JPH038446A - Preparation of catalyst for synthesizing dimethyl ether - Google Patents

Preparation of catalyst for synthesizing dimethyl ether

Info

Publication number
JPH038446A
JPH038446A JP1143050A JP14305089A JPH038446A JP H038446 A JPH038446 A JP H038446A JP 1143050 A JP1143050 A JP 1143050A JP 14305089 A JP14305089 A JP 14305089A JP H038446 A JPH038446 A JP H038446A
Authority
JP
Japan
Prior art keywords
catalyst
precipitate
soln
dimethyl ether
contg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1143050A
Other languages
Japanese (ja)
Inventor
Shigeru Nojima
繁 野島
Tetsuya Imai
哲也 今井
Masato Suwa
諏訪 征人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1143050A priority Critical patent/JPH038446A/en
Publication of JPH038446A publication Critical patent/JPH038446A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To obtain a catalyst having high activity and long life by dropping an aq. soln. contg. Al and/or Cr and Zn then an aq. soln. contg. Cu to an aq. settling agent soln. which is subjected to heat insulation to form precipitate, then mixing the precipitate and alumina. CONSTITUTION:The aq. settling agent soln. of about 0.05 to 10M alkalis, such as Na2CO3 and NaHCO3, is kept insulated at a prescribed temp., such as about 60 deg.C. While this aq. settling agent soln. is kept stirred, the aq. soln. contg. the Al and/or Cr and Zn is dropped to form the precipitate and further the aq. soln. contg. the Cu is dropped to form the precipitate. Further, the matured precipitate is cleaned and dried then calcined to form the composite oxide. This oxide and the gamma-alumina are mixed. The catalyst for synthesizing dimethyl ether having the high initial activity and long life from hydrogen and carbon monoxide is obtd. in such a manner.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は水素及び一酸化炭素よりジメチルエーテルを合
成する触媒の調製方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for preparing a catalyst for synthesizing dimethyl ether from hydrogen and carbon monoxide.

〔従来の技術〕[Conventional technology]

一般にCD、H,等の合成ガスからガソリン留分を合成
するプロセスは未だ十分確立されたものでなく、多くの
問題点を有している。例えば、F−Tプロセスは生成物
の分布が広範囲であるため、ガソリンに適用する場合、
改質を行う必要があり、さらにMTGプロセス(合成ガ
ス−メタノール−ガソリン)は、メタノール合成反応が
熱力学的平衡支配のためメタノール収率が低い等の問題
点を抱えている。一方、反応中間体としてジメチルエー
テルを経由する場合、メタノール合成に比べ熱力学的平
衡支配が緩和され、高収率でジメチルエーテルが得られ
ることが可能である。
In general, the process of synthesizing gasoline fraction from synthesis gas such as CD, H, etc. has not yet been sufficiently established and has many problems. For example, the F-T process has a wide distribution of products, so when applied to gasoline,
In addition, the MTG process (synthesis gas-methanol-gasoline) has problems such as a low methanol yield because the methanol synthesis reaction is dominated by thermodynamic equilibrium. On the other hand, when dimethyl ether is used as a reaction intermediate, thermodynamic equilibrium control is relaxed compared to methanol synthesis, and dimethyl ether can be obtained in high yield.

これまで、メタノール合成触媒の開発研究は広く行われ
ており、酸化亜鉛一酸化クロム、酸化銅一酸化亜鉛等の
複合酸化物が用いられている。とりわけ近年酸化銅一酸
化亜鉛一酸化アルミニウムおよび/または酸化クロムの
三元又は四元組成物系触媒等が広く適用されている。
Until now, development research on methanol synthesis catalysts has been widely conducted, and complex oxides such as zinc oxide, chromium monoxide, copper oxide and zinc monoxide have been used. In particular, catalysts based on ternary or quaternary compositions of copper oxide, zinc monoxide, aluminum monoxide and/or chromium oxide have been widely used in recent years.

ただし、CD、Lの合成ガスからジメチルエ−チル合成
用の触媒の調製方法に関する検討はあまりなされていな
く、通常のメタノール合成触媒とメタノール脱水触媒を
組み合わせて用いているが、ジメチルエーテルの収率は
低いままであり、触媒寿命も短い。
However, there has not been much study on the method of preparing a catalyst for dimethyl ethyl synthesis from CD and L synthesis gas, and although a combination of an ordinary methanol synthesis catalyst and a methanol dehydration catalyst is used, the yield of dimethyl ether is low. The catalyst life is also short.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記触媒が低活性で寿命が短い原因として副反応である
ジメチルエーテルの分解反応やF−T反応によるC析出
やワックス生成等によると考えられ、上記反応を抑制し
メタノール合成とメタノール脱水が逐次滴に高選択率で
生ずる触媒が望まれている。
The reason for the low activity and short life of the catalyst is thought to be due to side reactions such as the decomposition reaction of dimethyl ether and the precipitation of C and wax formation due to the FT reaction. Catalysts that produce high selectivity are desired.

本発明は上記技術水準に鑑み、上記要望に答え得るジメ
チルエーテル合成用触媒の調製方法を提供しようとする
ものである。
In view of the above-mentioned state of the art, the present invention aims to provide a method for preparing a catalyst for dimethyl ether synthesis that can meet the above-mentioned needs.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は水素及び一酸化炭素からジメチルエーテルを合
成する触媒の調製方法において、所定温度に保温した沈
殿剤水溶液を攪拌しながらアルミニウムおよび/または
クロムと亜鉛を含んだ水溶液を沈殿剤水溶液に滴下して
沈殿物を生成させ、滴下後、銅を含んだ水溶液を滴下し
て沈殿物を生成させ、さらに熟成した沈殿物を洗浄、乾
燥後焼成することによって複合酸化物を得、この複合酸
化物とγ−アルミナを粉末混合することを特徴とするジ
メチルエーテル合成用触媒の調製方法である。
The present invention is a method for preparing a catalyst for synthesizing dimethyl ether from hydrogen and carbon monoxide, in which an aqueous solution containing aluminum and/or chromium and zinc is dropped into an aqueous precipitant solution while stirring the aqueous precipitant solution kept at a predetermined temperature. A precipitate is generated, and after dropping, an aqueous solution containing copper is added dropwise to generate a precipitate, and the aged precipitate is washed, dried, and fired to obtain a composite oxide, and this composite oxide and γ - A method for preparing a catalyst for dimethyl ether synthesis, which comprises mixing alumina powder.

本発明において使用される沈殿剤水溶液はアルカリ水溶
液であり、通常0.05M〜IOMの濃度のNazCL
 、 NaHCLNaOH、K2CO3NH,の水溶液
を用い、とりわけNa2CO3水溶液が好ましい。また
、銅、亜鉛、アルミニウムまたはクロムの画金属塩は硝
酸塩、塩化物、硫酸塩、酢酸塩を0.01M〜10Mの
濃度が用いられ、とりわけ硝酸塩が好ましい。さらに、
金属塩水溶液滴下時間は0.1分〜5時間で実施し、熟
成時間は0.1分〜3時間で行い、均一に沈殿物が生成
される必要がある。また沈殿及び熟成温度は15〜95
℃の範囲内において実施するのがよい。得られた沈殿物
はN[1,−やNa+等のイオンを十分洗浄した後、1
80〜400℃の範囲の温度で乾燥して複合酸化物を得
るようにするのがよい。この複合酸化物の組成は原子比
でCu:100に対してZn: 10〜250.^l及
び/またはCr:1〜100の範囲になるようにするの
がよい。
The precipitant aqueous solution used in the present invention is an alkaline aqueous solution, and usually contains NazCL at a concentration of 0.05M to IOM.
, NaHCLNaOH, K2CO3NH, an aqueous solution of Na2CO3 is particularly preferred. Further, as the picture metal salt of copper, zinc, aluminum or chromium, nitrate, chloride, sulfate or acetate is used at a concentration of 0.01M to 10M, with nitrate being particularly preferred. moreover,
The dropping time of the aqueous metal salt solution should be 0.1 minutes to 5 hours, and the aging time should be 0.1 minutes to 3 hours, so that a precipitate is uniformly produced. Also, the precipitation and aging temperature is 15 to 95
It is preferable to carry out the test within the range of ℃. The obtained precipitate was thoroughly washed with ions such as N[1,- and Na+, and then
It is preferable to obtain a composite oxide by drying at a temperature in the range of 80 to 400°C. The composition of this composite oxide is Cu: 100 to Zn: 10-250. ^l and/or Cr: preferably in the range of 1 to 100.

この複合酸化物とr−Aliasを60〜100メツシ
ユに粉砕して粉末混合物とした後、16〜28メツシユ
に整粒し、ジメチルエーテル合成用触媒に供するのであ
るが、複合酸化物とT−A1203の混合比は重量%で
95:5〜20:80、好ましくは70:30〜50:
50である。この複合酸化物はCuO、ZnOの結晶種
が認められるが、はとんどアモルファスであり、CD吸
着活性点である銅が高分散に分布しているため、ジメチ
ルエーテル合成の際に生ずる副反応(F−T反応、分解
反応)を抑制し、長寿命な触媒となる。
This composite oxide and r-Alias are ground into a powder mixture of 60 to 100 meshes, then sized to 16 to 28 meshes, and used as a catalyst for dimethyl ether synthesis. The mixing ratio is 95:5 to 20:80 by weight, preferably 70:30 to 50:
It is 50. Although crystal seeds of CuO and ZnO are observed in this composite oxide, it is mostly amorphous, and copper, which is an active site for CD adsorption, is highly dispersed, so side reactions ( FT reaction, decomposition reaction), resulting in a long-life catalyst.

以下、実施例により、ジメチルエーテル合成用触媒の調
製方法を詳述する。
Hereinafter, a method for preparing a catalyst for dimethyl ether synthesis will be described in detail with reference to Examples.

〔実施例〕〔Example〕

〔実施例1〕 炭酸ナトリウム(Na2CL  2.5 mg)を水2
1に溶かし60℃で保温する。このアルカリ水溶液を溶
液Aとする。硝酸亜鉛[Zn(No、)26H,0:0
、225mol )と硝酸アルミニウム(、A1(NO
,)。
[Example 1] Sodium carbonate (Na2CL 2.5 mg) was added to water 2
1 and keep warm at 60℃. This alkaline aqueous solution will be referred to as solution A. Zinc nitrate [Zn(No,)26H, 0:0
, 225 mol) and aluminum nitrate (, A1(NO
,).

・9H20: 0.075 mol ]を水400 c
cに溶かし、80℃に保温し、この酸性溶液を溶液Bと
する。
・9H20: 0.075 mol] in 400 c of water
This acidic solution is called solution B.

硝酸銅[Cu(NL)2・3H,O: 0.3 mol
 ]を水200ccに溶かし60℃に保温し、この酸性
溶液を溶液Cとする。
Copper nitrate [Cu(NL)2.3H,O: 0.3 mol
] was dissolved in 200 cc of water and kept at 60°C, and this acidic solution was designated as solution C.

まず、攪拌しながら溶液へに溶液Bを20分にわたって
均一に滴下し懸濁液を得る。溶液Bを滴下後、次に溶液
Cを前記懸濁液に30分にわたって一定速度で滴下し沈
殿物を得る。滴下終了時のpHは8であった。
First, solution B is uniformly added dropwise to the solution over 20 minutes while stirring to obtain a suspension. After adding Solution B dropwise, Solution C is then added dropwise to the suspension at a constant rate over 30 minutes to obtain a precipitate. The pH at the end of the dropwise addition was 8.

滴下後1時間の熟成を行い、次に、沈殿物のろ過および
Naイオン、NO,イオンが検知されないよう洗浄する
。さらに、100℃、24時間乾燥し、その後300℃
、3時間焼成することによりCuOZn0−AIzOs
の複合酸化物を得る。この複合酸化物とr−Al2O3
を60〜100メツシユに粉砕し、70:30(wt%
)の混合比で粉末混合した後16〜28メツシユに整粒
し、ジメチルエーテル合成用触媒を得た。この触媒を触
媒1とする。
After dropping, the mixture is aged for 1 hour, and then the precipitate is filtered and washed so that Na ions, NO, and ions are not detected. Further, dry at 100°C for 24 hours, then at 300°C.
, CuOZn0-AIzOs by firing for 3 hours
Obtain a composite oxide of This composite oxide and r-Al2O3
was crushed into 60 to 100 meshes and 70:30 (wt%
) The powders were mixed at a mixing ratio of 16 to 28 mesh, and a catalyst for dimethyl ether synthesis was obtained. This catalyst will be referred to as catalyst 1.

〔実施例2〕 上記のB液として硝酸亜鉛[Zn(NL)z ’ 6H
−0:]0.25+nol、硝酸アルミニウム[:AI
(NOa)+・9H=0 ] 0.1 molを水に添
加する以外は実施例1と同様の調製方法にてジメチルエ
ーテル合成触媒を調製した。この触媒を触媒2とする。
[Example 2] Zinc nitrate [Zn(NL)z' 6H
-0:]0.25+nol, aluminum nitrate [:AI
A dimethyl ether synthesis catalyst was prepared in the same manner as in Example 1 except that 0.1 mol of (NOa)+·9H=0] was added to water. This catalyst will be referred to as catalyst 2.

さらにB液の硝酸亜鉛CZn (NO3) 2 ” 6
H20]の量を0.3molとし、かつC液の硝酸銅[
Cu(NO3)z・3)1.01を0.325molに
する以外は実施例1と同様に調製して触媒3を、またB
液の硝酸アルミニウム[Al (No3) 3・9 H
2O〕の量を0.05molとし、かつC液の硝酸銅[
Cu(NO3)2・3)+20]を0.25molにす
る以外は実施例1と同様に調製して触媒4を得た。
Furthermore, zinc nitrate CZn (NO3) 2 ” 6 of B solution
The amount of copper nitrate [H20] was 0.3 mol, and the amount of copper nitrate [
Catalyst 3 and B
Liquid aluminum nitrate [Al (No3) 3.9 H
2O] is 0.05 mol, and the amount of copper nitrate [
Catalyst 4 was obtained in the same manner as in Example 1 except that Cu(NO3)2.3)+20] was changed to 0.25 mol.

〔実施例3〕 B液に硝酸亜鉛CZn(NO*)* ・6H20] 0
.25 molと硝酸クロム[Cr(NOs)s ・9
 H2O]を0.1mo!添加し、それ以外は実施例1
と同様の調製方法によって調製して触媒5を得た。
[Example 3] Zinc nitrate CZn (NO*)* ・6H20] 0 in B solution
.. 25 mol and chromium nitrate [Cr(NOs)s 9
H2O] 0.1 mo! Added, otherwise Example 1
Catalyst 5 was obtained by the same method as above.

さらにB液を硝酸亜鉛CZn(No、) 2 ・6t1
2o]を0、275mo! 、硝酸クロム[Cr(NO
3)3・9 H2O〕を0.05mol、硝酸アルミニ
ウム〔AI (NO3) 3・9 H2O] 0.05
mol添加し、それ以外は実施例1と同様の調製方法に
よって調製して触媒6を得た。
Further, add B solution to zinc nitrate CZn (No,) 2 ・6t1
2o] to 0, 275mo! , chromium nitrate [Cr(NO
3) 0.05 mol of 3・9 H2O], 0.05 mol of aluminum nitrate [AI (NO3) 3・9 H2O]
Catalyst 6 was obtained using the same method as in Example 1 except that mol was added.

〔実施例4〕 実施例1と同様の方法により調製した複合酸化物とr−
Al2O3を60:40,50:50(重量比)の混合
比にて粉末混合した後16〜28メツシユに整粒して触
媒7、触媒8を得た。
[Example 4] Composite oxide prepared by the same method as Example 1 and r-
After powder-mixing Al2O3 at a mixing ratio of 60:40 and 50:50 (weight ratio), catalysts 7 and 8 were obtained by sizing into 16 to 28 meshes.

〔比較例1〕 実施例1と同様の組成の溶液A、B、Cを用いて、下記
の方法により従来触媒を調製した。
[Comparative Example 1] Using solutions A, B, and C having the same composition as in Example 1, a conventional catalyst was prepared by the following method.

まず、溶液Bに溶液Cを一度に加え亜鉛、アルミニウム
、銅イオンを有する酸性水溶液(pH=3)を得る。こ
の水溶液に溶液Aを攪拌しながら一定速度で30分間に
わたり滴下する。滴下終了時のpHは8であった。滴下
後2時間の熟成を行い、その後実施例1と同様の調製方
法にて複合酸化物を得、さらにγ−A1203と70:
30 (重量比)にて粉末混合することにより触媒9を
得た。
First, solution C is added to solution B at once to obtain an acidic aqueous solution (pH=3) containing zinc, aluminum, and copper ions. Solution A is added dropwise to this aqueous solution at a constant rate for 30 minutes while stirring. The pH at the end of the dropwise addition was 8. Aging was performed for 2 hours after dropping, and then a composite oxide was obtained by the same preparation method as in Example 1, and further γ-A1203 and 70:
Catalyst 9 was obtained by powder mixing at a weight ratio of 30%.

〔実験例〕[Experiment example]

実施例1〜3、比較例1にて得られた触媒1〜9のメタ
ノール合成反応の活性評価試験を下記の条件にて行った
An activity evaluation test for the methanol synthesis reaction of catalysts 1 to 9 obtained in Examples 1 to 3 and Comparative Example 1 was conducted under the following conditions.

原料ガス: L 67mo1%、  Co 33mo1
%GH3V:8000h−’ 反応温度:250℃ 反応圧カニ 50 kg/cJG 触媒は2 ccをマイクロリアクターに充填し、823
%/N、ペースガスで還元処理した後、原料ガスを供給
し、初期活性評価を行った。各触媒の初期活性評価結果
を表1に示す。
Raw material gas: L 67mo1%, Co 33mo1
%GH3V: 8000 h-' Reaction temperature: 250°C Reaction pressure 50 kg/cJG 2 cc of catalyst was packed into a microreactor, and 823
%/N, and after reduction treatment with pace gas, raw material gas was supplied and initial activity evaluation was performed. Table 1 shows the initial activity evaluation results for each catalyst.

上記結果より、本発明より得られた触媒1〜8は触媒9
に比べ初期CD転化率が高いことがわかる。
From the above results, catalysts 1 to 8 obtained according to the present invention are different from catalyst 9.
It can be seen that the initial CD conversion rate is higher than that of the sample.

〔実験例〕[Experiment example]

初期活性評価に供した触媒1、触媒9を耐久性試験用触
媒に供した。反応条件は実施例5と同様である。活性評
価を表2に示す。
Catalyst 1 and Catalyst 9, which were used for initial activity evaluation, were used as catalysts for durability testing. The reaction conditions are the same as in Example 5. Activity evaluation is shown in Table 2.

表2 表2に示すように本発明で調製したジメチルエーテル合
成触媒は従来触媒に比べて大幅に耐久部に優れているこ
とが判明した。
Table 2 As shown in Table 2, the dimethyl ether synthesis catalyst prepared according to the present invention was found to be significantly superior in durability compared to conventional catalysts.

〔発明の効果〕〔Effect of the invention〕

本発明により、水素と一酸化炭素より、初期活性が高く
、高寿命のジメチルエーテル合成用触媒が得られる。
According to the present invention, a catalyst for dimethyl ether synthesis having higher initial activity and longer life than hydrogen and carbon monoxide can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 1、水素及び一酸化炭素からジメチルエーテルを合成す
る触媒の調製方法において、所定温度に保温した沈殿剤
水溶液を攪拌しながらアルミニウムおよび/またはクロ
ムと亜鉛を含んだ水溶液を沈殿剤水溶液に滴下して沈殿
物を生成させ、滴下後、銅を含んだ水溶液を滴下して沈
殿物を生成させ、さらに熟成した沈殿物を洗浄、乾燥後
焼成することによって複合酸化物を得、この複合酸化物
とγ−アルミナを粉末混合することを特徴とするジメチ
ルエーテル合成用触媒の調製方法。
1. In a method for preparing a catalyst for synthesizing dimethyl ether from hydrogen and carbon monoxide, an aqueous solution containing aluminum and/or chromium and zinc is dropped into an aqueous precipitant solution while stirring the aqueous precipitant solution kept at a predetermined temperature to cause precipitation. After dropping, an aqueous solution containing copper is added dropwise to form a precipitate, and the aged precipitate is washed, dried and fired to obtain a composite oxide, and this composite oxide and γ- A method for preparing a catalyst for dimethyl ether synthesis, which comprises mixing alumina powder.
JP1143050A 1989-06-07 1989-06-07 Preparation of catalyst for synthesizing dimethyl ether Pending JPH038446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1143050A JPH038446A (en) 1989-06-07 1989-06-07 Preparation of catalyst for synthesizing dimethyl ether

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1143050A JPH038446A (en) 1989-06-07 1989-06-07 Preparation of catalyst for synthesizing dimethyl ether

Publications (1)

Publication Number Publication Date
JPH038446A true JPH038446A (en) 1991-01-16

Family

ID=15329747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1143050A Pending JPH038446A (en) 1989-06-07 1989-06-07 Preparation of catalyst for synthesizing dimethyl ether

Country Status (1)

Country Link
JP (1) JPH038446A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5753716A (en) * 1997-02-21 1998-05-19 Air Products And Chemicals, Inc. Use of aluminum phosphate as the dehydration catalyst in single step dimethyl ether process
JP2006225615A (en) * 2005-02-21 2006-08-31 Mitsubishi Heavy Ind Ltd Method for producing desulfurization agent for hydrocarbonaceous fuel and desulfurization agent for hydrocarbonaceous fuel
KR100863491B1 (en) * 2007-05-01 2008-10-15 한국과학기술원 Hybrid catalysts for dme steam reforming to produce hydrogen as fuel cell feed, and application to producing hydrogen and the method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5753716A (en) * 1997-02-21 1998-05-19 Air Products And Chemicals, Inc. Use of aluminum phosphate as the dehydration catalyst in single step dimethyl ether process
JP2006225615A (en) * 2005-02-21 2006-08-31 Mitsubishi Heavy Ind Ltd Method for producing desulfurization agent for hydrocarbonaceous fuel and desulfurization agent for hydrocarbonaceous fuel
KR100863491B1 (en) * 2007-05-01 2008-10-15 한국과학기술원 Hybrid catalysts for dme steam reforming to produce hydrogen as fuel cell feed, and application to producing hydrogen and the method thereof

Similar Documents

Publication Publication Date Title
SU1279516A3 (en) Catalyst for producing methanol and higher alcohols
US4305842A (en) Preparation of improved catalyst composition
US6054497A (en) Process for producing methanol and catalyst therefor
EP0164156B1 (en) Process for the preparation of a catalyst mixture and its use
JP4467675B2 (en) Dimethyl ether synthesis catalyst and synthesis method
JP3396780B2 (en) MFI zeolite and method for preparing the same
EP0571090A1 (en) Catalyst with phosphate carrier and its use in the conversion of alcohols into hydrocarbons
JPH02280836A (en) Preparation of catalyst for dimethyl ether synthesis
JPH038446A (en) Preparation of catalyst for synthesizing dimethyl ether
JPS647974B2 (en)
JP2685130B2 (en) Ethanol production method
GB2118063A (en) Catalysts and catalyst supporters
JPS5815023A (en) Crystalline aluminosilicate composition
JPS6339287B2 (en)
JPH0368450A (en) Production of catalyst for synthesis of methanol
JP3510406B2 (en) Methanol synthesis catalyst
US3840478A (en) Catalyst of copper oxide-zinc-oxide-chromium oxide for methanol synthesis
JPH0456015B2 (en)
JPH01228554A (en) Platinum group metal supporting mordenite and manufacture thereof
JPS6065714A (en) Zeolite containing iron-titanium-various kinds of metals, and catalyst containing it as active ingredient
JPS6118433A (en) Catalyst for synthesizing hydrocarbon
JPS60100528A (en) Production of hydrocarbon
JPH08224472A (en) Catalyst for hydration reaction of olefin and its production
JPH09122494A (en) Synthetic zeolite zsm-5 containing cu, manufacture thereof and manufacture of nitrogen oxide decomposition catalyst
JP3427424B2 (en) Method for producing metal-containing silicate