JPH0384870A - Manufacture of solid secondary cell - Google Patents

Manufacture of solid secondary cell

Info

Publication number
JPH0384870A
JPH0384870A JP1220746A JP22074689A JPH0384870A JP H0384870 A JPH0384870 A JP H0384870A JP 1220746 A JP1220746 A JP 1220746A JP 22074689 A JP22074689 A JP 22074689A JP H0384870 A JPH0384870 A JP H0384870A
Authority
JP
Japan
Prior art keywords
electrolyte
electrode
layer
core material
electrolyte layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1220746A
Other languages
Japanese (ja)
Inventor
Tsutomu Iwaki
勉 岩城
Yoshio Moriwaki
良夫 森脇
Shuji Ito
修二 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Panasonic Holdings Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP1220746A priority Critical patent/JPH0384870A/en
Publication of JPH0384870A publication Critical patent/JPH0384870A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To improve the close contact of an electrolyte layer and electrode 2 layers by containing the side including just more electrolyte to the core member as the center in the electrolyte layer, to a positive electrode layer, and the side including more electrode material in the electrode layers, to the electrolyte layer, and unifying them. CONSTITUTION:When a core member is provided in an electrolyte layer, the side including more electrolyte to the core as the center is contacted to a positive electrode layer and unified. And when a porous core material is provided in an electrode layer, the side including more electrode material to the core as the center is contacted to the electrolyte layer and unified. And, finally, when two electrolyte layers are provided and unified, the sides including more electrolyte to the core members as the centers are contacted to the electrode layer respectively and unified. Consequently, the close contact of the electrode layer or layers and the electrode layers can be improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は構成材料がすべて固体のいわゆる固体二次電池
の製造法に関すん 従来の技術 各種の電源として使われる電池のうち構成材料がすべて
固体であるいわゆる固体電池は液漏れがなく、したがっ
て高信頼性が期待でき、小形軽量化も可能などの理由で
一次 二次電池ともに注目されできt4  現在のとこ
ろ各種機器のメモリーバックアップ用を中心に考えられ
ている。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a method for manufacturing so-called solid-state secondary batteries whose constituent materials are all solid.Prior art The present invention relates to a method for manufacturing so-called solid-state secondary batteries whose constituent materials are all solid. Certain so-called solid-state batteries are attracting attention as both primary and secondary batteries because they do not leak, are expected to be highly reliable, and can be made smaller and lighter.Currently, they are mainly considered for memory backup in various devices. ing.

この固体電池で(よ 電池内でイオンを動かすための固
体電解質がとくに重要であり、LiI、Li當Nなどの
Li0イオン導電性固体電解質、RbA g 4工s、
AgI−Agg○、AgI−MOO3などのAg”イオ
ン導電性固体電解質、H+イオン導電性固体電解質、そ
れにRb Cu4I s、5C1s、s。
In this solid-state battery, a solid electrolyte for moving ions within the battery is particularly important, and Li0 ion conductive solid electrolytes such as LiI and LiN, RbA g
Ag'' ion conductive solid electrolyte such as AgI-Agg○, AgI-MOO3, H+ ion conductive solid electrolyte, and Rb Cu4I s, 5C1s, s.

CuI−CuaO−Mo03などのCu”イオン導電性
固体電解質などが取上げられてい奴 まな 正極用材料としてはCus、+TiS2、Ag@
、+Ti5g、Cut、+Nb5a、Ag@、+NbS
*、W Os、それにCuvMo@s*−zs  Fe
vMosS*−2などのシェブレル相化合物が挙げられ
てい&  −大 負極にはCu、  A g、  L 
i +、5WOs、それに正極用と同様のシェブレル相
化合物が試みられていも これら電池の構造としては他の電池と同様に電解質と結
着剤を主とする電解質層の両面に正 負極として電極活
物質と結着剤を主とする電極層を配するのが一般的であ
も まな 取扱性や製法の簡易化などを図るために電極層や
電解質層にスクリーンなどの多孔性芯材を用いることが
提案されている力交 このような多孔性芯材を用いるこ
とは好ましくその上結着剤を用いてシート化することは
固体電解質を用いた電池では電解質層と電極層との接触
はとくに重要でありその点から好ましもち 発明が解決しようとする課題 ところがこのような芯材を用いてシート化した際に 芯
材を電極層や電解質層の厳密に正しく中央に配すること
は工業的な量産では不可能といえも そこでこのような芯材の偏在に対してなんらの考慮も払
わないと電解質層と電極層との密着性にばらつきが生ず
ん 課題を解決するための手段 まず 電解質層中に芯材を配した際に(よ この芯材を
中心に電解質の多い側を正極層に接するようにして一体
化すも また 多孔性芯材を電極層に配した際に(よ 芯材を中
心に電極材料の多い側を電解質層に接するようにして一
体化すも 最後に電解質層を2層配して一体化する際に(よ各電解
質層の芯材を中心に電解質の多い側をそれぞれの電極層
に接するようにして一体化すも作   用 電解質層では芯材を中心に少しでも電解質層が多い方を
正極層に接し また電極層では電極材料が多い方を電解
質に接して一体化することにより、電解質層と電極層と
の密着性を向上させることができ、このような配慮なし
の場合より信頼性を向上させることが可能になった 実施例 電極用材料として銅シェブレル(CuaMos30)を
1100CJ用1.X、これに電解質としてRbCu4
I+、sC1g、sを用いて、この粉末500gを加え
200℃に加熱しながら混合すも このようにして得ら
れた混合粉末に結着剤として市販のアクリル系樹脂が5
wt%になるように そのアセトン溶液を加え充分撹拌
してペーストを得も 線径100μrrL、50メツシ
ュのポリプロピレンスクリーンを芯材として公知のドク
ターブレード法により平均厚さ350μmの電極シート
を作威すもこの芯材を中心とした両側の断面を調べた結
電一方が10〜20μm多い層になっていたので、正 
負極シートともに この面を電解質シートと接する側に
しtも 電解質としてRbCu4I+、sc Ia、sを用L%
  結着剤として、やはりアクリル系樹脂が10wt%
になるように そのアセトン溶液を加え充分撹拌してペ
ーストを得も 線径100μm、50メツシュのポリプ
ロピレンスクリーンを芯材として公知のドクターブレー
ド法により平均厚さ0.10mmの電解質シートを作成
する。この場合もこの芯材を中心とした両側の断面を調
べた結電 一方が5〜10μm多い層になっていたの玄
 この面を正極シート側゛にしtも このようにして瓜 負極シートおよび電解質シートの3
層を120℃で600kg/am2の条件で加圧一体化
した ついでこのようにして得られた電池素子の両面に
ゴム中にカーボンブラック微粉末を分散させた市販のカ
ーボンフィルムを集電体として当てた徴 さらにその外
側に厚さ0.3m鳳 径26mmのCu板を当てて12
0t、500kg/cm”の条件で加圧一体化しtも 
 電池周辺を常温硬化型のエポキシ樹脂で塗着して電池
を構成し1.  この電池をAとすも つぎに 比較のために電極シート、電解質シートについ
て、このような芯材の偏在に対してなんらの考慮も払わ
ないで電解質シートと電極シートを一体化した電池をB
として加えtも 以上のA、  B電池それぞれを20セルづつ用いて、
まず通常の充放電での放電電圧と容量を比較しr、:、
、1.0mAで0.57Vまでの充!  −2,5mA
で0.3Vまでの放電を行ったとこ&Aでは平坦電圧は
0.48+0.OI V、放電容量ハ19.8±0.2
mAhを示したのに対して、Bではそれぞれ0.47±
0.02V、  19.5±4mAhであり、いずれも
Aのばらつきが少なかっ九そこでつぎにこの充放電の条
件で各電池の寿命特性を調べた 電池(よ 同じく20
セルづつ用いfQ、  周囲温度を25℃としf、  
その粘気 放電容量が初期の60%にまで劣化するサイ
クル数へAでは1100±50サイクルであったのに対
して、Bでは950±130サイクルであっt、  こ
の結果から明らかなようにAがばらつきが少なく平均的
には長寿命であっt4 発明の効果 固体二次電池の製造法において、電解質層では芯材を中
心に少しでも電解質層が多い方を正極層に接し また電
極層では電極材料が多い方を電解質に接して一体化する
ことにより、電池の充放電中での内部抵抗の増加を抑え
ることが可能になり、放電性能のばらつきを減少させ、
さらに長寿命化が達成できも
Cu" ion conductive solid electrolytes such as CuI-CuaO-Mo03 are being discussed. As cathode materials, Cus, +TiS2, Ag@
, +Ti5g, Cut, +Nb5a, Ag@, +NbS
*, W Os, and CuvMo@s*-zs Fe
Chevrel phase compounds such as vMosS*-2 are mentioned;
Although attempts have been made to use i+, 5WOs, and Chevrel phase compounds similar to those used for positive electrodes, the structure of these batteries is similar to other batteries, with active electrodes as positive and negative electrodes on both sides of the electrolyte layer, which mainly consists of an electrolyte and a binder. It is common practice to arrange an electrode layer consisting mainly of a substance and a binder. Porous core materials such as screens are used for the electrode layer and electrolyte layer in order to facilitate handling and simplify the manufacturing process. It is preferable to use such a porous core material and to form a sheet using a binder.For batteries using solid electrolytes, contact between the electrolyte layer and the electrode layer is particularly important. From this point of view, the problem that the present invention aims to solve is that when a sheet is formed using such a core material, it is industrially difficult to place the core material exactly in the center of the electrode layer or electrolyte layer. Although it is impossible in mass production, if no consideration is given to the uneven distribution of the core material, variations in the adhesion between the electrolyte layer and the electrode layer will occur. When a porous core material is placed on the electrode layer (the side with more electrolyte is in contact with the positive electrode layer) First, the side with more electrode material is in contact with the electrolyte layer, but when finally placing two electrolyte layers and integrating them, (centering on the core material of each electrolyte layer, the side with more electrolyte is placed in contact with the electrolyte layer. In the electrolyte layer, the side with as much electrolyte layer as possible around the core material should be in contact with the positive electrode layer, and in the electrode layer, the side with more electrode material should be in contact with the electrolyte and integrated. As a result, it was possible to improve the adhesion between the electrolyte layer and the electrode layer, and the reliability was improved compared to the case without such considerations.Example: Copper Chevrel (CuaMos30) was used as a material for electrodes at 1100CJ. 1.X, with RbCu4 as an electrolyte
Using 1g of I+, sC, and s, add 500g of this powder and mix while heating to 200℃.To the mixed powder obtained in this way, add 5g of commercially available acrylic resin as a binder.
Add the acetone solution and stir thoroughly to obtain a paste so that the acetone solution is 50% by weight.An electrode sheet with an average thickness of 350μm is made using the well-known doctor blade method using a 50-mesh polypropylene screen with a wire diameter of 100μrrL as the core material. When we examined the cross-sections on both sides of this core material, we found that one side had an extra layer of 10 to 20 μm, so we found that it was not correct.
For both negative electrode sheets, set this side to be in contact with the electrolyte sheet, and use RbCu4I+, sc Ia, and s as the electrolyte.L%
As a binder, 10wt% of acrylic resin is used.
Add the acetone solution and stir thoroughly to obtain a paste. An electrolyte sheet with an average thickness of 0.10 mm is prepared by the well-known doctor blade method using a 50-mesh polypropylene screen with a wire diameter of 100 μm as a core material. In this case as well, we examined the cross sections on both sides of this core material and found that one side had an extra layer of 5 to 10 μm.This side was placed on the positive electrode sheet side, and the negative electrode sheet and the electrolyte were removed in this way. Sheet 3
The layers were integrated under pressure at 120° C. and 600 kg/am2. Then, a commercially available carbon film in which fine carbon black powder was dispersed in rubber was applied as a current collector to both sides of the battery element thus obtained. Furthermore, a Cu plate with a thickness of 0.3 m and a diameter of 26 mm was placed on the outside.
0t, 500kg/cm" pressurization integrated and t
1. Construct the battery by painting the area around the battery with room temperature curing epoxy resin. This battery is referred to as A.Next, for comparison, we will design a battery in which the electrolyte sheet and the electrode sheet are integrated without paying any consideration to the uneven distribution of the core material regarding the electrode sheet and electrolyte sheet.
Using 20 cells each of A and B batteries with t and t as above,
First, compare the discharge voltage and capacity during normal charging and discharging.
, charging up to 0.57V at 1.0mA! -2,5mA
When discharging to 0.3V at &A, the flat voltage was 0.48+0. OI V, discharge capacity 19.8±0.2
mAh, whereas in B it was 0.47±
0.02 V and 19.5 ± 4 mAh, and there was little variation in A in each case.9 Therefore, we next investigated the life characteristics of each battery under these charging and discharging conditions.
Use fQ for each cell, set the ambient temperature to 25°C, and f.
The number of cycles at which the viscosity discharge capacity deteriorates to 60% of its initial value was 1100 ± 50 cycles for A, while it was 950 ± 130 cycles for B. It is clear from this result that A Effects of the Invention In the manufacturing method of solid-state secondary batteries, in the electrolyte layer, the core material is centered, and the side with as much electrolyte layer as possible is in contact with the positive electrode layer, and in the electrode layer, the electrode material is By integrating the side with the larger amount in contact with the electrolyte, it is possible to suppress the increase in internal resistance during charging and discharging of the battery, reducing variations in discharge performance,
Even if longer life can be achieved

Claims (1)

【特許請求の範囲】 (1)多孔性芯材を有する電解質と結着剤を主とする電
解質層の両面に、電極材料と結着剤を主とする電極層を
配して一体化する際に、電解質層の前記芯材を中心に前
記電解質の多い側を正極層に接するようにして一体化す
ることを特徴とする固体二次電池の製造法。(2)電解
質と結着剤を主とする電解質層の両面に、多孔性芯材を
有する電極材料と結着剤を主とする電極層を配して一体
化する際に、電極層の前記芯材を中心に前記電極材料の
多い側を電解質層に接するようにして一体化することを
特徴とする固体二次電池の製造法。 (3)多孔性芯材を有する電解質と結着剤を主とする電
解質層の両面に、多孔性芯材を有する電極材料と結着剤
を主とする電極層を配して一体化する際に、電極層の前
記芯材を中心に前記電極材料の多い側を電解質層に接す
るようにするとともに、電解質層の前記芯材を中心に前
記電解質の多い側を正極層に接するようにして一体化す
ることを特徴とする固体二次電池の製造法。 (4)多孔性芯材を有する電解質と結着剤を主とする電
解質層を2層配するとともにこれら電解質層の両面に電
極材料と結着剤を主とする電極層を配して一体化する際
に、各電解質層の前記芯材を中心に前記電解質の多い側
をそれぞれの電極層に接するようにして一体化すること
を特徴とする固体二次電池の製造法。
[Scope of Claims] (1) When integrating an electrolyte layer having a porous core material and an electrolyte layer mainly consisting of a binder by disposing an electrode layer mainly consisting of an electrode material and a binder on both sides of the electrolyte layer having a porous core material and an electrolyte layer mainly consisting of a binder. A method for producing a solid secondary battery, characterized in that the core material of the electrolyte layer is integrated with the electrolyte-rich side thereof being in contact with the positive electrode layer. (2) When integrating an electrode layer mainly consisting of an electrode material having a porous core material and a binder on both sides of an electrolyte layer mainly consisting of an electrolyte and a binder, 1. A method for manufacturing a solid-state secondary battery, which comprises integrating a core material with the side containing more electrode material in contact with an electrolyte layer. (3) When integrating an electrolyte layer with a porous core material and an electrolyte layer mainly with a binder by disposing an electrode layer mainly with an electrode material with a porous core material and a binder on both sides of the electrolyte layer with a porous core material and a binder. The electrode layer is integrated so that the side with more electrode material around the core material is in contact with the electrolyte layer, and the side with more electrolyte around the core material of the electrolyte layer is in contact with the positive electrode layer. A method for manufacturing a solid-state secondary battery characterized by: (4) Arranging two electrolyte layers consisting mainly of an electrolyte with a porous core material and a binder, and integrating electrode layers mainly consisting of an electrode material and a binder on both sides of these electrolyte layers. A method for manufacturing a solid-state secondary battery, characterized in that each electrolyte layer is integrated with the core material in such a manner that the side containing more electrolyte is in contact with each electrode layer.
JP1220746A 1989-08-28 1989-08-28 Manufacture of solid secondary cell Pending JPH0384870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1220746A JPH0384870A (en) 1989-08-28 1989-08-28 Manufacture of solid secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1220746A JPH0384870A (en) 1989-08-28 1989-08-28 Manufacture of solid secondary cell

Publications (1)

Publication Number Publication Date
JPH0384870A true JPH0384870A (en) 1991-04-10

Family

ID=16755889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1220746A Pending JPH0384870A (en) 1989-08-28 1989-08-28 Manufacture of solid secondary cell

Country Status (1)

Country Link
JP (1) JPH0384870A (en)

Similar Documents

Publication Publication Date Title
JP3722797B2 (en) Electrolyte-containing granular electrode for lithium storage battery
JP2000067920A (en) Solid electrolyte battery
JPH07161346A (en) Pole plate for secondary battery and high polymer solid electrolyte lithium secondary battery and its manufacture
EP4131508A1 (en) Pole piece, cell and battery
JPH07192763A (en) High polymer solid electrolyte secondary battery
JP3240650B2 (en) Manufacturing method of solid state secondary battery
JPH11162476A (en) Laminated battery
JPH0384870A (en) Manufacture of solid secondary cell
JPH0513099A (en) Manufacture of solid secondary battery
JP2001093535A (en) Solid electrolyte cell
JPH02253569A (en) Manufacture of solid state secondary battery
JPH02174077A (en) Solid secondary battery and manufacture thereof
JPH07240233A (en) High polymer solid electrolyte lithium secondary battery
JP2759992B2 (en) Manufacturing method of solid state secondary battery
JP3211308B2 (en) Manufacturing method of solid state secondary battery
JP2732442B2 (en) Manufacturing method of solid state secondary battery
JPH0750617B2 (en) Solid secondary battery
JP2770492B2 (en) Manufacturing method of solid state secondary battery
JPH056775A (en) Manufacture of solid secondary battery
JPH02114462A (en) Solid secondary battery
JP2658396B2 (en) Method for manufacturing solid secondary battery
JPH01260765A (en) Electrochemical device
JPS6145565A (en) Storage battery
JPH0513098A (en) Solid secondary battery and manufacture thereof
KR19990012158A (en) Battery current collector and its manufacturing method