of the well 2 of the n-channel field effect transistor Tn inside this output circuit 10. For this reason, a p-type diode layer 6 is built, out of a circular pattern, in the marginal surface part of a p-type well 2 in common with a substrate connection layer, and the peripheral part is extended to the surface of an adjacent n-type semiconductor region 1, a little going over the margin of the well 2. This p-type diode layer 6 is built in by simultaneous diffusion with a p-type source and drain layer 4 for the p-channel field effect transistor Tp.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は相補電界効果トランジスタからなる単位回路を
複数個集積してなり、静電気等による過電圧侵入に対す
るラッチア・ツブ耐量が向上されたCMOS集積回路装
置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a CMOS integrated circuit which is formed by integrating a plurality of unit circuits each consisting of complementary field effect transistors, and which has improved latch/tube resistance against overvoltage invasion due to static electricity, etc. Regarding equipment.

〔従来の技術〕[Conventional technology]

CMOS集積回路装置では、周知のように相補電界効果
トランジスタ、すなわちpチャネル形とnチャネル形の
電界効果トランジスタを例えば相互に直列接続するよう
に組み合わせて交互に開閉動作させるので、消費電力を
減少させ使用温度範囲や信号へのノイズ混入に対する動
作上の余裕を大きくとれる等の種々の利点が得られる。
As is well known, in a CMOS integrated circuit device, complementary field effect transistors, that is, p-channel type and n-channel type field effect transistors are connected in series with each other and are alternately opened and closed, thereby reducing power consumption. Various advantages can be obtained, such as a larger operating temperature range and a larger operating margin against noise intrusion into signals.

以下、よく知られていることではあるが、第2図(萄と
(ロ)を参照してこのCMOS集積回路装置の基本的な
構成例を簡単に説明する。
Hereinafter, although it is well known, a basic configuration example of this CMOS integrated circuit device will be briefly explained with reference to FIG.

第2図(@はその半導体層の構造例をチップの一部を拡
大して示し、図の部分にはエピタキシャル層等のこの例
ではn形の半導体領域l内に1対の相補電界効果トラン
ジスタTpとTnからなる2個の単位回路10と11が
作り込まれ、対応する同図(ハ)の回路のようにこの例
では単位回路10は出力信号V。
Figure 2 (@ shows an enlarged part of the chip showing an example of the structure of the semiconductor layer, and the part shown in the figure shows a pair of complementary field effect transistors in the n-type semiconductor region l, such as an epitaxial layer). Two unit circuits 10 and 11 consisting of Tp and Tn are built in, and in this example, the unit circuit 10 outputs an output signal V, like the corresponding circuit in FIG.

を発する出力回路、単位回路11は入力信号Viを受け
る信号回路である。なお一般には、1個の出力回路に信
号回路が複数個設けられる。
The unit circuit 11 is a signal circuit that receives an input signal Vi. Note that, generally, one output circuit is provided with a plurality of signal circuits.

この例での出力回路10と11は、同図(ロ)のように
いずれも共通ゲート接続された相補なpチャネル電界効
果トランジスタTpとnチャネル電界効果トランジスタ
Tnを1対の電源電位点VdとVs間に直列接続した同
じ構成のもので、同図(a)に示すようにnチャネル電
界効果トランジスタTn用のp形のウェル2.各電界効
果トランジスタ用のゲート3゜pチャネル電界効果トラ
ンジスタミル用の1対のp形のソース・ドレイン層4+
nチャネル電界効果トランジスタTn用のp形のサブス
トレート接続層5と1対のn形のソース・ドレイン層7
.およびpチャネル電界効果トランジスタTp用のn形
のサブストレート接続層8を備える。
In this example, the output circuits 10 and 11 connect a pair of complementary p-channel field effect transistors Tp and n-channel field effect transistors Tn, both of which are connected in common to a power supply potential point Vd, as shown in FIG. The same structure is connected in series between the p-type well 2 and the p-type well for the n-channel field effect transistor Tn, as shown in FIG. Gate 3° for each field effect transistor; Pair of p-type source/drain layers 4+ for p-channel field effect transistor mill;
A p-type substrate connection layer 5 and a pair of n-type source/drain layers 7 for an n-channel field effect transistor Tn.
.. and an n-type substrate connection layer 8 for a p-channel field effect transistor Tp.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、CMOS集積回路装置は上述の利点をもつ反面
、よく知られているように静電気等に基づく過電圧サー
ジが侵入したときにいわゆるラッチアップが発生しやす
い欠点が本質的にあって、この過電圧に対する抵抗力で
あるラッチアップ耐量を改善することが課題になってい
る。
However, while CMOS integrated circuit devices have the above-mentioned advantages, they inherently have the disadvantage of being prone to so-called latch-up when overvoltage surges due to static electricity etc. The challenge is to improve latch-up resistance.

このラッチアップ発生の原因は、上述のように相補電界
効果トランジスタからなる各単位回路内にpnpnの4
層構造の寄生サイリスクが不可避的に作り込まれてしま
い、過電圧が集積回路装置に侵入したときにこれが導通
しやすいためであって、この4層サイリスタ構造は、第
2図(a)の単位回路10と11のそれぞれについて、
pチャネル電界効果トランジスタTpOp形のソース・
ドレイン層4゜n形の半導体領域1.およびnチャネル
電界効果トランジスタTn用のp形のウェル2とn形の
ソース・ドレイン層7で構成されている。
The cause of this latch-up is that, as mentioned above, there are four pnpn transistors in each unit circuit consisting of complementary field effect transistors.
This is because a parasitic thyristor risk is unavoidably built into the layered structure, and this is likely to cause conduction when an overvoltage enters the integrated circuit device.This four-layer thyristor structure For each of 10 and 11,
Source of p-channel field effect transistor TpOp type
Drain layer 4°n-type semiconductor region 1. It also includes a p-type well 2 and an n-type source/drain layer 7 for an n-channel field effect transistor Tn.

第2図(C)はかかる寄生サイリスタ構造の過電圧侵入
時の導通動作の理解を容易にするため、寄生トランジス
タと寄生ダイオード等を組み合わせた等価回路で示すも
のである。この等価回路はもちろん両単位回路10と1
1について同じであって、いずれもバイポーラトランジ
スタであるpnp形の寄生トランジスタtpとnpn形
の寄生トランジスタtnとを含み、これに寄生ダイオー
ドと抵抗が付随した寄生回路を図のように構成している
In order to facilitate understanding of the conduction operation of such a parasitic thyristor structure when an overvoltage enters, FIG. 2(C) shows an equivalent circuit that combines a parasitic transistor, a parasitic diode, etc. This equivalent circuit is of course both unit circuits 10 and 1.
1, which includes a pnp parasitic transistor tp and an npn parasitic transistor tn, both of which are bipolar transistors, and a parasitic circuit with a parasitic diode and a resistor is configured as shown in the figure. .

同図(a)に細線で示されたように、これらの内の1)
! )ランリスクtpはpチャネル電界効果トランジス
タTpOP形のソース・ドレイン層4と、n形の半導体
領域1と、pチャネル電界効果トランジスタTnのp形
のウェル2とで構成され、npn )ランリスクtnは
nチャネル電界効果トランジスタTnのn形のソース・
ドレイン層7と、p形のウェル2と、n形の半導体領域
1とで構成される。
As shown by the thin line in Figure (a), one of these
! ) The run risk tp is composed of the source/drain layer 4 of the p-channel field effect transistor TpOP type, the n-type semiconductor region 1, and the p-type well 2 of the p-channel field effect transistor Tn, npn) The run risk tn is the n-type source of the n-channel field effect transistor Tn.
It is composed of a drain layer 7, a p-type well 2, and an n-type semiconductor region 1.

また、寄生ダイオードdはp形のウェル2とn形の半導
体領域1との間に、寄生ダイオードdpはp形のソース
・ドレイン層4と半導体領域lとの間に、寄生ダイオー
ドdnはp形のウェル2とn形のソース・ドレイン層7
との間にそれぞれ図のよに形成される。寄生ダイオード
dn (!: dpの相互接続点は、同図(a)かられ
かるように電界効果トランジスタTpとTnの相互接続
点に対応し、図ではこれらを符号VgとVoで示す。さ
らに、抵抗rpはpnp トランジスタtpのベースで
ある半導体領域1の内部抵抗で、抵抗rpはnpn )
ランリスクtnのベースであるウェル2の内部抵抗であ
る。
Further, a parasitic diode d is located between the p-type well 2 and the n-type semiconductor region 1, a parasitic diode dp is located between the p-type source/drain layer 4 and the semiconductor region 1, and a parasitic diode dn is located between the p-type well 2 and the n-type semiconductor region 1. well 2 and n-type source/drain layer 7
and are formed as shown in the figure. The interconnection point of the parasitic diode dn (!: dp corresponds to the interconnection point of the field effect transistors Tp and Tn, as can be seen from the figure (a), and these are indicated by symbols Vg and Vo in the figure.Furthermore, The resistance rp is the internal resistance of the semiconductor region 1 which is the base of the pnp transistor tp, and the resistance rp is npn)
This is the internal resistance of well 2, which is the base of run risk tn.

いま、1対の電源電位点VdおよびVs間に過電圧が例
えば正方向に掛かったとすると、電源電位点Vdが接続
されている半導体領域1の電位が上昇するので、寄生ダ
イオードdpとdnがまず降伏して、一方の電源電位点
Vdから抵抗rp+寄生ダイオードdpとdn、および
抵抗rnを経て他方の電源電位点Vsに至る経路に電流
が流れ、これにより寄生トランジスタtpとtnのベー
ス・エミッタ間に抵抗rpとrnの両端電圧がそれぞれ
掛かる。しかし第2図(a)かられかるように、寄生ト
ランジスタtpは横形1寄生トランジスタtnは縦形で
、後者の電流増幅率が前者よりずっと高いので、上述の
ベース・エミッタ間電圧によって寄生トランジスタtn
の方が先にオンする。これにより、今度は電源電位点V
dから抵抗rpと寄生トランジスタtnを経て電源電位
点Vsに至る経路に前より大きな電流が流れて抵抗rp
の両端電圧が上がるので、これをベース・工2ツタ間電
圧として受ける寄生トランジスタtpもオンするに至り
、両電源電位点VdとVs間が短絡されて非常に大きな
電流が流れる。
Now, if an overvoltage is applied, for example, in the positive direction between a pair of power supply potential points Vd and Vs, the potential of the semiconductor region 1 to which the power supply potential point Vd is connected increases, so that the parasitic diodes dp and dn first break down. Then, a current flows from one power supply potential point Vd to the other power supply potential point Vs via resistor rp + parasitic diodes dp and dn, and resistor rn, and as a result, a current flows between the base and emitter of parasitic transistors tp and tn. A voltage is applied across the resistors rp and rn, respectively. However, as can be seen from FIG. 2(a), the parasitic transistor tp is horizontal, and the parasitic transistor tn is vertical, and the current amplification factor of the latter is much higher than that of the former.
turns on first. As a result, the power supply potential point V
A larger current flows from d through the resistor rp and the parasitic transistor tn to the power supply potential point Vs, and the resistor rp
As the voltage across the terminal increases, the parasitic transistor tp which receives this as the voltage between the base and the terminal also turns on, short-circuiting the two power supply potential points Vd and Vs, and a very large current flows.

これかられかるように寄生トランジスタtpとtnが前
述の寄生サイリスタを形成しており、過電圧によりこれ
が導通したときラッチアップが発生して両電源電位点間
に大電流が流れ、単位回路10や11の機能が全く喪失
されるだけでなく、この大電流経路内の半導体接合が短
時間内に破壊するおそれがあり、しかも給電を切らない
限りこのラッチアップ状態は解消されない、なお、上で
は過電圧の極性を正としたが、負であってもラッチアッ
プは同様に発生する。
As will be seen, the parasitic transistors tp and tn form the aforementioned parasitic thyristor, and when this becomes conductive due to overvoltage, latch-up occurs and a large current flows between the two power supply potential points, causing the unit circuits 10 and 11 to Not only will there be a complete loss of functionality, but the semiconductor junctions in this high current path may be destroyed within a short period of time, and this latch-up condition will not be resolved unless the power supply is removed. is assumed to be positive, but latch-up will occur in the same way even if it is negative.

かかるラッチアップに対して、従来から解決策が種々工
夫されている。例えば、サブストレート接続層5や8の
不純物濃度を極力上げることはできるが、ラッチアップ
耐量の改善上はさほどの効果はない。また、いわゆる基
板ダイオードである寄生ダイオードdの降伏電圧を下げ
る方策もあるが、このために半導体領域1やウェル2の
不純物濃度を電界効果トランジスタの特性が悪影響を受
けないように上げるのは至難であるし、問題の根本的な
解決にもなり得ない。
Various solutions to such latch-up have been devised in the past. For example, although it is possible to increase the impurity concentration of the substrate connection layers 5 and 8 as much as possible, it is not very effective in improving latch-up resistance. There are also measures to lower the breakdown voltage of the parasitic diode d, which is a so-called substrate diode, but it is extremely difficult to increase the impurity concentration in the semiconductor region 1 and well 2 without adversely affecting the characteristics of the field effect transistor. However, it cannot be the fundamental solution to the problem.

本発明はかかる問題を解決するため、上述のように電源
電位点から侵入して来る過電圧に対し簡単な手段でCM
OS集積回路装置のラッチアップ耐量を向上することを
目的とする。
In order to solve this problem, the present invention uses simple means to prevent overvoltage from entering from the power supply potential point as described above.
The purpose is to improve the latch-up resistance of an OS integrated circuit device.

〔課題を解決するための手段〕[Means to solve the problem]

この目的は本発明によれば、CMOS集積回路装置に組
み込まれる複数個の単位回路に対して共通に保護ダイオ
ードを含む過電圧降伏回路を集積回路装置のチップ内に
組み込み、この保護ダイオードを1対の電源電位点のチ
ップへの接続点相互間のチップ表面部に横方向に両電源
電位点間電圧とは逆方向極性で作り込み、その降伏電圧
を1対の電源電位点間電圧の正規値よりは高くかつ各単
位回路の降伏電圧中の最低値よりは低く設定することに
よって遠戚される。
According to the present invention, this object is achieved by incorporating an overvoltage breakdown circuit that includes a protection diode in common for a plurality of unit circuits incorporated into a CMOS integrated circuit device into a chip of the integrated circuit device, and connecting this protection diode to a pair of unit circuits. The voltage between the two power supply potential points is built horizontally on the chip surface between the connection points of the power supply potential points to the chip with the opposite polarity, and the breakdown voltage is calculated from the normal value of the voltage between a pair of power supply potential points. is distantly related by setting it to be high and lower than the lowest value among the breakdown voltages of each unit circuit.

なお、上記の過電圧降伏回路は保護ダイオードとこれに
直列接続された低抵抗とで構成することでふつう充分で
ある。また、単位回路に・出力回路が含まれる場合、過
電圧降伏回路はこの出力回路に付随して組み込むのが望
ましい。
Note that it is usually sufficient for the above-mentioned overvoltage breakdown circuit to consist of a protection diode and a low resistance connected in series with the protection diode. Furthermore, when the unit circuit includes an output circuit, it is desirable to incorporate the overvoltage breakdown circuit along with this output circuit.

保護ダイオードを上記構成にいうようにチップの表面部
に横方向に設けるに際しては、これを電界効果トランジ
スタのウェルを利用して作り込む゛のがチップ面積の節
約上有利である。例えば、保護ダイオード用の一方のダ
イオード層を電界効果トランジスタのウェルの周縁部の
表面部にそれと同導電形で作り込み、これに対向して他
方のダイオード層をウェルの周囲の半導体領域の表面部
にウェルとは逆導電形で作り込むことができ、さらには
これらの内の一方のダイオード層をサブストレート接続
層と共用に設けるの□が最も望ましい。
When the protection diode is provided laterally on the surface of the chip as in the above structure, it is advantageous in terms of saving the chip area to build it using the well of the field effect transistor. For example, one diode layer for a protection diode is formed on the surface of the periphery of the well of a field effect transistor with the same conductivity type, and the other diode layer is formed on the surface of the semiconductor region surrounding the well. It is most desirable that one of these diode layers be provided in common with the substrate connection layer.

また、この保護ダイオードを作り込むために工程を追加
する必要をなくすため、それ用のl対のダイオード層の
拡散を電界効果トランジスタ用のソース・ドレイン層の
拡散と同時に行なうよう、にするのが有利である。さら
に、ラッチアップ耐量の向上には保護ダイオードの電流
容量を大きくするのが望ましく、このためにはそれ用の
1対のダイオード層を同心状の環状パターンに形成する
のが有利である。
In addition, in order to eliminate the need for an additional process to fabricate this protection diode, it is recommended that the diffusion of the pair of diode layers for it be performed at the same time as the diffusion of the source/drain layer for the field effect transistor. It's advantageous. Further, in order to improve latch-up resistance, it is desirable to increase the current capacity of the protection diode, and for this purpose, it is advantageous to form a pair of diode layers in a concentric ring pattern.

〔作用〕[Effect]

上記構成にいうように、本発明は保護ダイオードを含む
過電圧降伏回路を集積回路装置内の複数個の単位回路に
共通にチップ内に組み込み、静電気等に基づく過電圧の
侵入時に保護ダイオードを降伏させて過電圧を吸収させ
てしまい、かつこの降伏電圧を1対の電源電位点間電圧
の正規値より高く、複数個の単位回路中の最低降伏電圧
より低く設定することにより、集積回路装置内のいずれ
の単位回路にも降伏すなわちラッチアップが発生しない
ようにしたものである。
As described in the above structure, the present invention incorporates an overvoltage breakdown circuit including a protection diode into a chip in common in a plurality of unit circuits in an integrated circuit device, and causes the protection diode to breakdown when an overvoltage due to static electricity or the like enters. By absorbing overvoltage and setting this breakdown voltage higher than the normal value of the voltage between a pair of power supply potential points and lower than the lowest breakdown voltage in a plurality of unit circuits, it is possible to This is to prevent breakdown or latch-up from occurring in the unit circuit.

さらに本発明は、上記構成にいうように、保護ダイオー
ドを1対の電源電位点のチップへの接続点相互間のチッ
プ表面部□に横方向に作り込むことにより、上述の過電
圧の吸収時に保護ダイオードに大電流が流れても、その
影響がチップ表面部のみに限定されて単位回路の電界効
果トランジスタ用の半導体・層には及び得ないようにし
て、上述のラッチアップ防止効果が一層確実に得られる
ようにしたものである。
Furthermore, as described in the above structure, the present invention provides protection when absorbing the above-mentioned overvoltage by building a protection diode laterally in the chip surface area □ between the connection points of a pair of power supply potential points to the chip. Even if a large current flows through the diode, the effect is limited to the surface of the chip and does not reach the semiconductor layer for the field effect transistor of the unit circuit, making the latch-up prevention effect described above even more reliable. It was made so that it could be obtained.

〔実施例〕〔Example〕

以下、第1図に示された本発明の実施例を具体的に説明
する。この第1図は前に説明した第2図と同じ要領でチ
ップの要部拡大断面とその回路と寄生トランジスタ等の
等価回路を示し、対応部分には同符号が付されている。
The embodiment of the present invention shown in FIG. 1 will be explained in detail below. This FIG. 1 shows an enlarged cross-section of the main part of the chip, its circuit, and equivalent circuits such as parasitic transistors in the same way as FIG. 2 described above, and corresponding parts are given the same reference numerals.

第1図(a)には、いずれも相補電界効果トランジスタ
TpとTnからなる前述のように出力回路である単位回
路10と信号回路である単位回路11が示されおり、本
発明による過電圧降伏回路用の保護ダイオードDとその
直列抵抗Rはこの実施例では出力回路10内の電界効果
トランジスタに付随して作り込まれる。信号回路11は
1個の出力回路10に対してふつう複数個設けられ、そ
れ用の電界効果トランジスタは所要チップ面積を極力切
り詰めるために微小パターンで作り込まれることが多い
ので、保護ダイオードDはこの例のようにそれらに共通
でかつ比較的大きなパターンで形成される出力回路内の
電界効果トランジスタに付随して作り込むのが有利であ
る。
FIG. 1(a) shows a unit circuit 10 which is an output circuit and a unit circuit 11 which is a signal circuit as described above, both of which are composed of complementary field effect transistors Tp and Tn. A protection diode D and its series resistance R are built in conjunction with the field effect transistor in the output circuit 10 in this embodiment. A plurality of signal circuits 11 are normally provided for one output circuit 10, and the field effect transistors used therefor are often fabricated with minute patterns in order to reduce the required chip area as much as possible, so the protection diode D is For example, it is advantageous to fabricate the field effect transistors in the output circuit, which are common to them and formed in a relatively large pattern.

さらにこの実施例では、保護ダイオードDはこの出力回
路10内のnチャネル電界効果トランジスタTnのウェ
ル2を利用して作り込まれる。このため、p形のウェル
2の周縁表面部にサブストレート接続層と共用にp形の
ダイオードlI6がこの例では環状パターンで作り込ま
れ、その外周部が図示のようにウェル2の周縁をやや越
えて隣接するn形の半導体領域1の表面にまで延ばされ
る。このp形のダイオード層6は、pチャネル電界効果
トランジスタTp用のp形のソース・ドレイン層4と同
時拡散で作り込むのがプロセスを簡単化する上で有利で
ある。さらに、n形の半導体領域lの表面に、n形のダ
イオード層9がこの例ではダイオード層6を外側から囲
む環状のパターンで作り込まれ、このダイオード層9の
場合もnチャネル電界効果トランジスタTn用のn形の
ソース・ドレイン層7と同時拡散で作り込むのが有利で
ある。
Furthermore, in this embodiment, the protection diode D is fabricated using the well 2 of the n-channel field effect transistor Tn in the output circuit 10. For this reason, in this example, a p-type diode lI6 is formed in a circular pattern on the peripheral surface of the p-type well 2 to serve as the substrate connection layer, and its outer periphery slightly touches the peripheral edge of the well 2 as shown in the figure. It extends beyond the surface to the surface of the adjacent n-type semiconductor region 1. It is advantageous to form this p-type diode layer 6 by simultaneous diffusion with the p-type source/drain layer 4 for the p-channel field effect transistor Tp in order to simplify the process. Further, on the surface of the n-type semiconductor region l, an n-type diode layer 9 is formed in a ring-shaped pattern surrounding the diode layer 6 from the outside in this example, and in the case of this diode layer 9, an n-channel field effect transistor Tn is also formed. It is advantageous to form the layer by simultaneous diffusion with the n-type source/drain layer 7.

かかるp形およびn形のダイオード層6および9とその
間のn形の半導体領域1によって保護ダイオードDが形
成される竺 なお、これらのダイオード層6と9のいずれも電界効果
トランジスタのソース・ドレイン層と同様に例えば0.
5〜1−の深さの1020原子/d以上の高不純物濃度
層であってよく、それらの相互間隔を数−程度以下例え
ば2μとすることにより、保護ダイオードDに本発明の
実施上望ましい降伏電圧値を持たせることができる。
A protective diode D is formed by the p-type and n-type diode layers 6 and 9 and the n-type semiconductor region 1 between them. Note that both of these diode layers 6 and 9 are source/drain layers of a field effect transistor. For example, 0.
The protective diode D may have a high impurity concentration layer of 1020 atoms/d or more with a depth of 5 to 1 mm, and the mutual spacing thereof may be set to several micrometers or less, for example, 2 μ. It can have a voltage value.

また、これら両ダイオード層の内、p形のダイオード層
6には従来のサブストレート接続層と同じく接地側の電
源電位点νSが、n形のダイオード層9には正側の電源
電位点Vdがそれぞれ図示のように接続される。なお、
この保護ダイオードDに対する直列抵抗Rはこの例では
p形のダイオード層6の内部抵抗で槽底されており、保
護ダイオードDに過電圧を吸収するに必要な電流を流し
かつそれを保護できる数Ω以下例えば2Ω程度の抵抗値
をこれに持たせることができる。
Of these two diode layers, the p-type diode layer 6 has a power supply potential point νS on the ground side, similar to the conventional substrate connection layer, and the n-type diode layer 9 has a power supply potential point Vd on the positive side. Each is connected as shown. In addition,
In this example, the series resistance R to the protection diode D is determined by the internal resistance of the p-type diode layer 6, and is less than several ohms that can pass the current necessary to absorb the overvoltage to the protection diode D and protect it. For example, it can have a resistance value of about 2Ω.

第1図(a)に対応する同図(ロ)の回路には、かかる
保護ダイオードDと直列抵抗Rとからなる過電圧降伏回
路20が示されている。
The circuit of FIG. 1(b), which corresponds to FIG. 1(a), shows an overvoltage breakdown circuit 20 comprising such a protection diode D and a series resistor R.

第1図(C)には、この過電圧降伏回路20を含む寄生
トランジスタ、寄生ダイオードおよび抵抗の等価回路が
示されている。なお、この図で出力回路である単位回路
10側にも基板ダイオードである寄生ダイオードdが存
在するが、本発明では保護ダイオードDがこれに並列接
続されて無視できるのでこの等価回路から省略されてい
る。
FIG. 1C shows an equivalent circuit of a parasitic transistor, a parasitic diode, and a resistor including this overvoltage breakdown circuit 20. Note that in this figure, there is also a parasitic diode d, which is a substrate diode, on the side of the unit circuit 10, which is the output circuit, but in the present invention, the protection diode D is connected in parallel to this and can be ignored, so it is omitted from this equivalent circuit. There is.

本発明を実施した集積回路装置に対する測定結果では、
出力回路である単位回路10側の横形pnp寄生トラン
ジスタtpの電流増幅率は0.05で、縦形npn寄生
トランジスタtnの電流増幅率は200であり、抵抗r
pとrnO値はそれぞれ200Ωと300Ωである。一
方、信号回路である単位回路11側では、寄生トランジ
スタtpとtnの電流増幅率はそれぞれ1と200、抵
抗rpとrnの抵抗値はそれぞれ500Ωと600Ω、
寄生ダイオードdの降伏電圧は100Vである。また、
再単位回路10と11の双方につき、寄生ダイオードd
p 1!−dnの降伏電圧は25Vである。
According to the measurement results for the integrated circuit device implementing the present invention,
The current amplification factor of the horizontal pnp parasitic transistor tp on the unit circuit 10 side, which is the output circuit, is 0.05, and the current amplification factor of the vertical npn parasitic transistor tn is 200.
The p and rnO values are 200Ω and 300Ω, respectively. On the other hand, on the unit circuit 11 side, which is a signal circuit, the current amplification factors of parasitic transistors tp and tn are 1 and 200, respectively, and the resistance values of resistors rp and rn are 500Ω and 600Ω, respectively.
The breakdown voltage of the parasitic diode d is 100V. Also,
For both unit circuits 10 and 11, the parasitic diode d
p1! -dn breakdown voltage is 25V.

さらに、保護ダイオードDの降伏電圧は13V、抵抗R
の値は2Ωであった。
Furthermore, the breakdown voltage of the protection diode D is 13V, and the resistance R
The value of was 2Ω.

このように単位回路ll側の抵抗rpとrnO値および
寄生トランジスタtpの電流増幅率が単位回路l。
In this way, the resistance rp and rnO value on the unit circuit 11 side and the current amplification factor of the parasitic transistor tp are the same as that of the unit circuit 1.

側よりも高いので、ラッチアップは信号回路である単位
回路ll側でとくに発生しやすく、2009Fの静電容
量の充電電圧を5■の正規電圧下で動作する集積回路装
置に掛けた場合、従来は120■程度の過電圧で単位回
路ll側でラッチアップが発生していた。これに対し、
本発明による過電圧降伏回路20を組み込んだCMOS
集積回路装置では、保護ダイオードDの降伏電圧が上述
のように13Vの場合、400■の過電圧が侵入しても
いずれの単位回路にもラッチアップは発生しなかった。
Since latch-up is particularly likely to occur on the unit circuit ll side, which is a signal circuit, when the charging voltage of a 2009F capacitance is applied to an integrated circuit device that operates under Latch-up occurred on the unit circuit 11 side due to an overvoltage of about 120μ. On the other hand,
CMOS incorporating overvoltage breakdown circuit 20 according to the invention
In the integrated circuit device, when the breakdown voltage of the protection diode D was 13V as mentioned above, latch-up did not occur in any of the unit circuits even if an overvoltage of 400V entered.

これを過電圧降伏回路20が組み込まれた単位回路10
偏について見ると、保護ダイオードDの降伏時の抵抗R
の値が抵抗rp+rnに比べてずっと小さいので、寄生
ダイオードdpやdnが降伏しても電源電位点Vdから
抵抗rp、寄生ダイオードdpとdn、および抵抗rn
を経て電源電位点v3に流れる電流が従来より格段に小
さくなり、寄生ダイオードtnがオンするに至らないた
めと考えられる。
This is a unit circuit 10 in which an overvoltage breakdown circuit 20 is incorporated.
Looking at polarization, the resistance R at breakdown of the protective diode D
Since the value of is much smaller than the resistance rp+rn, even if the parasitic diodes dp and dn break down, the resistance rp, the parasitic diodes dp and dn, and the resistance rn will be removed from the power supply potential point Vd.
It is thought that this is because the current flowing to the power supply potential point v3 via the current is much smaller than before, and the parasitic diode tn does not turn on.

過電圧降伏回路20がもつかかる効果はもちろん信号回
路である単位回路ll側に対しても同じであるが、電源
電位点Vdやvs用の配線には第1図(C)に示すよう
な若干の漏洩インダクタンスLsが常に存在するので、
単位回路10側の保護ダイオードDの降伏後は単位回路
11側に過電圧があまり掛からなくなることがラッチア
ップ防止に貢献するものと考えられる。集積回路を構成
する単位回路に出力回路と信号回路が含まれる場合、こ
の実施例のように過電圧降伏回路を出力回路側に組み込
めば、前述のようにその電界効果トランジスタを利用し
て保護ダイオードを作り込むのに有利なほか、ふつうは
複数個設けられる信号回路に掛かる過電圧を抑制できる
利点が得られる。
The effect of the overvoltage breakdown circuit 20 is of course the same for the unit circuit ll side which is a signal circuit, but the wiring for the power supply potential points Vd and VS has some effects as shown in Fig. 1(C). Since leakage inductance Ls always exists,
It is considered that after breakdown of the protection diode D on the unit circuit 10 side, the overvoltage is not applied to the unit circuit 11 side so much, which contributes to latch-up prevention. When the unit circuits constituting an integrated circuit include an output circuit and a signal circuit, if an overvoltage breakdown circuit is built into the output circuit side as in this embodiment, the field effect transistor can be used to connect a protection diode as described above. In addition to being advantageous for manufacturing, it also has the advantage of suppressing overvoltage applied to signal circuits, which are normally provided in multiple numbers.

なお、過電圧降伏回路の上述のラッチアップ防止や過電
圧抑制作用の間に保護ダイオードにかなり大電流が流れ
得るが、過電圧が小静電容量の充電電圧なので電流時間
はごく短く、過電圧がかなり高くても保護ダイオードの
接合や直列抵抗が損傷ないし劣化するおそれはない。
Note that a fairly large current may flow through the protection diode during the above-mentioned latch-up prevention and overvoltage suppression functions of the overvoltage breakdown circuit, but since the overvoltage is the charging voltage of a small capacitance, the current time is very short, and the overvoltage is quite high. There is no risk of damage or deterioration of the protection diode junction or series resistance.

以上説明した実施例のほか、本発明は種々の態様で実施
して上述の効果を得ることができる0例えば、実施例で
は保護ダイオード用のダイオード層を環状に形成したが
、それに持たせたい電流容量に応じてそのパターンを適
宜選択できる。
In addition to the embodiments described above, the present invention can be implemented in various embodiments to obtain the above-mentioned effects. The pattern can be selected as appropriate depending on the capacity.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明では、集積回路装置内に組み込まれ
る複数個の単位回路に対して共通に保護ダイオードを含
む過電圧降伏回路をそのチップ内に組み込み、この保護
ダイオードを1対の電源電位点のチップへの接続点相互
間のチップ表面部□に横方向に両電源電位点間電圧とは
逆方向極性で作り込み、その降伏電圧を1対□の電源電
位点間電、圧の正規値よりは高くかつ各単位回路の降伏
電圧中の最低値よりは低く設定することにより、各単位
回路の相補電界効果トランジスタに寄生するサイリスタ
ないしバイポーラトランジスタの電源電位点から侵入し
て来る過電圧による導通を有効に防止して、集積回路装
置のラッチアップ耐量を実施例に述べたように従来の数
倍に向上できる。
As described above, in the present invention, an overvoltage breakdown circuit including a protection diode is commonly incorporated into a chip for a plurality of unit circuits incorporated in an integrated circuit device, and this protection diode is connected to a pair of power supply potential points. The voltage between the two power supply potentials is built horizontally on the chip surface □ between the connection points to the chip with the opposite polarity, and the breakdown voltage is calculated from the normal value of the voltage and voltage between the power supply potentials of one pair □. By setting the voltage to be high and lower than the lowest breakdown voltage of each unit circuit, it is possible to effectively prevent conduction caused by overvoltage entering from the power supply potential point of the parasitic thyristor or bipolar transistor in the complementary field effect transistor of each unit circuit. As described in the embodiment, the latch-up resistance of the integrated circuit device can be improved several times compared to the conventional one.

とくに本発明では、過電圧降伏回路の保護ダイオードを
1対の電源電位点のチップへの接続点相互間のチップ表
面部に横方向に作り込むようにしたので、過電圧の吸収
時に保護ダイオードにかな11 りの大電流が流れて・も、その影響がチップ表面のごく
一部のみに限定されて単位回路の電界効果トランジスタ
用の半導体−に及ぶおそれがなく、過電圧降伏回路のラ
ッチアップ防止効果を非常に確実に□得ることができる
In particular, in the present invention, the protection diode of the overvoltage breakdown circuit is built horizontally on the chip surface between the connection points of a pair of power supply potential points to the chip. Even if a large current flows, the effect is limited to only a small part of the chip surface and there is no risk of it reaching the semiconductor for the field effect transistor of the unit circuit, which greatly improves the latch-up prevention effect of the overvoltage breakdown circuit. You can definitely get □.

また、集積回路を構成する単位回路に出力回路とこれに
対応する複数−の信号回路が含まれる場合、過電圧降伏
回路を出力回廊側に組み込む態様によれば、出力回路用
の電界効果トランジスタに割り当てるチップ面積を僅か
に増すだけで容易に本発明を実施でき、かつ信号回路に
掛かる過電圧を有効に抑制して集積回路装置のラッチア
ップ耐量を一層向上させることができる。
In addition, when a unit circuit constituting an integrated circuit includes an output circuit and a plurality of signal circuits corresponding to the output circuit, according to a mode in which the overvoltage breakdown circuit is incorporated in the output corridor side, it is possible to allocate the overvoltage breakdown circuit to the field effect transistor for the output circuit. The present invention can be easily implemented by only slightly increasing the chip area, and the overvoltage applied to the signal circuit can be effectively suppressed to further improve the latch-up resistance of the integrated circuit device.

かかる特長を備える本発明は、CMOS集積回路装置全
般に適用してその動作信頼性の向上に貢献することがで
きる。
The present invention having such features can be applied to CMOS integrated circuit devices in general and contribute to improving their operational reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるCMOS集積回路装置の実施例の
チップの要部拡大断面図、その回路図。 および寄生トランジスタ等の等価回路図である。 第2図は従来のCMOS集積回路装置の第1図に対応す
るチップの要部拡大断面図、その回路図。 および寄生トランジスタ等の等価回路図である。 図において、 1:チップ内の半導体領域、2:ウェル、3:ゲート、
4:ソース・ドレイン層、5:サブストレート接続層、
6:ダイオード層、7:ソース・ドレイン層、8:サブ
ストレート接続層、9:ダイオード層、10:単位回路
ないし出力回路、11:単位回路ないし信号回路、20
8過電圧降伏回路、D:保護ダイオード、d、dn、d
p:寄生ダイオード、R:保護ダイオードの直列抵抗、
rn、rp :抵抗、Tarnチャネル電界効果トラン
ジスタ、Tp:Pチャネル電界効果トランジスタ、tn
r  npn形寄全寄生トランジスタps  pnp形
寄全寄生トランジスタdニ一方の電源電位点、vl:入
力信号、Vm:単位量路間信号、 vO: 出力信号、 vS : 他方の電源電位点、
FIG. 1 is an enlarged sectional view of a main part of a chip of an embodiment of a CMOS integrated circuit device according to the present invention, and a circuit diagram thereof. and an equivalent circuit diagram of parasitic transistors and the like. FIG. 2 is an enlarged sectional view of a main part of a chip and a circuit diagram thereof corresponding to FIG. 1 of a conventional CMOS integrated circuit device. and an equivalent circuit diagram of parasitic transistors and the like. In the figure, 1: semiconductor region within the chip, 2: well, 3: gate,
4: Source/drain layer, 5: Substrate connection layer,
6: Diode layer, 7: Source/drain layer, 8: Substrate connection layer, 9: Diode layer, 10: Unit circuit or output circuit, 11: Unit circuit or signal circuit, 20
8 overvoltage breakdown circuit, D: protection diode, d, dn, d
p: parasitic diode, R: series resistance of protection diode,
rn, rp: resistance, Tarn channel field effect transistor, Tp: P channel field effect transistor, tn
r npn type parasitic transistor ps pnp type parasitic transistor d one power supply potential point, vl: input signal, Vm: unit quantity line signal, vO: output signal, vS: other power supply potential point,

Claims (1)

【特許請求の範囲】[Claims] 相補電界効果トランジスタからなる単位回路を複数個集
積してなるCMOS集積回路装置であって、複数個の単
位回路に対して共通に保護ダイオードを含む過電圧降伏
回路を集積回路装置のチップ内に組み込み、この保護ダ
イオードを1対の電源電位点のチップへの接続点相互間
のチップ表面部に横方向に両電源電位点間電圧とは逆方
向極性で作り込み、かつその降伏電圧を1対の電源電位
点間電圧の正規値よりは高くかつ各単位回路の降伏電圧
中の最低値よりは低く設定したことを特徴とするCMO
S集積回路装置。
A CMOS integrated circuit device formed by integrating a plurality of unit circuits made of complementary field effect transistors, wherein an overvoltage breakdown circuit including a protection diode in common for the plurality of unit circuits is built into the chip of the integrated circuit device, This protection diode is built horizontally on the chip surface between the connection points of a pair of power supply potential points to the chip, with the polarity opposite to the voltage between both power supply potential points, and the breakdown voltage is set to A CMO characterized in that the voltage between potential points is set higher than the normal value and lower than the lowest value among the breakdown voltages of each unit circuit.
S integrated circuit device.
JP1227795A 1989-09-02 1989-09-02 Cmos integrated circuit device Pending JPH0391260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1227795A JPH0391260A (en) 1989-09-02 1989-09-02 Cmos integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1227795A JPH0391260A (en) 1989-09-02 1989-09-02 Cmos integrated circuit device

Publications (1)

Publication Number Publication Date
JPH0391260A true JPH0391260A (en) 1991-04-16

Family

ID=16866508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1227795A Pending JPH0391260A (en) 1989-09-02 1989-09-02 Cmos integrated circuit device

Country Status (1)

Country Link
JP (1) JPH0391260A (en)

Similar Documents

Publication Publication Date Title
CN108701693B (en) Embedded PMOS-triggered silicon controlled rectifier for electrostatic discharge protection
US7288450B1 (en) General protection of an integrated circuit against permant overloads and electrostatic discharges
JPH08288403A (en) Cmos static discharge protective circuit using low-voltage trigger silicon control rectifier
JPH02138773A (en) Mosfet
KR100235145B1 (en) Protective circuit for connecting contacts of monolithic integrated circuits
JPH0945862A (en) Semiconductor element
KR20010102167A (en) Improved esd diode structure
JP2007012864A (en) Electrostatic discharge protection circuit
US6218881B1 (en) Semiconductor integrated circuit device
JPH07193195A (en) Cmos integrated circuit device
JP3559075B2 (en) Polarity reversal protection device for integrated electronic circuits in CMOS technology
JP2005268379A (en) Low-capacitance esd protective circuit
JPH0391260A (en) Cmos integrated circuit device
JP2005223016A (en) Semiconductor device
JPH0590520A (en) Semiconductor protective device
JPH05315552A (en) Semiconductor protective device
KR19990074584A (en) Semiconductor device with electrostatic discharge protection circuit
KR100487413B1 (en) Electrostatic discharge protection circuit
JPH06244371A (en) Semiconductor device
CN100426501C (en) Power supply bus static discharge protection device and process
JPS63301558A (en) Semiconductor integrated circuit device
JPH03102912A (en) Static electricity protecting circuit
JPH03139880A (en) Semiconductor device
TWI545720B (en) Substrate-triggering electronic device for electro-static discharge protection
JPH0373567A (en) Input protector for semiconductor integrated circuit