JPH0382997A - Spent nuclear fuel reprocessing method by low temperature and high load purex method - Google Patents

Spent nuclear fuel reprocessing method by low temperature and high load purex method

Info

Publication number
JPH0382997A
JPH0382997A JP1218880A JP21888089A JPH0382997A JP H0382997 A JPH0382997 A JP H0382997A JP 1218880 A JP1218880 A JP 1218880A JP 21888089 A JP21888089 A JP 21888089A JP H0382997 A JPH0382997 A JP H0382997A
Authority
JP
Japan
Prior art keywords
uranium
plutonium
extraction
neptunium
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1218880A
Other languages
Japanese (ja)
Other versions
JP2858805B2 (en
Inventor
Katsuichi Tatemori
勝一 館盛
Nobuo Kubo
伸夫 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP21888089A priority Critical patent/JP2858805B2/en
Priority to FR9008286A priority patent/FR2651364B1/en
Publication of JPH0382997A publication Critical patent/JPH0382997A/en
Application granted granted Critical
Publication of JP2858805B2 publication Critical patent/JP2858805B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/42Reprocessing of irradiated fuel
    • G21C19/44Reprocessing of irradiated fuel of irradiated solid fuel
    • G21C19/46Aqueous processes, e.g. by using organic extraction means, including the regeneration of these means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Extraction Or Liquid Replacement (AREA)

Abstract

PURPOSE:To make possible the separation and recovery of uranium, plutonium and neptunium in a high recovery rate and high purity by using a series of multistage countercurrent solvent extraction processes (tributyl phosphate extractive agent) including a low temperature process. CONSTITUTION:In order to separate uranium and plutonium from each other, the temperature of an extraction system is reduced down to 0-5 deg.C. Next uranium and plutonium can be simply separated without regulation and control of a valence with the use of the effect in which a plutonium extraction division ratio is lowered by increasing a degree of concentration of uranium in an organic solvent and a uranium division ratio is increased. In addition, since plutonium is separated to recover with the use of a low temperature and high load process, uranium and neptunium left thereafter can be separated easily. Actinide elements such as uranium, plutonium, and neptunium in a spent fuel can be simply and safely separated to recover by the temperature reduction of an extraction process and the increase of a degree of uranium concentration in the organic solvent.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、発電用原子炉等から生ずる使用済核燃料中に
含まれるウラン及びプルトニウムといった有用核燃料物
質並びに、安全上重要なネプツニウムを、ピー−レック
ス法により精製分離回収する、いわゆる再処理技術の高
度化に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention provides a method for removing useful nuclear fuel materials such as uranium and plutonium, as well as neptunium, which is important for safety, contained in spent nuclear fuel generated from power reactors, etc. This relates to the sophistication of so-called reprocessing technology, which involves purification, separation and recovery using the Rex method.

(従来の技術) 従来のビューレックス法再処理は、 ■ 基本的には常温での溶媒抽出法に基すいている。但
し、酸化還元反応あるいは、ウランの逆抽出を行う抽出
器では、反応速度を促進させるため、温度を上昇させて
いる。
(Prior art) The conventional Burex method reprocessing is basically based on the solvent extraction method at room temperature. However, in extractors that perform redox reactions or reverse extraction of uranium, the temperature is raised to accelerate the reaction rate.

■ ウランとプルトニウムの安定原子価は、夫々U (
VI) 、 Pu (IV)であり、両者とも室温では
上記抽出剤に良く抽出される。そのため、ウランとプル
トニウムを相互分離する際には、Pu(IV)を抽出さ
れ難いPu(III)に還元し、pu@)  を逆抽出
することにより行っている。
■ The stable valences of uranium and plutonium are U (
VI) and Pu (IV), both of which are well extracted by the above extractant at room temperature. Therefore, when uranium and plutonium are separated from each other, Pu(IV) is reduced to Pu(III), which is difficult to extract, and pu@) is back extracted.

■ ネプツニウムは、液性により(IV)、 (V)、
 (Vl)価と原子価変動をしやすく、原子価調整が困
難であるため、現在のところ分離回収技術は確定されて
おらず、種々の方法が検討されている。
■ Neptunium is classified into (IV), (V),
(Vl) Because the valence and valence of Vl are easily fluctuated and valence adjustment is difficult, no separation and recovery technology has been determined at present, and various methods are being considered.

(発明が解決しようとする課題) ビューレックス法再処理では、ウランとプルトニウムを
相互分離するために、後者を■価に還元する必要があり
、そのためにFe (II) 、U(IV)  あるい
は硝酸ヒドロキシルア□ン(RAM)といった化学試薬
を用いたり、電気化学的還元法によっている。
(Problem to be Solved by the Invention) In the Burex method reprocessing, in order to separate uranium and plutonium from each other, it is necessary to reduce the latter to a valence. A chemical reagent such as hydroxyl ane (RAM) is used or an electrochemical reduction method is used.

これらの還元法は、 ■ 複雑な工程制御と装置を必要とするばかりでなく、 ■ Pu皿)をPuffV) K戻す酸化装置をも要し
、■ 廃棄物量の増大にも帰している また、現在迄知られている、再処理工程におけるネプツ
ニウムの回収法では、最も反応性の高いプルトニウムと
ネプツニウムの共存下で、酸化還元反応を利用してウラ
ン、プルトニウム、ネプツニウムの相互分離を試みてい
る。その結果、■ これら三つの元素が関与する酸化還
元反応は極めて複雑となり、各元素を高収率、高純度で
分離する事は困難である。
These reduction methods not only require complex process controls and equipment, but also require oxidation equipment to reconstitute the The previously known method for recovering neptunium in the reprocessing process attempts to separate uranium, plutonium, and neptunium from each other using a redox reaction in the coexistence of plutonium and neptunium, which are the most reactive. As a result, ■ The redox reaction involving these three elements becomes extremely complex, and it is difficult to separate each element with high yield and high purity.

(課題を解決するための手段) 本発明では、ウランとプルトニウムとを相互分離するた
めに、1)抽出系の温度を0〜5°Cに低減し、11)
有機溶媒中のウラン濃度を増大する事により、プルトニ
ウムの抽出分配比を低下させ、かつウランの分配比を増
大させるという効果を利用して、原子価の調整・制御を
行うことなく簡単に両元素を分離出来る。従って、誤操
作等によるトラブルも低減化出来るものである。
(Means for Solving the Problems) In the present invention, in order to mutually separate uranium and plutonium, 1) the temperature of the extraction system is reduced to 0 to 5°C; 11)
By increasing the uranium concentration in the organic solvent, the extraction and distribution ratio of plutonium is lowered and the distribution ratio of uranium is increased.By using this effect, both elements can be easily extracted without adjusting or controlling the valence. can be separated. Therefore, troubles caused by erroneous operations can be reduced.

また、本発明では、1j1)最初に、プルトニウムを低
温・高負荷工程によって分離回収するので、後に残った
ウランとネプツニウムの分離は、容易に出来る。
Furthermore, in the present invention, 1j1) first, plutonium is separated and recovered through a low-temperature, high-load process, so that the remaining uranium and neptunium can be easily separated.

すなわち、本発明による方法は、抽出工程の温度低減化
と有機溶媒中のウラン濃度の増大により、使用済核燃料
中のウラン、プルトニウム、ネプツニウムといったアク
チニド元素を、簡便がり、安全に分離・回収出来るもの
である。
In other words, the method of the present invention allows actinide elements such as uranium, plutonium, and neptunium in spent nuclear fuel to be easily and safely separated and recovered by reducing the temperature of the extraction process and increasing the uranium concentration in the organic solvent. It is.

(実施例) 本発明者らは、リン酸トリブチル−硝酸抽出系における
ウラン、プルトニウムの分配比を、種々の条件下で測定
し、さらに、いくつかの抽出サイクル工程を行ったとこ
ろ、低温・高負荷、抽出法が、ウラン、プルトニウム、
ネプツニウムの相互分離に極めて有効な事を見出した。
(Example) The present inventors measured the distribution ratio of uranium and plutonium in a tributyl phosphate-nitric acid extraction system under various conditions, and further performed several extraction cycle steps. The load and extraction method are uranium, plutonium,
We have discovered that this method is extremely effective in separating neptunium from each other.

実施例1 ウラン(Vl)、プルトニウム曲)の分配比についての
温度及びウラン濃度の依存性を検討するために、次の条
件下で抽出操作を行った。
Example 1 In order to study the dependence of the distribution ratio of uranium (Vl and plutonium) on temperature and uranium concentration, an extraction operation was performed under the following conditions.

30 vo1% リン酸トリブチル−ドデカンと2−3
M硝酸抽出系におけるU(VI)とPu(rV)の分配
比を、口、5.10.15.20.25℃の各種条件下
で測定したところ、温度が低いほど、PuQV)の分配
比は減少し、U(Vl)の分配比が増大する事、および
、有機溶媒中のウラン濃度が高いほど、両者の分配比は
減少する事がわかった。
30 vol1% tributyl phosphate-dodecane and 2-3
The distribution ratio of U (VI) and Pu (rV) in the M nitric acid extraction system was measured under various conditions at 5, 10, 15, 20, and 25 degrees Celsius.The lower the temperature, the lower the distribution ratio of PuQV). It was found that the distribution ratio of U(Vl) decreased and the distribution ratio of U(Vl) increased, and that the higher the uranium concentration in the organic solvent, the lower the distribution ratio of both.

そして、この30 vol %リン酸トリブチル(’T
BP)−硝酸抽出系において、系の温度及び有機溶媒中
のウラン濃度がウラン(VI)、プルトニウムGV)、
の分配比に及ぼす影響を示したものが第1図(a) −
(c)である。
And this 30 vol% tributyl phosphate ('T
BP) - In the nitric acid extraction system, the temperature of the system and the uranium concentration in the organic solvent are uranium (VI), plutonium GV),
Figure 1(a) shows the influence of -
(c).

実施例2 主要な核分裂生成物核種の、高負荷ウラン条件下におけ
る分配比の温度依存性を検討するために、次の条件下で
抽出操作を行った。
Example 2 In order to study the temperature dependence of the distribution ratio of major fission product nuclides under high uranium loading conditions, an extraction operation was performed under the following conditions.

30 vol %リン酸トリブチルードデカンと2.3
M硝酸抽出系におけるRu、 Zr、 Nb、 Ce 
の分配比について、それらの温度依存性を調べた結果、
低温・ウラン高負荷条件下の多段抽出工程では、特にZ
r、Nb で顕著な除染係数の向上が認められた。
30 vol% tributyldodecane phosphate and 2.3
Ru, Zr, Nb, Ce in M nitric acid extraction system
As a result of investigating the temperature dependence of the distribution ratio of
In multi-stage extraction processes under low temperature and high uranium load conditions, Z
A remarkable improvement in the decontamination coefficient was observed with r and Nb.

そして、このろ[]vo1%TBP−硝酸抽出系におけ
る、主要な核分裂生成物核種の分配比についての、温度
、有機溶媒中のウラン濃度及び硝酸濃度に対する依存性
を示したものが第2図(a)、 (b)である。
Figure 2 shows the dependence of the distribution ratio of the main fission product nuclides on temperature, uranium concentration in the organic solvent, and nitric acid concentration in the Koro[]vo1%TBP-nitric acid extraction system. a) and (b).

実施例ろ ウランとプルトニウムとの低温、高負荷工程による相互
分離を第3図(a)の抽出工程条件下で行った。
EXAMPLE Mutual separation of uranium and plutonium by a low-temperature, high-load process was carried out under the extraction process conditions shown in FIG. 3(a).

有機溶媒TBP 200部が前記工程の第1抽出段に導
入され、1M硝酸溶液50部が第12抽出段に導入され
、160.9/1のウラン及び2g/lのプルトニウム
を含有する2M硝酸溶液IO[]部が第6抽出段に導入
され、抽出温度5℃においてTBP−硝酸抽出系中で向
流抽出処理される。
200 parts of organic solvent TBP are introduced into the first extraction stage of the process, 50 parts of 1M nitric acid solution are introduced into the twelfth extraction stage, and a 2M nitric acid solution containing 160.9/1 uranium and 2 g/l plutonium is added. The IO[ ] portion is introduced into the sixth extraction stage and subjected to countercurrent extraction in a TBP-nitric acid extraction system at an extraction temperature of 5°C.

かかる抽出処理において、80.9/1のウラン及びろ
Xl0−’、9/1 のプルトニウムを含有する有機溶
媒抽出系が第12抽出段から得られ、1.36g/lの
プルトニウム及び0.13g/lのウランを含有する硝
酸溶液抽出系が第1抽出段から得られる。
In this extraction process, an organic solvent extraction system containing 80.9/1 uranium and 9/1 plutonium was obtained from the 12th extraction stage, 1.36 g/l plutonium and 0.13 g/l A nitric acid solution extraction system containing uranium/l is obtained from the first extraction stage.

その結果得られたウラン、プルトニウム等の抽出濃度分
布は第3図(b)に示されるとおりであり、5℃に維持
した抽出工程では、10wt%  以下のウランを含む
プルトニウム製品と、1.0mg/l以下のプルトニウ
ムを含むウラン製品が得られる事がわかった。
The extracted concentration distribution of uranium, plutonium, etc. obtained as a result is as shown in Figure 3 (b). It was found that uranium products containing plutonium of less than /l can be obtained.

実施例4 ウランとネプツニウムの相互分離を第4図(a)の抽出
工程条件下で行った。
Example 4 Mutual separation of uranium and neptunium was carried out under the extraction process conditions shown in FIG. 4(a).

有機溶媒TBP2[3部が前記工程の第1抽出段に導入
され、0,5M硝酸溶液20部が第12抽出段に導入さ
れ、85!;//lのウランと0.1.!9/1のネプ
ツニウムと0.02Mの硝酸とを含有したTBP有機溶
媒100部が第5抽出段に導入され、そして2.5M硝
酸溶液50部が第6抽出段に導入され、この中で向流抽
出処理される。かかる抽出処理において、70.8.?
/1のウラン(Vl)、85x10−5.9/l及び0
.02Mの硝酸を含有する有機溶媒抽出系が第12抽出
段から得られ、0.2i/1のネプツニウム(IV)、
0.0075g/lのウラン及び1.5Mの硝酸を含有
する硝酸抽出系が第1抽出段から得られる。
3 parts of organic solvent TBP2 were introduced into the first extraction stage of the process, 20 parts of 0.5M nitric acid solution was introduced into the twelfth extraction stage, and 85! ;//l of uranium and 0.1. ! 100 parts of TBP organic solvent containing 9/1 neptunium and 0.02M nitric acid are introduced into the fifth extraction stage, and 50 parts of a 2.5M nitric acid solution are introduced into the sixth extraction stage in which the The flow is extracted and processed. In such an extraction process, 70.8. ?
/1 uranium (Vl), 85x10-5.9/l and 0
.. An organic solvent extraction system containing 0.2M nitric acid is obtained from the 12th extraction stage, 0.2i/1 neptunium(IV),
A nitric acid extraction system containing 0.0075 g/l uranium and 1.5 M nitric acid is obtained from the first extraction stage.

その結果得られたウラン、ネプツニウム等の抽出濃度分
布は第4図(b)に示されるとおりであり、999多以
上のネプツニウムが5wt%以下のウランを含んで分離
回収される事がわかった。
The extracted concentration distribution of uranium, neptunium, etc. obtained as a result is as shown in FIG. 4(b), and it was found that more than 999% of neptunium was separated and recovered, including 5 wt% or less of uranium.

(発明の効果) 再処理施設において、使用済核燃料の溶解液を、ビュー
レックス法によって処理する際にもたらされるものであ
り、それは次のとおり、である。
(Effects of the Invention) This is produced when a dissolved solution of spent nuclear fuel is processed by the Burex method in a reprocessing facility, and is as follows.

■ 溶解液中に含まれる有用な核燃料物質であるウラン
とプルトニウムを、夫々、高収率・高純度で分離・回収
することができる。
■Uranium and plutonium, which are useful nuclear fuel materials contained in the solution, can be separated and recovered with high yield and purity.

■ ウランとプルトニウムの相互分離は、単に工程の温
度を低下させ、有機溶媒中のウラン濃度を増大させる事
により、達成出来る。
■ Mutual separation of uranium and plutonium can be achieved simply by lowering the process temperature and increasing the uranium concentration in the organic solvent.

■ 長期にわたる毒性から、ウラン及び廃棄物中に含ま
れてはならないネプツニウムを高収率で分離・回収出来
る。
■ Uranium and neptunium, which should not be included in waste due to long-term toxicity, can be separated and recovered in high yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、 (b)、 (C)は30vol %リ
ン酸トリブチル(TBP)−硝酸抽出系において、系の
温度及び有機溶媒中のウラン濃度が、ウラン(VI)と
プルトニウム(IV)の分配比に及ぼす影響を示すグラ
フである。 第2図(aL (b)は30vol%TBP−硝酸抽出
系における、主要な核分裂生成物核種の分配比の、温度
、有機溶媒中ウラン濃度、及び硝酸濃度依存性を示すグ
ラフである。 第3図(a)は30 vol係TBP−硝酸抽出系の、
低温(5℃)・高負荷U(VI) −Pu GV)分離
工程フローシートであり、第3図(b)はウラン、プル
トニウム等の濃度分布を示すグラフである。 第4図(a)は30vol%TBP−硝酸抽出系の、ウ
ランとネプツニウムの分離工程フローシートであり、第
4図(b)はウラン、ネプツニウム等の濃度分布を示す
グラフである。
Figures 1 (a), (b), and (C) show a 30 vol % tributyl phosphate (TBP)-nitric acid extraction system, where the temperature of the system and the concentration of uranium in the organic solvent are the same as that of uranium (VI) and plutonium (IV). FIG. 2 is a graph showing the influence of Figure 2 (aL) (b) is a graph showing the dependence of the distribution ratio of major fission product nuclides on temperature, uranium concentration in organic solvent, and nitric acid concentration in a 30 vol% TBP-nitric acid extraction system. Figure (a) shows a 30 vol TBP-nitric acid extraction system.
This is a low temperature (5° C.)/high load U(VI)-Pu GV) separation process flow sheet, and FIG. 3(b) is a graph showing the concentration distribution of uranium, plutonium, etc. FIG. 4(a) is a flow sheet for the separation process of uranium and neptunium in a 30 vol% TBP-nitric acid extraction system, and FIG. 4(b) is a graph showing the concentration distribution of uranium, neptunium, etc.

Claims (1)

【特許請求の範囲】[Claims] 溶媒抽出系における種々の元素の分配比が、温度、及び
有機相(抽出剤)飽和度(負荷度)に依存する事を利用
し、低温工程を含む一連の向流多段溶媒抽出工程(リン
酸トリブチル抽出剤)によって、使用済核燃料の溶解液
中に含まれるウラン、プルトニウム及びネプツニウムを
、核分裂生成物から分離すると共に、これらのアクチノ
イド元素を相互に分離回収する方法。
Taking advantage of the fact that the distribution ratio of various elements in the solvent extraction system depends on the temperature and the degree of saturation (loading) of the organic phase (extractant), a series of countercurrent multistage solvent extraction steps including a low temperature step (phosphoric acid A method of separating uranium, plutonium, and neptunium contained in a solution of spent nuclear fuel from fission products using a tributyl extractant, and also separating and recovering these actinide elements from each other.
JP21888089A 1989-08-25 1989-08-25 Reprocessing of spent nuclear fuel by low temperature and high load Purex method Expired - Fee Related JP2858805B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP21888089A JP2858805B2 (en) 1989-08-25 1989-08-25 Reprocessing of spent nuclear fuel by low temperature and high load Purex method
FR9008286A FR2651364B1 (en) 1989-08-25 1990-06-29 PROCESS FOR THE RE-TREATMENT OF USED NUCLEAR FUELS.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21888089A JP2858805B2 (en) 1989-08-25 1989-08-25 Reprocessing of spent nuclear fuel by low temperature and high load Purex method

Publications (2)

Publication Number Publication Date
JPH0382997A true JPH0382997A (en) 1991-04-08
JP2858805B2 JP2858805B2 (en) 1999-02-17

Family

ID=16726752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21888089A Expired - Fee Related JP2858805B2 (en) 1989-08-25 1989-08-25 Reprocessing of spent nuclear fuel by low temperature and high load Purex method

Country Status (2)

Country Link
JP (1) JP2858805B2 (en)
FR (1) FR2651364B1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU84016A1 (en) * 1982-03-15 1982-07-08 Euratom METHOD FOR THE RECOVERY OF PLUTONIUM FROM NITROUS ACID SOLUTIONS
US4528165A (en) * 1984-06-13 1985-07-09 The United States Of America As Represented By The United States Department Of Energy Separation of uranium from technetium in recovery of spent nuclear fuel
EP0251399A1 (en) * 1986-06-23 1988-01-07 "Centre d'Etude de l'Energie Nucléaire", "C.E.N." Process for separating or recovering plutonium, and plutonium obtained thereby

Also Published As

Publication number Publication date
JP2858805B2 (en) 1999-02-17
FR2651364B1 (en) 1995-01-06
FR2651364A1 (en) 1991-03-01

Similar Documents

Publication Publication Date Title
EP2022061B1 (en) Process for reprocessing a spent nuclear fuel and of preparing a mixed uranium-plutonium oxide
RU2558332C2 (en) Method of treating spent nuclear fuel without need for reductive re-extraction of plutonium
US3117833A (en) Process of purifying and separating columbium and tantalum values from each other
JP3927602B2 (en) Reprocessing nuclear fuel
US3577225A (en) Method for separating uranium, protactinium, and rare earth fission products from spent molten fluoride salt reactor fuels
US4229421A (en) Purification of plutonium
US2951740A (en) Processing of neutron-irradiated uranium
JPH0382997A (en) Spent nuclear fuel reprocessing method by low temperature and high load purex method
US3962401A (en) Method of recovering neptunium from spent nuclear fuel
JP2551683B2 (en) Method for separating uranium and plutonium from uranium-plutonium mixed solution
US3959435A (en) Improvements in the processing of irradiated nuclear reactor fuel
JP4338898B2 (en) Spent fuel reprocessing method and Purex reprocessing method
JP3310765B2 (en) High-level waste liquid treatment method in reprocessing facility
Ochsenfeld et al. Neptunium decontamination in a uranium purification cycle of a spent fuel reprocessing plant
JP2565032B2 (en) U / Pu distribution method in Purex method
Sano et al. Plutonium and other actinides behaviour in NEXT process
US3473897A (en) Method for separating uranium and protactinium from spent molten fluoride salt mixtures containing rare earth fission products
WO1996011477A1 (en) The treatment of liquids
JPS61236615A (en) Method of recovering uranium from nucleus fuel scrap
US20240079157A1 (en) Method for stripping uranium(vi) and an actinide(iv) from an organic solution by oxalic precipitation
Campbell et al. Acid-split flowsheets for uranium-plutonium partitioning without a reductant
US3511621A (en) Process for recovering uranium as uranium dioxide
Flanary et al. Head-end dissolution for Uc processes and Uc-Puc reactor fuels
JPS5847040B2 (en) Plutonium separation method
Schulz D2EHPA EXTRACTION RECOVERY OF NEPTUNIUM AND PLUTONIUM FROM PUREX ACID SLUDGE SOLUTIONS.

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees