JPH0384476A - Measurement of live-line insulation resistance - Google Patents

Measurement of live-line insulation resistance

Info

Publication number
JPH0384476A
JPH0384476A JP22132189A JP22132189A JPH0384476A JP H0384476 A JPH0384476 A JP H0384476A JP 22132189 A JP22132189 A JP 22132189A JP 22132189 A JP22132189 A JP 22132189A JP H0384476 A JPH0384476 A JP H0384476A
Authority
JP
Japan
Prior art keywords
resistor
resistance
circuit
insulation resistance
insulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22132189A
Other languages
Japanese (ja)
Other versions
JP2802651B2 (en
Inventor
Masayoshi Nakagawa
雅善 中川
Yoshio Tsunoda
角田 美伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP22132189A priority Critical patent/JP2802651B2/en
Publication of JPH0384476A publication Critical patent/JPH0384476A/en
Application granted granted Critical
Publication of JP2802651B2 publication Critical patent/JP2802651B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To perform an accurate diagnosis for a live-line insulation by arranging a sheath resistor and a local battery in addition to a circuit in parallel with a DC power supply of the bridge circuit equivalently to DC-like. CONSTITUTION:A sliding variable resistor (r) capable of reading out the resistance value is connected in series to a reference resistor R2 and these resistors are grounded through a DC current source P. Further, the reference resistor R2 and the sliding variable resistor (r) which are connected in series, are connected in parallel to the DC current source P. When the circuit is connected in such a manner the circuit can be made to an AC live-line entirely the same as the normal case for AC-like and made to be equivalent to the bridge circuit shown in the figure for DC-like. Consequently, when the sliding variable resistor (r) is adjusted while observing a deflection of galvanometer I to balance the bridge circuit, the insulation resistance R2 can be accurately obtained by the resistance value (r) of sliding variable resistor (r) through a calculating formula of Rx=(RI/r) R2.

Description

【発明の詳細な説明】 [産業上の利用分野〕 本発明は、電カケープルの主絶縁などの絶縁抵抗を活線
状態で測定するための活線絶縁抵抗測定方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a live wire insulation resistance measuring method for measuring the insulation resistance of the main insulation of a power cable in a live wire state.

[従来の技術〕 高圧電カケ−プル等では、電気絶縁体の絶縁性能が経時
劣化し、ついには大きな絶縁破壊事故に継がることかあ
る。このため、絶縁性能を常時正確に把握し、適宜にケ
ーブルの交換を行うなどの対策が必要である。絶縁性能
を把握するための方法としては、従来から種々のものが
提案されているが、特に常時監視が可能である活線状態
での測定方法が注目されている。このような方法の1つ
として、例えば特開昭82−299772号公報等に開
示されているような第3図に示す直流ブリッジ法が知ら
れている。
[Prior Art] In high-voltage electric cables and the like, the insulation performance of electrical insulators deteriorates over time, which may eventually lead to a major dielectric breakdown accident. For this reason, it is necessary to accurately grasp insulation performance at all times and take measures such as replacing cables as appropriate. Various methods have been proposed in the past for determining insulation performance, but methods of measurement under live wire conditions that allow constant monitoring have been attracting particular attention. As one such method, the DC bridge method shown in FIG. 3 is known, for example, as disclosed in Japanese Patent Laid-Open Publication No. 82-299772.

この方法では、高電圧母線Bに接続した接地用変圧器G
PTの中性点を交流的には交流接地器lによりに接地し
、直流的には基準抵抗R1を介して接地する。一方、被
検ケーブルの主導体りを高電圧母線Bに接続する。ここ
で、主導体りと遮蔽導体Sとの間の主絶蟲の絶縁抵抗R
xが計測対象となる。この遮蔽導体Sは交流的には交流
接地器2により接地し、直流的には電圧計v1を介して
接地する。また、直列接続した基準抵抗R2とスライド
可変抵抗rを電圧計Vlと並列的に接続する。そして、
基準抵抗R2とスライド可変抵抗rとの結節点と基準抵
抗R1の非接地端とをスイッチSvを介して直流電圧源
Elに接続する。
In this method, the grounding transformer G connected to the high voltage bus B
The neutral point of PT is grounded by an AC grounding device 1 for alternating current, and is grounded via a reference resistor R1 for direct current. On the other hand, connect the main conductor of the cable under test to the high voltage bus B. Here, the insulation resistance R of the main conductor between the main conductor and the shielding conductor S is
x becomes the measurement target. This shielding conductor S is grounded by an AC grounder 2 in terms of AC, and is grounded via a voltmeter v1 in terms of DC. Further, the reference resistor R2 and the slide variable resistor r connected in series are connected in parallel with the voltmeter Vl. and,
The node between the reference resistor R2 and the slide variable resistor r and the non-grounded end of the reference resistor R1 are connected to the DC voltage source El via the switch Sv.

このようにして、直流分については絶縁抵抗Rx、基準
抵抗R1、スライド可変抵抗r及び基準抵抗R2により
、第4図に示すようにブリッジ回路が構成される。ここ
で、スライド可変抵抗rを調整してブリッジ回路を平衡
させた際のスライド可変抵抗rの両端に並列接続した電
圧計v2の読みv2から、 Rx=  (El−V2)  ・R2/V2     
   ・・・(1)の計算式により絶縁抵抗Rxを求め
ることができる。
In this way, for the DC component, a bridge circuit is constructed as shown in FIG. 4 by the insulation resistor Rx, the reference resistor R1, the slide variable resistor r, and the reference resistor R2. Here, from the reading v2 of the voltmeter v2 connected in parallel across both ends of the slide variable resistor r when the bridge circuit is balanced by adjusting the slide variable resistor r, Rx= (El-V2) ・R2/V2
...The insulation resistance Rx can be determined by the calculation formula (1).

[発明が解決しようとする課題] しかしながら、実際には第3図に点線で示すように遮蔽
導体Sと大地とを絶縁するケーブルシースの劣化による
シース抵抗Re、及びケーブルシースと大地との間での
局部電池Ecの発生が無視できず、これらは直流的には
第4図の点線で示すように、電圧計v1と並列的に挿入
されてブリッジ回路の平衡条件に影響を及ぼすことにな
る。これを解決するために、従来方法では電圧計Vtと
並列的に設けた検出用抵抗RGを用いて可変直流電圧源
E2を挿入して相殺している。
[Problems to be Solved by the Invention] However, in reality, as shown by the dotted line in FIG. The generation of the local battery Ec cannot be ignored, and in terms of direct current, these are inserted in parallel with the voltmeter v1, as shown by the dotted line in FIG. 4, and will affect the balance condition of the bridge circuit. In order to solve this problem, in the conventional method, a variable DC voltage source E2 is inserted using a detection resistor RG provided in parallel with the voltmeter Vt for cancellation.

しかし、この場合には測定の際に先ずスイッチSWを開
いた状態で可変直流電圧源E2の出力電圧を調整して電
圧計V1の読みを零とし、これにより局部電池Ecの影
響を相殺した上でスイッチS賀を閉じ、再度ブリッジ、
回路の平衡をとる必要があり、2度の調節の手間を要す
る。また、調節すべき個所が2個所あるので、測定誤差
の増加も避けられない、更には、シース抵抗Rcや局部
電池Ecの値も経時変化するので、常時監視する場合に
は頻繁にスイッチSWの開閉操作が必要である等の問題
点を有している。
However, in this case, during measurement, first adjust the output voltage of the variable DC voltage source E2 with the switch SW open to make the reading on the voltmeter V1 zero, thereby canceling out the influence of the local battery Ec. Close the switch S and close the bridge again.
The circuit needs to be balanced, requiring two adjustments. In addition, since there are two places to adjust, an increase in measurement errors is unavoidable.Furthermore, the values of the sheath resistance Rc and local battery Ec change over time, so when constantly monitoring, the switch SW must be turned off frequently. It has problems such as the need for opening and closing operations.

本発明の目的は、上述の問題点を解消し、ケーブルシー
スに劣化や局部電池の発生がある場合でも、これらの影
響を排除して、常時正確な測定を行うことができる活線
、絶縁抵抗測定方法を提供することにある。
The purpose of the present invention is to solve the above-mentioned problems and to provide a live wire and insulation resistance system that eliminates the effects of deterioration of the cable sheath or the occurrence of local batteries and allows accurate measurement at all times. The objective is to provide a measurement method.

[課題を解決するための手段] 上記の目的を達成するために、本発明に係る活線絶縁抵
抗測定方法においては、接地用変圧器の中性点を交流的
には交流接地器により接地し、直流的には抵抗R1を介
して接地し、前記接地用変圧器に測定すべき絶縁抵抗R
xを介して接続した遮蔽導体を交流的には交流接地器に
よりに接地し、直流的には抵抗R2と抵抗rの直列回路
を介して接地し、前記絶縁抵抗Rx、抵抗r、抵抗R1
、抵抗R2の4要素によりブリッジ回路の環路を構成し
、前記抵抗R2及び抵抗rの直列回路及び前記絶縁抵抗
R1と抵抗R1の直列回路に対して直流電源を並列接続
し、前記抵抗R1、抵抗R2、抵抗rの少なくとも1つ
を調整して、前記抵抗R2と抵抗rとの結節点と、前記
抵抗Rxと抵抗R1との結節点間の電位差を零にするよ
うにして前記ブリッジ回路を平衡させることにより前記
絶縁抵抗Rxを測定することを特徴とするものである。
[Means for Solving the Problems] In order to achieve the above object, in the live wire insulation resistance measuring method according to the present invention, the neutral point of the grounding transformer is grounded by an AC grounder. , in terms of direct current, it is grounded via a resistor R1, and the insulation resistance R to be measured on the grounding transformer is
The shielding conductor connected via x is grounded by an AC grounder for AC, and grounded for DC via a series circuit of resistor R2 and resistor r, and the insulation resistance Rx, resistance r, and resistance R1 are grounded for DC.
, resistor R2 constitute a bridge circuit loop, a DC power supply is connected in parallel to the series circuit of the resistor R2 and the resistor r, and the series circuit of the insulation resistor R1 and the resistor R1, and the resistor R1, The bridge circuit is constructed by adjusting at least one of the resistor R2 and the resistor r so that the potential difference between the node between the resistor R2 and the resistor r and the node between the resistor Rx and the resistor R1 becomes zero. The method is characterized in that the insulation resistance Rx is measured by balancing.

[作用] 上記の構成を有する活線絶縁抵抗測定方法は。[Effect] A method for measuring live wire insulation resistance having the above configuration.

シース抵抗Rcと局部電池Ecが直流等価的にブリッジ
回路の直流電源と並列に回路に付加されるので、ブリッ
ジの平衡条件に影響を及ぼすことがない。
Since the sheath resistance Rc and the local battery Ec are added to the circuit in parallel with the DC power supply of the bridge circuit in a DC equivalent manner, they do not affect the balance condition of the bridge.

[実施例] 本発明を第1図、第2図に図示の実施例に基づいて詳細
に説明する。なお、第3図、第4図と同一の符号は同一
の部材を表すものとする。
[Example] The present invention will be explained in detail based on the example illustrated in FIGS. 1 and 2. Note that the same reference numerals as in FIGS. 3 and 4 represent the same members.

第1図は本発明の方法を実施するための回路図であり、
高電圧母線Bに接続した接地用変圧器GP丁の中性点を
交流的には交流接地器1により接地し、直流的には基準
抵抗R1を介して接地し、被検電カケ−プルの主導体り
を高電圧母線Bに接続する。なお、881図では送電線
路を1本の実線で示したが、例えば3芯−括の三相送電
線路の場合には、測定すべき絶縁抵抗R1は各相の線路
の主導体と遮蔽導体Sの絶縁抵抗の合成値となる。この
遮蔽導体Sは交流接地器2により交流的には接地し、直
流的には直流電流源Pを介して接地する。
FIG. 1 is a circuit diagram for implementing the method of the present invention,
The neutral point of the grounding transformer GP connected to the high voltage bus B is grounded by the AC grounding device 1 for AC, and is grounded via the reference resistor R1 for DC. Connect the main conductor to high voltage bus B. Although the power transmission line is shown as a single solid line in Figure 881, for example, in the case of a three-core three-phase power transmission line, the insulation resistance R1 to be measured is the main conductor and shielding conductor of each phase line. This is the composite value of the insulation resistance of S. This shielding conductor S is grounded in an alternating current manner by an alternating current grounder 2, and grounded in a direct current manner through a direct current source P.

また、基準抵抗R2に対し抵抗値の読み取りが可能なス
ライド可変抵抗rを直列接続し、これらを直流電流源P
と並列的に接続する。更に、基準抵抗R2とスライド可
変抵抗rとの結節点と、絶縁抵抗Rxと基準抵抗R1と
の結節点を検流計Iを介して接続する。
In addition, a slide variable resistor r whose resistance value can be read is connected in series to the reference resistor R2, and these are connected to the DC current source P.
Connect in parallel with Further, the node between the reference resistor R2 and the slide variable resistor r and the node between the insulation resistor Rx and the reference resistor R1 are connected via a galvanometer I.

このように回路を接続した場合に、交流的には通常の場
合と全く変わりなく交流活線とすることができ、直流的
には第2図に示すようなブリッジ回路と等価となる。従
って、検流計工の振れを観察しながらスライド可変抵抗
rを調整し、ブリッジ回路の平衡をとれば、スライド可
変抵抗rの抵抗値rにより、 Rx=  (R1/ r)  ・R2=(2)の計算式
から絶縁抵抗Rxを求めることができる。
When the circuit is connected in this way, it can be made into an AC live line with no difference from the normal case in terms of AC, and it is equivalent to a bridge circuit as shown in FIG. 2 in terms of DC. Therefore, if you adjust the slide variable resistor r while observing the deflection of the galvanometer and balance the bridge circuit, Rx = (R1/ r) ・R2 = (2 ) can be used to calculate the insulation resistance Rx.

ところで、本実施例においてもケーブルシースに無視で
きないシース抵抗Reと局部電池Ecが存在する場合に
は、第1図に示すように遮蔽導体Sからシース抵抗Rc
、局部電池Ecを介して接地する回路をも考えなければ
ならない、しかし、この場合でも直流分による等価ブリ
ッジ回路では、第2図に示すようにシース抵抗Reと局
部電池Ecは直流電流源Pに並列的に付加されるに過ぎ
ない、即ち。
By the way, in this embodiment as well, if there is a non-negligible sheath resistance Re and a local battery Ec in the cable sheath, the sheath resistance Rc is reduced from the shielding conductor S as shown in FIG.
, it is also necessary to consider a circuit that is grounded via the local battery Ec.However, even in this case, in an equivalent bridge circuit using a DC component, the sheath resistance Re and the local battery Ec are connected to the DC current source P, as shown in Fig. 2. It is only added in parallel, ie.

見掛は上は直流電流源Pの変動と同等で、ブリッジ回路
の性質上、平衡に何らの影響も及ぼさない、従って、(
2)式からも明らかなように絶縁抵抗R1の測定値にも
影響はなく、シースに劣化が生じた場合でも正確な測定
を行うことができる。また、調整個所はスライド可変抵
抗rのみで、しかも1回限りで済゛み、更に常時監視を
行う場合でもスイッチの開閉等の操作は不要である。
The appearance is equivalent to the fluctuation of the DC current source P, and due to the nature of the bridge circuit, it does not have any effect on the balance. Therefore, (
As is clear from equation 2), there is no effect on the measured value of the insulation resistance R1, and accurate measurements can be made even if the sheath is degraded. Further, the only adjustment point is the slide variable resistor r, and it only needs to be adjusted once, and furthermore, even if constant monitoring is to be performed, operations such as opening and closing of switches are not necessary.

なお、本実施例において高電圧母線Bに他の電カケープ
ル、機器等が接続されている場合には基準抵抗R1を小
さく選べば、これらの影響を除去できる。また、スライ
ド可変抵抗rと基準抵抗R2の接続位置は交換してもよ
い、ただし、−船釣に測定すべき絶縁抵抗Rxの値は極
めて高く、また上述のように基準抵抗R1の値は小さく
選択するので、スライド可変抵抗rが直流的に絶縁抵抗
RXと直結される場合には、高い抵抗値で可変のものを
選定する必要がある。また、直流電流源Pとしては電流
を多く取り出せるものが望ましいが、スライド可変抵抗
rと基準抵抗R2、特に後者の抵抗値が十分に大きい場
合には通常の電圧源でも問題ない。
In this embodiment, if other power cables, devices, etc. are connected to the high voltage bus B, the influence of these can be removed by selecting a small reference resistance R1. Also, the connection positions of the slide variable resistor r and the reference resistor R2 may be exchanged, but - the value of the insulation resistance Rx that should be measured for boat fishing is extremely high, and the value of the reference resistor R1 is small as described above. Therefore, if the slide variable resistor r is directly connected to the insulation resistor RX in a direct current manner, it is necessary to select a variable one with a high resistance value. Further, it is desirable that the DC current source P be one that can extract a large amount of current, but if the slide variable resistor r and the reference resistor R2, especially the resistance value of the latter, are sufficiently large, a normal voltage source may be used.

更に、上述の実施例ではスライド可変抵抗rのみを可変
としたが、抵抗値の読み取りが可能な可変抵抗器を用い
て他の基準抵抗を可変としてもよい。
Further, in the above embodiment, only the slide variable resistor r is made variable, but other reference resistances may be made variable using a variable resistor whose resistance value can be read.

[発明の効果] 以上説明したように本発明に係る活線絶縁抵抗測定方法
は、ケーブルシースに劣化や局部電池の発生がある場合
でも、ブリッジ回路の平衡は影響されないので、平衡調
節は1個所で1回の操作で完了でき、操作が容易であり
しかも測定誤差が増加する虞れはない、また、常時監視
の際にもスイッチの開閉などの操作は不要であり、誤操
作の心配もなく正確な活線絶縁診断が可能である。
[Effects of the Invention] As explained above, in the live wire insulation resistance measuring method according to the present invention, even if the cable sheath deteriorates or a local battery occurs, the balance of the bridge circuit is not affected. It can be completed in one operation, and it is easy to operate, and there is no risk of increasing measurement errors. Also, there is no need to open or close switches during constant monitoring, so there is no need to worry about erroneous operation and it is accurate. Live wire insulation diagnosis is possible.

【図面の簡単な説明】[Brief explanation of drawings]

図面第1図、第2図は本発明に係る活線絶縁抵抗測定方
法の実施例を示し、第1図は本測定方法を実施するため
の回路図、第2rgJはその直流等価回路図であり、第
3図は従来の方法の回路図、第4図はその直流等価回路
図である。 符号Bは高電圧母線、GPTは接地用変圧器、Lは主導
体、Sは遮蔽導体、Rxは被測定絶縁抵抗、1.2は交
流接地器、R1,R2は基準抵抗、rはスライド可変抵
抗、工は検流計、Pは直流電流源、Rcはシース抵抗、
Ecは局部電池である。
Drawings 1 and 2 show an embodiment of the live wire insulation resistance measuring method according to the present invention, FIG. 1 is a circuit diagram for carrying out this measuring method, and 2rgJ is its DC equivalent circuit diagram. , FIG. 3 is a circuit diagram of the conventional method, and FIG. 4 is its DC equivalent circuit diagram. Symbol B is the high voltage bus, GPT is the grounding transformer, L is the main conductor, S is the shield conductor, Rx is the insulation resistance to be measured, 1.2 is the AC grounder, R1 and R2 are the reference resistances, and r is the slide variable. Resistance, M is a galvanometer, P is a DC current source, Rc is a sheath resistance,
Ec is the local battery.

Claims (1)

【特許請求の範囲】[Claims] 1、接地用変圧器の中性点を交流的には交流接地器によ
り接地し、直流的には抵抗R1を介して接地し、前記接
地用変圧器に測定すべき絶縁抵抗Rxを介して接続した
遮蔽導体を交流的には交流接地器によりに接地し、直流
的には抵抗R2と抵抗rの直列回路を介して接地し、前
記絶縁抵抗Rx、抵抗r、抵抗R1、抵抗R2の4要素
によりブリッジ回路の環路を構成し、前記抵抗R2及び
抵抗rの直列回路及び前記絶縁抵抗Rxと抵抗R1の直
列回路に対して直流電源を並列接続し、前記抵抗R1、
抵抗R2、抵抗rの少なくとも1つを調整して、前記抵
抗R2と抵抗rとの結節点と、前記抵抗Rxと抵抗R1
との結節点間の電位差を零にするようにして前記ブリッ
ジ回路を平衡させることにより前記絶縁抵抗Rxを測定
することを特徴とする活線絶縁抵抗測定方法。
1. Ground the neutral point of the grounding transformer using an AC grounder for AC, ground it via resistor R1 for DC, and connect it to the grounding transformer via the insulation resistance Rx to be measured. For AC, the shielded conductor is grounded by an AC grounder, and for DC, it is grounded through a series circuit of resistor R2 and resistor r, and the four elements of insulation resistance Rx, resistance r, resistance R1, and resistance R2 are A circuit of a bridge circuit is formed by connecting a DC power supply in parallel to the series circuit of the resistor R2 and the resistor r and the series circuit of the insulation resistor Rx and the resistor R1, and the resistor R1,
At least one of the resistor R2 and the resistor r is adjusted so that the node between the resistor R2 and the resistor r, and the resistor Rx and the resistor R1 are connected to each other.
A live wire insulation resistance measuring method, characterized in that the insulation resistance Rx is measured by balancing the bridge circuit so that the potential difference between the nodes is zero.
JP22132189A 1989-08-28 1989-08-28 Hot wire insulation resistance measurement method Expired - Fee Related JP2802651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22132189A JP2802651B2 (en) 1989-08-28 1989-08-28 Hot wire insulation resistance measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22132189A JP2802651B2 (en) 1989-08-28 1989-08-28 Hot wire insulation resistance measurement method

Publications (2)

Publication Number Publication Date
JPH0384476A true JPH0384476A (en) 1991-04-10
JP2802651B2 JP2802651B2 (en) 1998-09-24

Family

ID=16764972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22132189A Expired - Fee Related JP2802651B2 (en) 1989-08-28 1989-08-28 Hot wire insulation resistance measurement method

Country Status (1)

Country Link
JP (1) JP2802651B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103558457A (en) * 2013-11-18 2014-02-05 宁夏回族自治区电力设计院 Computing method for single-phase earth fault impedance of parallel circuits

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103558457A (en) * 2013-11-18 2014-02-05 宁夏回族自治区电力设计院 Computing method for single-phase earth fault impedance of parallel circuits
CN103558457B (en) * 2013-11-18 2017-04-26 宁夏回族自治区电力设计院 Computing method for single-phase earth fault impedance of parallel circuits

Also Published As

Publication number Publication date
JP2802651B2 (en) 1998-09-24

Similar Documents

Publication Publication Date Title
US4626772A (en) Process and device for determining a parameter associated with a faulty electric conductor, using a composite monitoring signal
US3248646A (en) Location of cable faults by comparing a section of the faulted cable with a part of the section
CN111095000A (en) High fidelity voltage measurement using capacitively coupled voltage transformers
JPH0384476A (en) Measurement of live-line insulation resistance
US3408564A (en) Electrical apparatus including a pair of replica impedances for measuring distances along a loaded electrical line
JP3041968B2 (en) Monitoring method for insulation deterioration of low-voltage live wires
Kusters et al. A direct current comparator bridge for high resistance measurements
SU711497A1 (en) Method of testing insulation in circuits with earthed neutral wire under operating voltage and load
JP3288836B2 (en) Electric resistance measuring method and electric resistance measuring device
KR100202831B1 (en) Insulation degradation detection method for hot-line and device therefor
JP3010367B2 (en) Insulation resistance measurement method of cable sheath under hot wire
SU1659880A1 (en) Method for measuring electric immitance
JPH0428065Y2 (en)
JPH11326436A (en) Diagnostic device for insulation deterioration of closed bus bar
Gamage et al. Capacitance and tan δ measuring equipment for high voltage insulation modelling and simulation
SU851277A1 (en) Device for measuring active and reactive power
JPH03111775A (en) Water-tree-current detecting apparatus for cv cable
SU1368825A1 (en) Device for detecting cable insulation damage place
SU741162A1 (en) Ac transformer bridge for remote measurements
SU941901A1 (en) Device for registering high voltages in electric network
US2741739A (en) Electrical measuring apparatus for testing insulation
Castelli The potential transformer bridge with current comparator for measuring the voltage dependence of compressed-gas capacitors
JPS6229749B2 (en)
JPH02134578A (en) Dielectric loss measuring apparatus of power cable
SU67079A1 (en) Method for determining insulation impedance relative to earth of three-phase cable networks with insulated neutral

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees