JPS6065714A - Zeolite containing iron-titanium-various kinds of metals, and catalyst containing it as active ingredient - Google Patents

Zeolite containing iron-titanium-various kinds of metals, and catalyst containing it as active ingredient

Info

Publication number
JPS6065714A
JPS6065714A JP58172738A JP17273883A JPS6065714A JP S6065714 A JPS6065714 A JP S6065714A JP 58172738 A JP58172738 A JP 58172738A JP 17273883 A JP17273883 A JP 17273883A JP S6065714 A JPS6065714 A JP S6065714A
Authority
JP
Japan
Prior art keywords
titanium
iron
source
metals
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58172738A
Other languages
Japanese (ja)
Other versions
JPH06644B2 (en
Inventor
Yoji Sano
庸治 佐野
Yasuhiko Kamitoku
神徳 泰彦
Kiyomi Okabe
岡部 清美
Hiroshi Yanagisawa
柳沢 浩
Haruo Takatani
高谷 晴生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58172738A priority Critical patent/JPH06644B2/en
Publication of JPS6065714A publication Critical patent/JPS6065714A/en
Publication of JPH06644B2 publication Critical patent/JPH06644B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:The titled catalyst capable of controlling distribution of number of carbons of reaction product, having high activity, and high ratio of olefin in the reaction product, obtained by subjecting a mixture of an iron source, a Ti source, and sources of various kinds of metals to hydrothermal synthesis. CONSTITUTION:A silica source (e.g., water-glass) is blended with an iron source (e.g., FeSO4), a Ti source (e.g., TiCl4), sources (M) of various kinds of metals such as V, Mn, Zn, Sr, Mo, etc., an alkali metal ion source, and a tetraalkyl ammonium source (R4N<+>) to make molar ratio of Si/Fe of >=2, Ti/Fe of 0.01-3, M/Fe of 0.01-3, H2O/SiO2 of 30-70, R4N<+>/SiO2 of 0.08-0.16, OH<->/SiO2 of 0.07-0.3. The prepared aqueous mixture is subjected to hydrothermal synthesis at normal pressure or pressure of the mixture of its own at 90-200 deg.C for 10- 200hr, to give a catalyst comprising crystalline silicate containing iron-titanium- various kinds of metals as an active ingredient.

Description

【発明の詳細な説明】 本発明は新規な鉄−チタン−各種金属含有結晶性シリケ
ート及びそれを活性成分として含む一酸化炭素と水素の
混合ガスから炭化水素を合成するための触媒に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel iron-titanium-various metal-containing crystalline silicate and a catalyst for synthesizing hydrocarbons from a mixed gas of carbon monoxide and hydrogen containing the same as an active ingredient. .

従来、触媒の存在下に一酸化炭素と水素とを反応させる
ことにより炭化水素を製造する方法は、フィッシャー・
トロプシュ合成として知られており、次式に示すように
、coと142がらc−c結合を形成して行く触媒反応
である。
Traditionally, the method of producing hydrocarbons by reacting carbon monoxide and hydrogen in the presence of a catalyst is the Fischer
This is known as Tropsch synthesis, and is a catalytic reaction in which co and 142 form a c-c bond, as shown in the following formula.

Co + 2 H2→n + cH2+ n +、H2
0このフィッシャー・トロプシュ合成においては、CO
が水素化を受けなから重縮合して行くわけであるから、
触媒の種類や反応条件により、前記式のnの値、即ち、
生成物のc−C重合度がさまざまに変るし、生成物の種
類もオレフィンやパラフィンの他、水素化脱水の不完全
な生成物であるアルデヒドやケトン等がある。
Co + 2 H2→n + cH2+ n +, H2
0 In this Fischer-Tropsch synthesis, CO
Since it does not undergo hydrogenation, it undergoes polycondensation,
Depending on the type of catalyst and reaction conditions, the value of n in the above formula, i.e.,
The C-C polymerization degree of the products varies, and the types of products include olefins and paraffins, as well as aldehydes and ketones, which are incomplete products of hydrodehydration.

フィッシャー・トロプシュ合成においては、一般に鉄系
触媒が採用され、微量のアルカリ金属塩を添加したもの
は、C−C重合度の著しく増大した生成物を与えるが、
生成物の炭素数分布の制御が著しく困難であるという欠
点を有し、この欠点の改良がフィッシャー・トロプシュ
合成における最大の技術課題となっている。
In Fischer-Tropsch synthesis, iron-based catalysts are generally employed, and when a trace amount of alkali metal salt is added, a product with a significantly increased degree of C-C polymerization is obtained.
It has the drawback that it is extremely difficult to control the carbon number distribution of the product, and improving this drawback is the biggest technical challenge in Fischer-Tropsch synthesis.

一方、触媒に用いる種々の固体無機化合物のうち、多孔
体物質では、その細孔内壁の面積が外表面の数十倍から
数百倍あるため、触媒の活性点のほとんどは細孔内部に
あると考えられる。そこで、触媒の細孔の大きさが適当
であれば、大きすぎて細孔内に入れない分子と入れる分
子の両方が存在し、入れない分子は入れる分子に比べて
反応する機会は非常に少なくなる。生成物に関しても狭
い細孔内ではその細孔以上の大きさの分子は生成されな
い。このように細孔の構造と分子の形状という関係が触
媒の選択性を決めており、ゼオライトもこうした触媒の
一つである。ゼオライトは、一般に結晶性アルミノケイ
酸塩であり、(S’Oz)と(Alo□)−とが3次元
的に組み合わされた多孔性結晶であり、細孔の入口は結
晶物質であるため、どれも等しい大きさになっており分
子形状選択性触媒として好適である。
On the other hand, among the various solid inorganic compounds used in catalysts, in porous materials, the area of the inner walls of the pores is several tens to hundreds of times larger than the outer surface, so most of the active sites of the catalyst are located inside the pores. it is conceivable that. Therefore, if the pore size of the catalyst is appropriate, there will be both molecules that are too large to fit into the pores and molecules that can fit into the pores, and molecules that cannot enter will have a much smaller chance of reacting than molecules that can. Become. As for the product, molecules larger than the pore are not produced within the narrow pore. In this way, the relationship between pore structure and molecular shape determines the selectivity of a catalyst, and zeolite is one such catalyst. Zeolite is generally a crystalline aluminosilicate, and is a porous crystal in which (S'Oz) and (Alo□)- are combined three-dimensionally. They have the same size and are suitable as molecular shape selective catalysts.

このような観点から、フィッシャー・トロプシュ合成触
媒とゼオライトとを組み合わせることがイくツカナサレ
テイル。(p、 l)、 Caesar、J、A。
From this point of view, it is possible to combine a Fischer-Tropsch synthesis catalyst with zeolite. (p, l), Caesar, J.A.

13rennan、W、 E、 Qarwood、J、
 C1tio、J、 Catal、。
13rennan, W. E., Qarwood, J.
C1tio, J., Catal.

56 、274 (1979) ;V、 U、 S、 
Rao、L J、 QormleyHydrocarb
on Proceeding 、NOV、l 39 (
1!l 80) +E、P、20140.20141 
;U、S、I’、4298695 。
56, 274 (1979); V, U, S,
Rao, L.J., Qormley Hydrocarb
on Proceeding, NOV, l 39 (
1! l 80) +E, P, 20140.20141
;U, S, I', 4298695.

4269784) しかしながら、従来提案されたフイツシヤー・]・ロブ
シュ合成触媒とゼオライトの組合せは、両者を単に混合
したり、ゼオライトにフイツシヤー・トロプシュ触媒活
性成分を単に含浸担持させた利′度であり、生成物の炭
素数分布制御の点では未だ満足すべき結果を与えていな
い。また、最近においては、Fe、Ni、i’i、Ru
、Rhなどの結晶性金属シリケートが合成され、フィッ
シャー・トロプシュ合成触媒としての使用が試みられて
いるが、(U、S、P、3941871;E、P、00
50525 Al:特開昭56−96720;特開昭5
7−183316:特開昭57−183317;特開昭
57−183320:特開昭58−74521Lこの場
合、生成物の炭素数分布制御に対し幾分の改良が見られ
るものの、寸だ十分とはいえない。
4269784) However, the previously proposed combinations of Fischer-Tropsch synthesis catalysts and zeolites involve simply mixing the two or simply impregnating and supporting the active components of the Fischer-Tropsch catalyst on the zeolite. In terms of carbon number distribution control, satisfactory results have not yet been achieved. In addition, recently, Fe, Ni, i'i, Ru
, Rh and other crystalline metal silicates have been synthesized and attempts have been made to use them as Fischer-Tropsch synthesis catalysts;
50525 Al: JP-A-56-96720; JP-A-Sho 5
7-183316: JP-A-57-183317; JP-A-57-183320: JP-A-58-74521L In this case, although some improvement can be seen in controlling the carbon number distribution of the product, it is still insufficient. I can't say that.

また、生成物に占めるオレフィンの割合も少なく、低級
オレフィン合成触媒としては不十分である。
Furthermore, the proportion of olefin in the product is small, making it insufficient as a catalyst for lower olefin synthesis.

本発明者らは、従来技術に見られる前記問題を解決し、
生成物の炭素数分布制御を可能にさせると共に、活性の
高く、生成物中に占めるオレフィンの割合の大きい触媒
の開発をすべく鋭意研究を重ねた結果、鉄源、チタン源
および各種金属源の混合物を用いて水熱合成された鉄−
チタン−各種金属含有結晶性シリケートがその目的に適
合することを見出し、本発明を完成するに到った。
The present inventors have solved the above problems found in the prior art,
As a result of intensive research aimed at developing a catalyst that makes it possible to control the carbon number distribution of the product, has high activity, and has a large proportion of olefins in the product, we have found that iron sources, titanium sources, and various metal sources have been developed. Iron hydrothermally synthesized using a mixture
It was discovered that titanium-various metal-containing crystalline silicates are suitable for this purpose, and the present invention was completed.

本発明の鉄−チタン−各種金属含有結晶性シリケートは
、従来公知の水熱合成法に従って結晶性シリケートを合
成するに際し、鉄源、チタン源および各種金属源の混合
物を用いて形成されたものである。
The iron-titanium-various metal-containing crystalline silicate of the present invention is formed using a mixture of an iron source, a titanium source, and various metal sources when synthesizing crystalline silicate according to a conventionally known hydrothermal synthesis method. be.

前記したように、結晶性金属シリケート自体は公知であ
るが、鉄、チタンのほかに第3成分としてV 、 Mn
 、 Srなどの金属化合物を含む混合物を用力い。
As mentioned above, the crystalline metal silicate itself is well known, but in addition to iron and titanium, it also contains V and Mn as a third component.
, a mixture containing metal compounds such as Sr is used.

本発明の鉄−チタン−各種金属含有結晶性シケートは、
従来公知の方法に従って、シリカ源。
The iron-titanium-various metal-containing crystalline silicate of the present invention is
silica source according to conventionally known methods.

鉄蔚、チタン源、各種金属源およびアルカリ金属イオン
源からなる水性混合物を水熱合成反応させることによっ
て製造される。この場合、反応助剤とし、て、例えば、
各種のテトラアルキルアンモニウム化合物等の慣用の有
機化合物を用いることができる。シリカ源としては、水
ガラス、/す力ゲル、シリカゾル又はシリカが使用され
る。鉄源としては、硫酸第1鉄、塩化第1鉄、硫酸第2
鉄、塩化第2鉄等が用いられる。チタン源としては、オ
キシ硫酸チタン、硫酸チタン、四塩化チタンなどが用い
られる。アルカリ金属イオン源としては、水ガラス中の
酸化ナトリウム、アルミン師ソーダ、水酸化ナトリウム
、水酸化カリウム等が用いられる。反応助剤としては従
来公知の各種有機化合物、例えば、テトラホスホニウム
化合物、テトラアルキル化合物、エチレンジアミン、コ
リン等も使用可能であるが、好ましくはテトラアルキル
アンモニウム化合物が好ましく、中でも臭化テトラアル
キルアンモニウムが特に好ましい。
It is produced by subjecting an aqueous mixture consisting of iron sludge, a titanium source, various metal sources, and an alkali metal ion source to a hydrothermal synthesis reaction. In this case, the reaction aid may be, for example,
Conventional organic compounds such as various tetraalkylammonium compounds can be used. As a silica source, water glass, silica gel, silica sol or silica is used. Iron sources include ferrous sulfate, ferrous chloride, and ferric sulfate.
Iron, ferric chloride, etc. are used. As the titanium source, titanium oxysulfate, titanium sulfate, titanium tetrachloride, etc. are used. As the alkali metal ion source, sodium oxide in water glass, alumina soda, sodium hydroxide, potassium hydroxide, etc. are used. Various conventionally known organic compounds such as tetraphosphonium compounds, tetraalkyl compounds, ethylenediamine, choline, etc. can be used as reaction aids, but tetraalkylammonium compounds are preferred, and among them, tetraalkylammonium bromide is particularly preferred. preferable.

本発明の鉄−チタン−各種金属含有結晶性シリケートを
製造する場合、その原料反応混合物としては、一般に次
の組成を有するのが好ましい。
When producing the iron-titanium-various metal-containing crystalline silicate of the present invention, the raw material reaction mixture generally preferably has the following composition.

Si/re ’(モル比):2以上 Ti/Fe (〃 )二〇01〜3 M/Fe (p ) :0.01〜3 H20/5iO2(〃):30〜7゜ 11.4N+/5io2(” ) : 0.08〜0.
160H/Sin□(〃) : 0.07〜0.3ここ
でOH−は混合物中の水酸イオン量を示し、この値の調
整にはアルカリ金属水酸化物、アルカリ金属酸化物等を
用いる。R4N+はテトラアルキルアンモニウムイオン
量を示す。また、MはV。
Si/re' (molar ratio): 2 or more Ti/Fe (〃 ) 2001~3 M/Fe (p): 0.01~3 H20/5iO2 (〃): 30~7゜11.4N+/5io2 (''): 0.08~0.
160H/Sin□(〃): 0.07 to 0.3 Here, OH- indicates the amount of hydroxide ions in the mixture, and an alkali metal hydroxide, an alkali metal oxide, etc. are used to adjust this value. R4N+ indicates the amount of tetraalkylammonium ion. Also, M is V.

Mn 、 Zn 、 Sr 、 Moなどの各種金属を
示す。
Indicates various metals such as Mn, Zn, Sr, and Mo.

このような成分組成の水性ゲル混合物を通常の結晶性シ
リケートが生成する温度、圧力、時間の条件下に保持し
て水熱合成させる。この場合、反応温度は90〜200
”C1好ましくは95〜170″Cであり、反応混合物
を常圧下で還流を行ないながら、文は密閉容器内での自
己圧力下のもとに、10〜200時間加熱攪拌すること
によって水熱合成を行い、鉄−チタン−各種金属含有結
晶性シリケートを得ることができる。反応生成物は口過
や遠心分離により処理し、固形物を水溶液から分離する
An aqueous gel mixture having such a component composition is maintained under conditions of temperature, pressure, and time under which ordinary crystalline silicate is produced, and hydrothermal synthesis is carried out. In this case, the reaction temperature is 90-200
"C1" is preferably 95 to 170"C, and while the reaction mixture is refluxed under normal pressure, hydrothermal synthesis is carried out by heating and stirring for 10 to 200 hours under autogenous pressure in a closed container. By carrying out this process, iron-titanium-various metal-containing crystalline silicate can be obtained. The reaction product is processed by filtration or centrifugation to separate solids from the aqueous solution.

イ(Iられた固形物はさらに水洗処理を施すことによっ
て、余剰のイオン性物質を除去し、次いで乾燥すること
により、反応助剤として用いた有機化合物を含む鉄−チ
タン−各種金属含有結晶性シリケートを得ることができ
る。このものを空気中で300〜900℃、好ましくは
400〜700℃の温度で1〜100時間焼成すること
によって、有機化合物を含まない鉄−チタン−各種金属
含有結晶性シリケートを得ることができる。
(I) The solid material obtained is further washed with water to remove excess ionic substances, and then dried to form iron-titanium-various metal-containing crystalline materials containing organic compounds used as reaction aids. Silicates can be obtained. By calcining this material in air at a temperature of 300 to 900°C, preferably 400 to 700°C for 1 to 100 hours, iron-titanium-various metal-containing crystalline materials containing no organic compounds can be obtained. Silicates can be obtained.

本発明の鉄−チタン−各種金属含有結晶性シリケートは
、通常、反応助剤として用いた有機化合物の除去された
形で触媒として用いられるが、この場合、鉄−チタン−
各種金属含有結晶性シリケートは、カチオンとして含ま
れているアルカリ金属イオンを他のカチオンに交換して
用いることもできる。本発明の鉄−チタン−各種金属含
有結晶性シリケートは、−酸化炭素と水素との混合ガス
を原料とする炭化水素の合成用触媒、即ち、フィッシャ
ー・トロプシュ合成用触媒として利用される。この場合
のフィッシャー・トロプシュ合成反応条件としては、従
来公知の条件が採用され、例えば、反応温度としては2
00〜500℃、好ましくは300〜450℃が採用さ
れ、また反応圧力としては1〜100気圧、好ましくは
10〜50気圧が採用される。原料混合ガス中のH2/
Coモル比は0.2〜3、好ましくは0.5〜1である
The iron-titanium-various metal-containing crystalline silicate of the present invention is usually used as a catalyst in the form in which the organic compound used as a reaction aid has been removed.
Various metal-containing crystalline silicates can also be used by replacing the alkali metal ions contained as cations with other cations. The iron-titanium-various metal-containing crystalline silicate of the present invention is used as a catalyst for synthesizing hydrocarbons using a mixed gas of carbon oxide and hydrogen as a raw material, that is, as a catalyst for Fischer-Tropsch synthesis. In this case, conventionally known conditions are adopted as the Fischer-Tropsch synthesis reaction conditions, for example, the reaction temperature is 2.
00 to 500°C, preferably 300 to 450°C, and the reaction pressure is 1 to 100 atm, preferably 10 to 50 atm. H2/ in raw material mixed gas
The Co molar ratio is 0.2-3, preferably 0.5-1.

本発明の鉄−チタン−各種金属含有結晶性シリケートは
、フィッシャー・トロプシュ合成反応用触媒として有利
に利用される他、ゼオライトを触媒とする他の種々の反
応、例えば、メタノールやジメチルエーテルから炭化水
素を合成する場合の反応の他、炭化水素の分解反応、オ
レフィンの重合反応、有機化合物の水素化反応、芳香族
のアルキル什E爾竺W七1斤入紬摺ムIイメ、壬I田汀
砒プ東る。
The iron-titanium-various metal-containing crystalline silicate of the present invention can be advantageously used as a catalyst for Fischer-Tropsch synthesis reactions, and can also be used in various other reactions using zeolites as catalysts, such as converting hydrocarbons from methanol or dimethyl ether. In addition to synthesis reactions, hydrocarbon decomposition reactions, olefin polymerization reactions, hydrogenation reactions of organic compounds, aromatic alkyl reactions, Putoru.

次に、本発明を実施例によりさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例1〜6 コロイダルシリカ(触媒化成if’l、Cataloi
dS1−30)、硫酸第1鉄・7水塩、オキシ硫酸チタ
ン・2水塩、各種金属化合物、水酸化カリウム(純i8
5%)、臭化テトラn−プロピルアンモニウム及び水を
下記第1表に示した組成で含有する均一な水性ゲル状混
合物を、密閉容器内に入れ、自己■一方力下150℃で
40時間加熱攪拌した。反応混合物を遠心分離処理して
固形物を分離し、この固形物をイオン性物質がなくなる
まで水洗し、100℃で乾燥した後、500°Cで15
時間焼成し、鉄−チタン−各種金属含有結晶性シリケー
トを得た。これらのもののX線回折パターンはいずれも
、モーピル社のZSM−5ゼオライトのそれと実質的に
同一であることが確認された。また、その+3 E I
l+表面積は約300m/、!?であった。
Examples 1 to 6 Colloidal silica (catalyst chemical synthesis if'l, Cataloi
dS1-30), ferrous sulfate heptahydrate, titanium oxysulfate dihydrate, various metal compounds, potassium hydroxide (pure i8
A homogeneous aqueous gel-like mixture containing tetra-n-propylammonium bromide (5%), tetra-n-propylammonium bromide, and water in the composition shown in Table 1 below was placed in a sealed container and heated under one-sided pressure at 150°C for 40 hours. Stirred. The reaction mixture was centrifuged to separate solids, washed with water until free of ionic substances, dried at 100°C, and then incubated at 500°C for 15 minutes.
After firing for a period of time, a crystalline silicate containing iron, titanium, and various metals was obtained. The X-ray diffraction patterns of all of these were found to be substantially identical to that of Mopil's ZSM-5 zeolite. Also, that +3 E I
l+surface area is approximately 300m/,! ? Met.

実施例8〜14 実施例1〜7で得られた鉄−チタン−各種金属含有結晶
性シリケート焼成体を圧力400 kg/cIn2で打
錠し、次いでこれを粉砕して15〜30メツシユにそろ
えたもの20mgを内径20 mmの反応管に充填り、
7’t。10Qml/minの速度400〜500℃で
15時間水素処理し、ひき続き水素を一酸化炭素と水素
の混合ガス(モル比1:1)に切り換えQH8V−10
00hr で300〜450℃まで25°C間隔で反応
を行った。生成物の分析はアルゴンを内部標準としてガ
スクロマトグラフを用いて行った。第2表にその反応結
果を示す。なお、以下に示す転化率及び選択率はいずれ
も炭素基準であり、選択率はCO転化率のうちCO2へ
の転化(CO2収率)を除いたものを100として算出
した。
Examples 8 to 14 The iron-titanium-various metal-containing crystalline silicate fired bodies obtained in Examples 1 to 7 were compressed into tablets at a pressure of 400 kg/cIn2, and then crushed into 15 to 30 meshes. Fill a reaction tube with an inner diameter of 20 mm with 20 mg of the
7't. Hydrogen treatment was performed at a rate of 10Qml/min at 400 to 500°C for 15 hours, and then the hydrogen was changed to a mixed gas of carbon monoxide and hydrogen (molar ratio 1:1).QH8V-10
The reaction was carried out at 25°C intervals from 300 to 450°C for 00 hr. Analysis of the product was performed using a gas chromatograph using argon as an internal standard. Table 2 shows the reaction results. Note that the conversion rate and selectivity shown below are both based on carbon, and the selectivity was calculated by setting the CO conversion rate excluding the conversion to CO2 (CO2 yield) as 100.

この反応結果と前記第2表のそれとを比較してわかるよ
うに、鉄−チタン−各種金属含有結晶性シリケートの方
が、フィッシャー・トロプンユ合成触媒とりわけ低級オ
レフィン合成触媒としてずぐれていることは明らかであ
る。
As can be seen by comparing this reaction result with those in Table 2 above, it is clear that iron-titanium-various metal-containing crystalline silicate is superior as a Fischer-Tropune synthesis catalyst, especially as a lower olefin synthesis catalyst. It is.

Claims (1)

【特許請求の範囲】[Claims] (1)鉄源、チタン源および各種金属(V、Mn。 Zn 、 Sr 、 MOなど)源の混合物を用いて水
熱合成反応により形成されたことを特徴とする鉄−チタ
ン−各種金属含有結晶性シリケートっ(2) 該鉄−チ
タンー各種金属含有結晶性シリケートを活性成分として
含有することを特徴とする一酸化炭素と水素との混合ガ
スから炭化水素を合成するための触媒。
(1) An iron-titanium-various metal-containing crystal formed by a hydrothermal synthesis reaction using a mixture of an iron source, a titanium source, and various metal (V, Mn, Zn, Sr, MO, etc.) sources (2) A catalyst for synthesizing hydrocarbons from a mixed gas of carbon monoxide and hydrogen, characterized by containing the iron-titanium-various metal-containing crystalline silicate as an active ingredient.
JP58172738A 1983-09-19 1983-09-19 Method for producing iron-titanium-metal-containing crystalline silicate Expired - Lifetime JPH06644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58172738A JPH06644B2 (en) 1983-09-19 1983-09-19 Method for producing iron-titanium-metal-containing crystalline silicate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58172738A JPH06644B2 (en) 1983-09-19 1983-09-19 Method for producing iron-titanium-metal-containing crystalline silicate

Publications (2)

Publication Number Publication Date
JPS6065714A true JPS6065714A (en) 1985-04-15
JPH06644B2 JPH06644B2 (en) 1994-01-05

Family

ID=15947397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58172738A Expired - Lifetime JPH06644B2 (en) 1983-09-19 1983-09-19 Method for producing iron-titanium-metal-containing crystalline silicate

Country Status (1)

Country Link
JP (1) JPH06644B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011184573A (en) * 2010-03-09 2011-09-22 Jx Nippon Oil & Energy Corp Process for production of liquid hydrocarbon
JP2012232891A (en) * 2011-04-27 2012-11-29 Chinese Petrochemical Dev Corp Titanium-silicalite molecular sieve, method for preparing the same and method for preparing cyclohexanone oxime using the molecular sieve
JP2013040092A (en) * 2011-08-11 2013-02-28 Chinese Petrochemical Dev Corp Titanium-silicalite molecular sieve, method for preparing the same and method for preparing cyclohexanone oxime using the molecular sieve

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5376199A (en) * 1976-12-16 1978-07-06 Shell Int Research Crystalline silicate* method of making same and use thereof as absorbent* extracting agent* drying agent* ion exchanging agent and molecular sieve
JPS5874521A (en) * 1981-10-17 1983-05-06 ヘキスト・アクチエンゲゼルシヤフト Titanium-containing zeolites, manufacture and use

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5376199A (en) * 1976-12-16 1978-07-06 Shell Int Research Crystalline silicate* method of making same and use thereof as absorbent* extracting agent* drying agent* ion exchanging agent and molecular sieve
JPS5874521A (en) * 1981-10-17 1983-05-06 ヘキスト・アクチエンゲゼルシヤフト Titanium-containing zeolites, manufacture and use

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011184573A (en) * 2010-03-09 2011-09-22 Jx Nippon Oil & Energy Corp Process for production of liquid hydrocarbon
JP2012232891A (en) * 2011-04-27 2012-11-29 Chinese Petrochemical Dev Corp Titanium-silicalite molecular sieve, method for preparing the same and method for preparing cyclohexanone oxime using the molecular sieve
JP2013040092A (en) * 2011-08-11 2013-02-28 Chinese Petrochemical Dev Corp Titanium-silicalite molecular sieve, method for preparing the same and method for preparing cyclohexanone oxime using the molecular sieve

Also Published As

Publication number Publication date
JPH06644B2 (en) 1994-01-05

Similar Documents

Publication Publication Date Title
CA1283648C (en) Zeolite ssz-25
JP2004530619A (en) Synthetic porous crystalline material ITQ-12, its synthesis and use
JPH02258618A (en) New crystalline (metalo) silicate and germanate
JPS63162521A (en) Novel synthesis of ferric silicate type zeolites, obtained substances and their uses
CN108622914A (en) The method that IZM-2 zeolites are synthesized in the presence of template 1,6- bis- (methyl piperidine) hexane dihydroxides
CN101797516B (en) Method for preparing ZSM-5 zeolite/clay composite catalytic material
US3650990A (en) Catalyst and method for preparing same
US4462971A (en) Preparation of crystalline metal silicate and borosilicate compositions
JPS63500238A (en) Crystalline zeolite LZ-202 and its manufacturing method
EP0152485A1 (en) Binder-free zeolite catalyst, process for its preparation, and catalytic reaction using same
JP2559066B2 (en) Method for synthesizing crystalline silicate ZSM-11
JPH06305724A (en) Synthetic porous material and its production
JP4247504B2 (en) Dealuminated zeolite IM-5
JP4478572B2 (en) Method for producing doped pentasil-type zeolite using doped reactant
JPS6065714A (en) Zeolite containing iron-titanium-various kinds of metals, and catalyst containing it as active ingredient
JPH0528278B2 (en)
JPH0228523B2 (en)
ZA200404734B (en) Porous crystalline material (itq-21) and the method of obtaining same in the absence of fluoride ions
JP4123546B2 (en) Zeolite OU-1 and synthesis method thereof
JP3365770B2 (en) Zeolite KL containing Fe
JPS59174519A (en) Crystalline iron silicate and catalyst containing it as active component
JPS60238150A (en) Preparation of nickel-containing crystalline alumino silicate
JPS5983927A (en) Novel crystalline aluminosilicate zeolite and its preparation
AU597993B2 (en) Catalyst composition and a process for the preparation therewith of hydrocarbons from synthesis gas
JPS6121926B2 (en)