JPH0384916A - Electrolytic capacitor - Google Patents

Electrolytic capacitor

Info

Publication number
JPH0384916A
JPH0384916A JP22252489A JP22252489A JPH0384916A JP H0384916 A JPH0384916 A JP H0384916A JP 22252489 A JP22252489 A JP 22252489A JP 22252489 A JP22252489 A JP 22252489A JP H0384916 A JPH0384916 A JP H0384916A
Authority
JP
Japan
Prior art keywords
electrolyte
separator
hollow
hollow thread
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22252489A
Other languages
Japanese (ja)
Other versions
JP2832730B2 (en
Inventor
Yutaka Yokoyama
豊 横山
Yuichi Hamaguchi
浜口 裕一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP22252489A priority Critical patent/JP2832730B2/en
Publication of JPH0384916A publication Critical patent/JPH0384916A/en
Application granted granted Critical
Publication of JP2832730B2 publication Critical patent/JP2832730B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Separators (AREA)

Abstract

PURPOSE:To prevent a reduction and a loss in a capacitance due to a reduction in an inside electrolyte, to prevent an impedance characteristic from being deteriorated and to obtain an electrostatic capacitor whose reliability is high and whose life is long by a method wherein a separator is formed of a nonwoven fabric or a woven fabric which includes a hollow thread having a through hole on a side face in one part or a whole part. CONSTITUTION:A hollow thread 11 composed of a polyester or the like is formed in such a way that its cross section is nearly circular and that a hollow part 12 is formed at its inside. A crack-shaped through hole 13 is formed in a side face of the hollow thread 11 so that the hollow part 12 at the inside is interlinked with the outside. Consequently, a cellulose constituting a separator 4 is composed of the hollow thread 11 having the through hole 13 in the side face. When it is impregnated with an electrolyte, the electrolyte creeps into and is held at the inside space of the hollow thread and the electrolyte can be interlinked with an outside face through the through hole at the side face. As a result, a solderability on the surface of the hollow thread is enhanced; an adhesion amount of the electrolyte to the outside of the hollow thread is increased.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、電極間にセパレータを介在させてなるコン
デンサ素子を用いた電解コンデンサに関するもので、特
にセパレータを改良した乾式の電解コンデンサに関する
The present invention relates to an electrolytic capacitor using a capacitor element with a separator interposed between electrodes, and particularly to a dry electrolytic capacitor with an improved separator.

【従来の技術】[Conventional technology]

乾式電解コンデンサは、アルミニウム、タンクル、ニオ
ブ、チタンなど表面に絶縁性の酸化皮膜層が形成される
いわゆる弁金属を陽極に用い、この弁金属表面を陽極酸
化処理等の操作によって誘電体層となる絶縁酸化皮膜層
を形成する。 さらにこの陽極に対し、陰極を対抗配置し陽極陰極間に
各種の紙、多孔質樹脂シートなどの材料からなるセパレ
ータを配置する。セパレータには電解液が保持され、コ
ンデンサ素子が構成される。 第1図は、コンデンサ素子1の構造を表した部分分解図
である。図で示すように表面に陽極酸化処理によって誘
電体酸化皮膜が形成された帯状の陽極箔2と、この陽極
箔2とほぼ同幅の帯状の陰極箔3とが、これら電極箔2
.3より僅かに広い幅で同様に帯状に切断された2枚の
セパレータ4を介して重ね合わされ、一方端から巻回さ
れて円筒状のコンデンサ素子1を形成する。また陽極箔
2の所定の位置には、外部との電気的接続を得るための
細幅の陽極リード5が溶接、圧接等の手段で接続され、
陰極箔3についても同様の陰極り一部6が接続され、コ
ンデンサ素子lの上部端面より引き出された構造をなし
ている。そしてコンデンサ素子lには電解液が含浸され
、図示しない外装ケースに収納され、外装ケース開口部
を封口部材で密閉がなされる。 電解液は、各種の無機酸、有機酸またはこれらの塩を多
価アルコール類、酸アミド類をはじめとする各種の溶媒
中に溶解し、使用目的に応じて添加剤を配合してなり、
陽極表面の誘電体酸化皮膜層に直接接触して、真の陰極
として機能すると共に、誘電体酸化皮膜の欠損部や劣化
部に作用して、陽極酸化反応を起こして酸化皮膜を修復
をする機能を併せ持つ、したがって陰極として配置され
ている電極は陰極というよりむしろ集電極の役目を果た
す。 電解液はその性質上、充分な電導度と、皮膜修復機能を
維持するために、陽極電極および陰極電極に充分な量が
接触する必要がある。ところが電解液が過剰であると、
コンデンサ素子のリード部等に電解液が付着して、漏れ
電流の増大を来したり、コンデンサ素子を収納する密閉
容器から電解液が漏出する事故が起きることがある。 セパレータは上記したような不都合を防止する機能を有
しており、陽極、陰極間に充分な量の電解液を保持する
ために用いている。またセパレータは陽極、陰極の直接
の接触による短絡事故を防止する役目も有している。 このような機能に合致させるために、セパレータは、単
位体積(あるいは面積)あたりの電解液保持量が多いこ
と、電解液によるイオン電導が充分達成されるために空
孔度合いが高い低抵抗の構造などを具備することなどが
要求される。このために、セパレータ自体の密度や空隙
を大きくすると電極間の短絡事故の増大や、耐圧不足を
呈すると共に、電解液の保持量も減少してくることがあ
り、最適な特性が得られるセパレータを構成する部材や
密度の選択は相当に困難である。
Dry electrolytic capacitors use so-called valve metals, such as aluminum, tankard, niobium, and titanium, on which an insulating oxide film layer is formed as the anode, and the surface of this valve metal becomes a dielectric layer by anodizing or other operations. Form an insulating oxide film layer. Furthermore, a cathode is arranged opposite to this anode, and a separator made of various materials such as paper or porous resin sheet is arranged between the anode and the cathode. The separator holds an electrolytic solution and forms a capacitor element. FIG. 1 is a partially exploded view showing the structure of a capacitor element 1. FIG. As shown in the figure, a strip-shaped anode foil 2 on the surface of which a dielectric oxide film is formed by anodizing treatment, and a strip-shaped cathode foil 3 having approximately the same width as the anode foil 2, these electrode foils 2
.. The capacitor element 1 is overlapped with two separators 4 which are similarly cut into strips having a width slightly wider than the capacitor element 3, and is wound from one end to form a cylindrical capacitor element 1. In addition, a narrow anode lead 5 is connected to a predetermined position of the anode foil 2 by means such as welding or pressure welding to obtain an electrical connection with the outside.
A similar cathode foil portion 6 is connected to the cathode foil 3, and has a structure extended from the upper end surface of the capacitor element l. The capacitor element 1 is impregnated with an electrolytic solution and housed in an outer case (not shown), and the opening of the outer case is sealed with a sealing member. Electrolyte solutions are made by dissolving various inorganic acids, organic acids, or their salts in various solvents including polyhydric alcohols and acid amides, and adding additives depending on the purpose of use.
A function that directly contacts the dielectric oxide film layer on the anode surface and functions as a true cathode, and also acts on the defective or deteriorated parts of the dielectric oxide film to cause an anodic oxidation reaction and repair the oxide film. Therefore, the electrode arranged as a cathode serves as a collector rather than a cathode. Due to its nature, the electrolyte needs to come into contact with the anode and cathode electrodes in a sufficient amount in order to maintain sufficient conductivity and film repair function. However, if the electrolyte is in excess,
The electrolyte may adhere to the leads of the capacitor element, leading to an increase in leakage current, or an accident may occur in which the electrolyte leaks from a sealed container housing the capacitor element. The separator has the function of preventing the above-mentioned disadvantages, and is used to maintain a sufficient amount of electrolyte between the anode and the cathode. The separator also has the role of preventing short circuit accidents caused by direct contact between the anode and cathode. In order to meet these functions, the separator must have a large amount of electrolyte held per unit volume (or area), and a low-resistance structure with a high degree of porosity to ensure sufficient ionic conduction by the electrolyte. It is required to have the following. For this reason, if the density or voids of the separator itself are increased, short-circuit accidents between electrodes will increase, voltage resistance will be insufficient, and the amount of electrolyte retained will also decrease. Selection of constituent members and density is considerably difficult.

【発明が解決しようとする課題】1” ところで、最近の電解コンデンサは長期間安定した特性
が維持されることが要求されている。電解コンデンサの
寿命特性を決定する要因の主要なものの一つに内部の電
解液の残存量がある。電解コンデンサは電解液を外装容
器内に長期間保持するために高度な密閉が施されている
が、長期の使用においては、内部圧力の上昇や、密閉構
造の劣化等によって電解液が徐々に蒸散することが避け
られず、電解液が減少すると、静電容量の低下、損失の
増大等の劣化を起こす。 従来の電解コンデンサに用いられるセパレータとしては
、クラフトやマニラ麻の繊維を漉いたものが多用されて
いる。クラフト紙は、安価で強い紙が作れるが、繊維が
偏平であるために電解液の電流通路が長くなり抵抗が大
きくなるという欠点がある。マニラ麻紙はクラフト紙に
比べると繊維の偏平度が小さく、電流通路は前者に比べ
て短く抵抗については有利となるが高価である。 また最近では、ポリオレフィン系などの合成樹脂の繊維
の使用も試みられている。これら合成樹脂繊維は断面が
ほぼ円形に底形できるので、電流通路が短くなり抵抗が
小さくなる。 しかしながら、このような従来のセパレータ材料はいず
れも繊維の表面が平滑なため、繊維内部へ電解液が取り
込まれることはなく、しかも繊維表面への電解液の付着
状態も充分ではない、電解液の保持は、繊維の交差部や
隣接した繊維間の狭小な隙間部に表面張力によって電解
液が保持されるのが主体となる。 このため、既存のセパレータでは長寿命の電解コンデン
サを得るために充分な量の電解液を保持できず、改善が
望まれていた。 また、電解液をセパレータが保持できる量以上に多量に
コンデンサ素子に含ませると、コンデンサ素子から余剰
の電解液が外装ケース内部に流出して、端子部に付着し
て漏れ電流を増加を来したり、外部への液漏れ事故を誘
発する原因となる。
[Problem to be solved by the invention] 1" By the way, recent electrolytic capacitors are required to maintain stable characteristics for a long period of time. One of the main factors that determines the life characteristics of electrolytic capacitors is There is a residual amount of internal electrolyte. Electrolytic capacitors are highly sealed to retain the electrolyte in the outer container for a long period of time, but with long-term use, internal pressure increases and the sealed structure Gradual evaporation of the electrolyte is unavoidable due to deterioration of the electrolytic capacitor, and when the electrolyte decreases, deterioration such as a decrease in capacitance and an increase in loss occurs.The separator used in conventional electrolytic capacitors is Kraft Craft paper is often made from fibers of Manila hemp or Manila hemp.Kraft paper is cheap and can be made into strong paper, but the drawback is that the fibers are flat, which lengthens the current path for the electrolyte and increases resistance. Compared to kraft paper, Manila hemp paper has a smaller fiber flatness, and the current path is shorter than the former, giving it an advantage in terms of resistance, but it is more expensive.Recently, attempts have also been made to use synthetic resin fibers such as polyolefin. These synthetic resin fibers have a nearly circular bottom shape in cross section, which shortens the current path and reduces resistance.However, all of these conventional separator materials have smooth fiber surfaces, so the fibers The electrolyte is not taken into the interior, and the electrolyte does not adhere well to the fiber surface.The electrolyte is retained at the intersections of fibers and in the narrow gaps between adjacent fibers due to surface tension. The electrolyte is mainly retained.For this reason, existing separators cannot retain a sufficient amount of electrolyte to obtain a long-life electrolytic capacitor, and improvements have been desired. If the capacitor element contains a larger amount of electrolyte than the separator can hold, excess electrolyte may leak from the capacitor element into the exterior case, adhere to the terminals, increase leakage current, or leak to the outside. This may cause liquid leakage accidents.

【課題を解決するための手段】[Means to solve the problem]

この発明は、長期の安定した特性を得るに好適な改良さ
れたセパレータを有する電解コンデンサに関する。 すなわちこの発明は、表面に誘電体酸化皮膜層が形成さ
れた陽極電極と、陽極電極に対抗配置された陰極電極と
、これら電極間に、電解液を保持して介在するセパレー
タとからなるコンデンサ素子を有する電解コンデンサに
おいて、前記セパレータが、側面に透孔を有する中空糸
を一部または全部に含む不織布もしくは織布からなるこ
とを特徴としている。 中空糸は、繊維内部が空洞となった構造をしており、素
材はポリエステル繊維などが知られている。 中空糸の製造方法は、ポリエステルをアンチモン化合物
などの重合触媒存在下で重合反応させて製造される。中
空構造とするためには、溶融状態のポリエステルを第2
図に示すような分割された円環状の口金ノズル10から
吐出させ、隣接した口金のノズル10片から吐出したポ
リエステルが固化前にそれぞれ融着して中空のポリエス
テル糸が形成される。 −mに、衣服等の繊維製品用途に中空糸を用いる場合に
は、中空糸側面にいわゆる中空部れが生ずるとその風合
、光沢が低下するので側面に破れすなわち透孔が形成さ
れるのを防ぐために、口金ノズルlOの分割端部の開口
面積を大きくし、吐出端部でのポリエステルの融着が確
実におこなわれる工夫がなされるが、セパレータの場合
には、電解液の電導度を高め抵抗を低減させるためには
、むしろ中空糸の側面に多くの亀裂等の透孔が形成され
ることが望ましい。したがって口金ノズル10は第2図
に示すごとく通常の分割形態のものを用いればよい。 第3図は、この発明で用いる中空糸をあられした斜視図
で、ポリエステル等からなる中空糸11は、断面がほぼ
円形に形成されており、内部に空洞部12が形成されて
いる。また中空糸11の側面には、亀裂状の透孔13が
形成されており、内部の空洞部12と外部とが通じるよ
うになっている。 この発明で用いることの出来る中空糸は、ポリエステル
に限ることなく、少なくとも電解液に対して安定で、中
空糸に形成可能であれば、他のポリマーであってもよい
。また側面の透孔形成についても、前述した口金ノズル
IOの形状によるものでなく、中空糸表面を選択的に溶
解除去したり、固化過程で急激な熱ストレスなど物理的
な手段により、表面にひび状の透孔を形成するなどの各
種の手段を用いることもできる。
The present invention relates to an electrolytic capacitor having an improved separator suitable for obtaining long-term stable characteristics. That is, the present invention provides a capacitor element consisting of an anode electrode having a dielectric oxide film layer formed on its surface, a cathode electrode placed opposite to the anode electrode, and a separator interposed between these electrodes to hold an electrolyte. The electrolytic capacitor is characterized in that the separator is made of a nonwoven fabric or a woven fabric partially or entirely containing hollow fibers having through holes on the side surface. Hollow fibers have a structure in which the inside of the fiber is hollow, and the material used is known to be polyester fiber. The hollow fiber is produced by polymerizing polyester in the presence of a polymerization catalyst such as an antimony compound. In order to create a hollow structure, the molten polyester is
The polyester is discharged from the divided annular nozzle 10 as shown in the figure, and the polyester discharged from the 10 adjacent nozzles of the base are fused together before solidifying to form a hollow polyester thread. -m, when using hollow fibers for textile products such as clothing, if so-called hollow parts occur on the side surfaces of the hollow fibers, the texture and gloss will deteriorate, so tears, or holes may be formed on the side surfaces. In order to prevent this, the opening area of the divided end of the nozzle lO is increased to ensure that the polyester is fused at the discharge end. In order to increase the resistance and reduce the resistance, it is preferable that many through holes such as cracks be formed on the side surfaces of the hollow fibers. Therefore, the base nozzle 10 may be of the usual split form as shown in FIG. FIG. 3 is a perspective view of a hollow fiber used in the present invention. The hollow fiber 11 made of polyester or the like has a substantially circular cross section, and a hollow portion 12 is formed inside. Furthermore, a crack-shaped through hole 13 is formed on the side surface of the hollow fiber 11, so that the internal cavity 12 communicates with the outside. The hollow fibers that can be used in the present invention are not limited to polyester, but may be other polymers as long as they are stable at least to the electrolyte and can be formed into hollow fibers. In addition, the formation of through holes on the side surface is not due to the shape of the nozzle IO mentioned above, but is caused by physical means such as selectively dissolving and removing the hollow fiber surface or sudden heat stress during the solidification process, causing cracks on the surface. Various means such as forming a shaped through hole can also be used.

【作  用】[For production]

この発明によれば、セパレータを構成する繊維素が側面
に透孔を持つ中空糸からなるので、電解液を含浸すると
、電解液は中空糸の内部空間に浸入し保持されると共に
、電解液は側面の透孔を通して外面と連絡が保つことが
できる。このため、中空糸表面のぬれ性も向上し、中空
糸外部への電解液の付着の量も増加する。 これによって、単位体積(もしくは面積あたり)で見た
場合、セパレータの電解液保持量が増加し、中空糸の糸
径や中空部分の専有断面積により数値は異なるが、従来
のセパレータ紙に比べ、はぼ2倍ないし数倍程度の電解
液を保持することができる。
According to this invention, since the cellulose constituting the separator is made of hollow fibers with through holes on the side surfaces, when impregnated with an electrolytic solution, the electrolytic solution enters and is retained in the internal space of the hollow fibers, and the electrolytic solution is Communication with the outside surface can be maintained through the through holes on the sides. Therefore, the wettability of the hollow fiber surface is improved, and the amount of electrolyte adhering to the outside of the hollow fiber is also increased. As a result, the amount of electrolyte held by the separator increases when viewed per unit volume (or area), and although the numerical value varies depending on the fiber diameter of the hollow fiber and the exclusive cross-sectional area of the hollow part, compared to conventional separator paper, It can hold approximately twice to several times as much electrolyte.

【実 施 例】【Example】

以下実施例に基づいてこの発明を説明する。 まずこの発明で用いるセパレータとして、以下のものを
作成した。 繊維には、第3図に示す中空糸を用いた。中空糸の成分
はポリエステルで、平均の糸径は10μm、内部の中空
部の径はおよそ円形に形成されておりその平均径は6μ
mである。また4分割の口金ノズルにより形成したので
、中空糸側面には裂は目状の透孔が不連続に形成されて
いる。 この中空糸を全部に用いるか、中空糸に一定の配合割合
でマニラ麻繊維を混抄して厚さ50μmの不織布状のセ
パレータを作成した。また比較例として、マニラ麻繊維
のみからなる厚さ50μmのセパレータを準備した。な
おマニラ麻繊維は断面が偏平形状をしており、短径の平
均が約4μm、長径の平均が約8μmで、偏平率はほぼ
1:2である。 これらのセパレータの電解液保持能力を比較するために
、セパレータに同一の電解液を含浸させ、所定面積あた
りの電解液の保持量を調べた。保持量の測定は、帯状の
セパレータのみを円筒状に巻回し、これに電解液(エチ
レグリコールーアジピン酸アンモニウム系電解液)を含
浸し、これを遠心分離機(回転速度100回/分〉にて
5秒間遠心分離したものを分解し、セパレータの中間部
を所定の面積(10cd)に切断し、精密天秤で秤量し
、あらかじめ乾燥状態で測定したセパレータ自体の重量
を減じたものである。 準備したセパレータの組成(中空糸の含有量)および保
持電解液量の測定結果は、第1表のとおりである。 第1表 この表からもわかるように、 この実施例のセパ レークは、比較のマニラ麻繊維のセパレータに比べ、い
ずれも単位面積あたりの電解液保持量が増加しているこ
とがわかる。特に実施例4の中空糸のみを使用したセパ
レータは比較例に比べ、電解液保持量がおよそ2倍に増
加している。 次にこれらのセパレータを帯状に切断したものを第1図
に示すように電極箔と共に巻回して円筒形のコンデンサ
素子を作成し、電解液を含浸させた後金属製の外装ケー
スに収納し、外装ケース開口部をゴム張りの封目板で閉
じて電解コンデンサとした。 この電解コンデンサは、定格電圧25V、静電容122
00μFのものである。この各′電解コンデンサの初期
の電気的特性(静電容量、損失、漏れ電流)は、第2表
のとおりであった。 第 表 この結果をみると、初期における電気的特性は、静電容
量、漏れ電流についてはさほどの差異はないが、損失に
ついてはこの発明のセパレータの繊維断面がほぼ円形の
ため、内部抵抗骨が小さく、低い値となっていることが
わかる。 さらに、これらの電解コンデンサを105°Cで定格電
圧(50V)を印加して長期の高温負荷寿命試験を行っ
た。試験は、初期の静電容量値に対する時間経過に伴う
静電容量値の変化率と、時間経過に伴う損失値の変化と
を調べた。この結果を第4図に示す。なお同図(a)は
静電容量の変化率、同図(ハ)は損失値の変化を示すグ
ラフである。 これらのグラフかられかるように、比較例の電解コンデ
ンサは内部の電解液保持量が少ないので、長時間の使用
により、静電容量の減少、損失の増加が著しく、175
00時間で試験を中止した。 一方この実施例の電解コンデンサは、比較例のものに比
べ、静電容量の減少が少ないと共に、損失の上昇が抑制
され、電気特性を長期間安定して維持していることがわ
かる。
The present invention will be explained below based on Examples. First, the following separators used in this invention were created. The hollow fiber shown in FIG. 3 was used as the fiber. The component of the hollow fiber is polyester, the average fiber diameter is 10 μm, and the diameter of the internal hollow part is approximately circular, and the average diameter is 6 μm.
It is m. Furthermore, since the nozzle was formed using a four-split nozzle, fissure-like through holes were discontinuously formed on the side surface of the hollow fiber. A non-woven separator having a thickness of 50 μm was prepared by using the hollow fibers for the entire material or by mixing the hollow fibers with Manila hemp fibers at a certain mixing ratio. As a comparative example, a 50 μm thick separator made of only Manila hemp fibers was prepared. The Manila hemp fibers have a flat cross section, with an average short axis of about 4 μm, an average long axis of about 8 μm, and an oblateness ratio of about 1:2. In order to compare the electrolyte retention ability of these separators, the separators were impregnated with the same electrolyte and the amount of electrolyte retained per predetermined area was investigated. To measure the retained amount, only a band-shaped separator is wound into a cylindrical shape, impregnated with an electrolyte (ethylene glycol-ammonium adipate electrolyte), and then placed in a centrifuge (rotation speed 100 times/min). The separator was centrifuged for 5 seconds, then disassembled, and the middle part of the separator was cut into a predetermined area (10 cd), weighed on a precision balance, and the weight of the separator itself, which was previously measured in a dry state, was subtracted.Preparation The composition of the separator (hollow fiber content) and the amount of electrolyte retained are as shown in Table 1. It can be seen that the amount of electrolyte retained per unit area is increased in each case compared to the fiber separator.In particular, the separator using only hollow fibers in Example 4 has an increased amount of electrolyte retained by approximately 2% compared to the comparative example. Next, these separators are cut into strips and wound together with electrode foil to create a cylindrical capacitor element, as shown in Figure 1. After being impregnated with electrolyte, it is made of metal. It is housed in an exterior case, and the opening of the exterior case is closed with a rubber sealing plate to form an electrolytic capacitor.This electrolytic capacitor has a rated voltage of 25V and a capacitance of 122V.
00μF. The initial electrical characteristics (capacitance, loss, leakage current) of each of these electrolytic capacitors were as shown in Table 2. Looking at the results in Table 1, it can be seen that there is not much difference in the initial electrical characteristics in terms of capacitance and leakage current, but in terms of loss, because the fiber cross section of the separator of this invention is almost circular, the internal resistance bone is small. It can be seen that the value is small and low. Further, a long-term high temperature load life test was conducted on these electrolytic capacitors by applying a rated voltage (50V) at 105°C. The test investigated the rate of change in capacitance value over time with respect to the initial capacitance value, and the change in loss value over time. The results are shown in FIG. Note that (a) in the same figure is a graph showing the rate of change in capacitance, and (c) in the same figure is a graph showing changes in loss value. As can be seen from these graphs, the electrolytic capacitor of the comparative example has a small amount of electrolyte retained inside, so when used for a long time, the capacitance decreases and the loss increases significantly.
The test was stopped at 00 hours. On the other hand, it can be seen that in the electrolytic capacitor of this example, the decrease in capacitance is smaller than that of the comparative example, the increase in loss is suppressed, and the electrical characteristics are maintained stably for a long period of time.

【発明の効果】【Effect of the invention】

以上述べたように、この発明によればセパレータの電解
液保持量を増加させることができるので、電解コンデン
サの長期間の使用することで、内部電解液の減少による
静電容量の減少、損失、インピーダンス特性の劣化を防
止し、信頼性の高い長寿命の電解コンデンサが得られる
。 またセパレータの電解液保持能力が高いので、コンデン
サ素子から外装ケース内へ余剰の電解液が流れ出し、漏
れ電流の増大や液漏れ事故を発生することもない。 またこの発明のセパレータは、繊維断面をほぼ円形とす
ることができるので、セパレータ中の抵抗分が低く、こ
の結果電解コンデンサの損失やインピーダンス特性が向
上する。
As described above, according to the present invention, it is possible to increase the amount of electrolyte held in the separator. Therefore, when an electrolytic capacitor is used for a long period of time, capacitance decreases and losses due to a decrease in the internal electrolyte. Deterioration of impedance characteristics is prevented, and a highly reliable and long-life electrolytic capacitor can be obtained. Furthermore, since the separator has a high electrolyte holding capacity, excess electrolyte will not flow out from the capacitor element into the exterior case, causing an increase in leakage current or a liquid leakage accident. Further, since the separator of the present invention can have a substantially circular fiber cross section, the resistance in the separator is low, and as a result, the loss and impedance characteristics of the electrolytic capacitor are improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電解コンデンサの素子構造を示す部分分解図、
第2図は、この発明のセパレータに用いる中空糸を形成
する際に用いられる口金ノズルの断面をあられした図、
第3図は、この発明のセパレータに用いる中空糸をあら
れした斜視図、第4図は電解コンデンサの高温負荷試験
の結果を表すグラフで、(a)は静電容量の変化率、(
b)は損失値の変化を示している。 1・・・コンデンサ素子 3・・・陰極箔 5・・・陽極リード 10・・・口金ノズル 12・・・空洞部 2・・・陽極箔 4・・・セパレータ 6・・・陰極リード 11・・・中空糸 13・・・透孔
Figure 1 is a partially exploded view showing the element structure of an electrolytic capacitor.
FIG. 2 is a cross-sectional view of a nozzle used in forming hollow fibers used in the separator of the present invention;
FIG. 3 is a perspective view of hollow fibers used in the separator of the present invention, and FIG. 4 is a graph showing the results of a high-temperature load test on an electrolytic capacitor.
b) shows the change in loss value. 1... Capacitor element 3... Cathode foil 5... Anode lead 10... Base nozzle 12... Cavity 2... Anode foil 4... Separator 6... Cathode lead 11...・Hollow fiber 13...through hole

Claims (1)

【特許請求の範囲】[Claims] (1)表面に誘電体酸化皮膜層が形成された陽極電極と
、陽極電極に対抗配置された陰極電極と、これら電極間
に、電解液を保持して介在するセパレータとからなるコ
ンデンサ素子を有する電解コンデンサにおいて、 前記セパレータが、側面に透孔を有する中空糸を一部ま
たは全部に含む不織布もしくは織布からなることを特徴
とする電解コンデンサ。
(1) It has a capacitor element consisting of an anode electrode with a dielectric oxide film layer formed on its surface, a cathode electrode placed opposite to the anode electrode, and a separator interposed between these electrodes to hold an electrolyte. An electrolytic capacitor, wherein the separator is made of a nonwoven fabric or a woven fabric partially or entirely containing hollow fibers having through holes on the side surface.
JP22252489A 1989-08-29 1989-08-29 Electrolytic capacitor Expired - Fee Related JP2832730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22252489A JP2832730B2 (en) 1989-08-29 1989-08-29 Electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22252489A JP2832730B2 (en) 1989-08-29 1989-08-29 Electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH0384916A true JPH0384916A (en) 1991-04-10
JP2832730B2 JP2832730B2 (en) 1998-12-09

Family

ID=16783782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22252489A Expired - Fee Related JP2832730B2 (en) 1989-08-29 1989-08-29 Electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2832730B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008035576A1 (en) * 2006-09-22 2010-01-28 パナソニック株式会社 Buffering control method and buffering control device
JP2013020955A (en) * 2011-06-15 2013-01-31 Univ Of Tokyo Reversible fuel battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008035576A1 (en) * 2006-09-22 2010-01-28 パナソニック株式会社 Buffering control method and buffering control device
JP2013020955A (en) * 2011-06-15 2013-01-31 Univ Of Tokyo Reversible fuel battery

Also Published As

Publication number Publication date
JP2832730B2 (en) 1998-12-09

Similar Documents

Publication Publication Date Title
KR101417539B1 (en) Separator and solid electrolytic capacitor
EP3358584B1 (en) Separator for electrochemical device and electrochemical device
JP4560940B2 (en) Solid electrolytic capacitor and manufacturing method thereof
KR20180109709A (en) Electrochemical device
JP2006066355A (en) Separator for electronic component and its manufacturing method
JP3878421B2 (en) Separator for solid electrolytic capacitor and solid electrolytic capacitor
JP2000331663A (en) Separator, and electrolytic capacitor, electric double layer capacitor, nonaqueous battery using the separator
JP2004510315A (en) Impregnated separator for electrochemical cell and method for producing the same
JPWO2008139619A1 (en) Power storage device separator and power storage device
CA1086839A (en) Method of making porous polymer containing separators for electrolytic electrical devices
JP3319501B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH0384916A (en) Electrolytic capacitor
JP2001189242A (en) Solid electrolytic capacitor and manufacturing method therefor
KR20200089672A (en) Separators and electrochemical devices for electrochemical devices
JP2883361B2 (en) Electrolytic capacitor
JP2832731B2 (en) Electrolytic capacitor
JP2950575B2 (en) Electrolytic capacitor
JP2001060535A (en) Solid electrolytic capacitor
JP2000082638A (en) Solid electrolytic capacitor and its manufacture
JP3606137B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5030324B2 (en) Manufacturing method of solid electrolytic capacitor
JPH01304719A (en) Electric double layer capacitor
JP3085392B2 (en) Electric double layer capacitor
JPH0887995A (en) Organic electrolyte battery
JPH0513272A (en) Electrolytic capacitor

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081002

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees