JP2565032B2 - U / Pu distribution method in Purex method - Google Patents

U / Pu distribution method in Purex method

Info

Publication number
JP2565032B2
JP2565032B2 JP25352691A JP25352691A JP2565032B2 JP 2565032 B2 JP2565032 B2 JP 2565032B2 JP 25352691 A JP25352691 A JP 25352691A JP 25352691 A JP25352691 A JP 25352691A JP 2565032 B2 JP2565032 B2 JP 2565032B2
Authority
JP
Japan
Prior art keywords
distribution
reducing agent
nitric acid
temperature
organic phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25352691A
Other languages
Japanese (ja)
Other versions
JPH0593795A (en
Inventor
忠博 鷲谷
正基 小沢
東海夫 河田
正太郎 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doryokuro Kakunenryo Kaihatsu Jigyodan
Original Assignee
Doryokuro Kakunenryo Kaihatsu Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doryokuro Kakunenryo Kaihatsu Jigyodan filed Critical Doryokuro Kakunenryo Kaihatsu Jigyodan
Priority to JP25352691A priority Critical patent/JP2565032B2/en
Publication of JPH0593795A publication Critical patent/JPH0593795A/en
Application granted granted Critical
Publication of JP2565032B2 publication Critical patent/JP2565032B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Extraction Or Liquid Replacement (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、使用済核燃料の再処理
における溶媒抽出法の1つであるピューレックス法にお
けるU(ウラン)/Pu(プルトニウム)分配工程を効
率よく行うための改良されたU/Pu分配方法に関する
ものである。
TECHNICAL FIELD The present invention has been improved in order to efficiently carry out the U (uranium) / Pu (plutonium) partitioning step in the Purex method, which is one of the solvent extraction methods in the reprocessing of spent nuclear fuel. The present invention relates to a U / Pu distribution method.

【0002】[0002]

【従来の技術】使用済核燃料中のUおよびPuを回収す
るための溶媒抽出法の1つとして、ピューレックス法が
従来から広く採用されている。図2は従来のピューレッ
クス法の概略を説明するためのフローシートであり、使
用済核燃料の硝酸溶解液は調整工程で硝酸濃度を調整し
たのち、ミキサー・セトラー、遠心抽出器あるいはパル
スコラムのごとき多段抽出装置内で30%TBP有機溶
媒相と接触させる。これにより溶解液中に含まれるUお
よびPuは有機溶媒相に抽出され、核分裂生成物(F
P)は硝酸水相に逆抽出されて高放射性廃液(HAW)
として除去される。この工程を共除染工程という。
2. Description of the Related Art The Purex method has hitherto been widely adopted as one of solvent extraction methods for recovering U and Pu in spent nuclear fuel. Fig. 2 is a flow sheet for explaining the outline of the conventional Purex method. After adjusting the nitric acid concentration in the nitric acid solution of the spent nuclear fuel in the adjusting step, such as mixer / settler, centrifugal extractor or pulse column. Contact with 30% TBP organic solvent phase in a multi-stage extractor. As a result, U and Pu contained in the solution are extracted into the organic solvent phase, and fission products (F
P) is back-extracted into the nitric acid aqueous phase and is highly radioactive waste liquid (HAW)
Is removed as. This process is called a co-decontamination process.

【0003】UおよびPuを装荷した共除染工程からの
有機溶媒は、次いでU/Pu分配工程に送り、ミキサー
・セトラー、遠心抽出器あるいはパルスコラムのごとき
多段抽出装置内で希硝酸からなるPu逆抽出液と接触さ
せて、Puを硝酸水相に逆抽出するとともにUは有機溶
媒相に残留させることによって、UとPuとを分離す
る。かような分配工程は従来においては還元分配法によ
り行われている。すなわち、分配温度は40℃以上とい
った比較的高い温度が採用されており、そのままではU
とPuとの分配係数比が小さく分離が不可能であるた
め、Pu逆抽出液である硝酸水相に硝酸ヒドロキシルア
ミン(HAN)あるいは硝酸ウラナス(U(IV))と
いった還元剤を添加して、4価のPuを完全に3価に還
元することによって硝酸水相に逆抽出している。
The organic solvent from the co-decontamination process loaded with U and Pu is then sent to the U / Pu distribution process where Pu is made up of dilute nitric acid in a multistage extractor such as a mixer-settler, centrifugal extractor or pulse column. U and Pu are separated by contacting with a back extraction liquid to back-extract Pu into the nitric acid aqueous phase and leaving U in the organic solvent phase. Such a distribution process is conventionally performed by a reduction distribution method. That is, a relatively high temperature of 40 ° C. or higher is adopted as the distribution temperature, and U is left as it is.
Since the partition coefficient ratio between Pu and Pu is small and separation is impossible, a reducing agent such as hydroxylamine nitrate (HAN) or uranus nitrate (U (IV)) is added to the nitric acid aqueous phase which is the Pu back-extracting solution, The tetravalent Pu is completely extracted back to the trivalent aqueous phase by reducing it to the trivalent state.

【0004】一方、上記の還元分配法の代替法として、
酸分配法をU/Pu分配工程で使用することも提案され
ている。この酸分配法は図3のフローシートに示すよう
に、U/Pu分配工程において還元剤を用いず従ってP
uを還元することなく、硝酸濃度を調整することによっ
てUおよびPuをそれぞれ有機溶媒相および硝酸水相に
分配するものである。この酸分配法では、UとPuの分
配係数比を拡大するために5℃程度の極めて低い分配温
度を用いる必要があり、そのため分配工程全体に冷却設
備を設けるとともに、分配工程への供給配管途中に冷却
器を設置する必要がある。
On the other hand, as an alternative method to the above reduction distribution method,
It has also been proposed to use the acid partition method in the U / Pu partition process. This acid partitioning method does not use a reducing agent in the U / Pu partitioning step and therefore P
By adjusting the nitric acid concentration without reducing u, U and Pu are distributed to the organic solvent phase and the nitric acid aqueous phase, respectively. In this acid distribution method, it is necessary to use an extremely low distribution temperature of about 5 ° C. in order to expand the distribution coefficient ratio of U and Pu. Therefore, a cooling facility is installed in the entire distribution process, and the supply pipe to the distribution process is in the middle. It is necessary to install a cooler in.

【0005】[0005]

【発明が解決しようとする課題】U/Pu分配工程にお
いて上述したような還元分配法を用いた場合には、Pu
量の約3倍量の還元剤を添加する必要がある。還元剤の
添加量の増加は、単に試薬調整工程の負担の増加にとど
まらず、Puプロダクト中の残留還元剤量の増加を招
く。分配工程からのPuプロダクトはPu精製工程へ送
られ、この精製工程ではPuの再酸化がなされるが、こ
の際同時にPuプロダクト中の残留還元剤も完全に分解
する必要がある。従って、U/Pu分配工程での還元剤
添加量が多い程、Pu精製工程でのPu再酸化時の負担
が増加することになる。
When the reduction / distribution method as described above is used in the U / Pu distribution step, Pu
It is necessary to add about 3 times the amount of reducing agent. Increasing the amount of reducing agent added not only increases the burden on the reagent preparation step, but also increases the amount of residual reducing agent in the Pu product. The Pu product from the partitioning process is sent to the Pu refining process, where Pu is reoxidized, but at the same time, the residual reducing agent in the Pu product must be completely decomposed. Therefore, as the amount of reducing agent added in the U / Pu distribution step increases, the burden on Pu reoxidation in the Pu purification step increases.

【0006】一方、U/Pu分配工程で酸分配法を採用
した場合には、上述したように分配温度を5℃程度の低
温にしなければならず、そのため過大な冷却設備が必要
になる。また、低温度領域でのPuの第3相の形成の恐
れがあることから、これを防止するために厳しい温度管
理やPu濃度管理が必要となる。さらにこの酸分配法の
場合、プロダクトスペック、特にUプロダクトの除染係
数を高めるためには、多段抽出装置の分配段数を多くせ
ざるをえず、抽出操作に長時間を要するという問題もあ
る。
On the other hand, when the acid distribution method is adopted in the U / Pu distribution step, the distribution temperature must be as low as about 5 ° C. as described above, which requires an excessive cooling facility. Further, since there is a possibility that the third phase of Pu is formed in the low temperature region, strict temperature control and Pu concentration control are necessary to prevent this. Further, in the case of this acid distribution method, in order to increase the product specification, particularly the decontamination coefficient of the U product, there is no choice but to increase the number of distribution stages of the multistage extraction device, and there is also the problem that the extraction operation takes a long time.

【0007】そこで本発明は、ピューレックス法におけ
るU/Pu分配工程を実施するに際して、還元剤の添加
量を削減しても所定のプロダクトスペックを達成でき、
しかも過大な冷却設備を必要とせず、多段抽出装置の分
配段数も短縮できる改良されたU/Pu分配方法を提供
することを目的としてなされたものである。
Therefore, according to the present invention, when the U / Pu distribution step in the Purex method is carried out, a predetermined product specification can be achieved even if the addition amount of the reducing agent is reduced.
Moreover, the object of the present invention is to provide an improved U / Pu distribution method that does not require an excessive cooling facility and can reduce the number of distribution stages of the multistage extraction device.

【0008】[0008]

【課題を解決するための手段】すなわち本発明は、使用
済核燃料の硝酸溶解液を30%TBP有機相と接触させ
てUおよびPuを有機相に抽出する共除染工程と、Uお
よびPuを装荷した前記有機相を希硝酸からなるPu逆
抽出液と接触させてPuを硝酸水相に逆抽出するととも
にUは有機相に残留させるU/Pu分配工程とからなる
ピューレックス法の分配工程を実施するに際して、Pu
逆抽出液である希硝酸に還元剤を還元剤比(還元剤量/
Pu量)で0.02〜1の範囲で添加するとともに、分
配温度を10〜30℃の範囲で行うことを特徴とするも
のである。
[Means for Solving the Problems] That is, the present invention comprises a co-decontamination step of contacting a nitric acid solution of a spent nuclear fuel with a 30% TBP organic phase to extract U and Pu into the organic phase, and a U-Pu A PUREX process partitioning process comprising a U / Pu partitioning process in which the loaded organic phase is contacted with a Pu back-extracting solution consisting of dilute nitric acid to back-extract Pu into a nitric acid aqueous phase and U is left in the organic phase. When implementing, Pu
The ratio of reducing agent to dilute nitric acid, which is the back-extracting solution, is reduced (reducing agent amount /
The amount of Pu is 0.02 to 1 and the distribution temperature is 10 to 30 ° C.

【0009】[0009]

【作用】本発明では従来の還元分配法よりも低い分配温
度としたため、UとPuの分配係数比を拡大することが
でき、大半のPuは非還元状態のまま硝酸水相に逆抽出
されてUと分離することができる。その結果、還元剤の
添加量を大幅に削減できる。
In the present invention, since the distribution temperature is lower than that in the conventional reducing and partitioning method, the distribution coefficient ratio of U and Pu can be expanded, and most of Pu is back-extracted into the nitric acid aqueous phase in the non-reduced state. It can be separated from U. As a result, the amount of reducing agent added can be significantly reduced.

【0010】また、大半のPuは非還元状態のまま硝酸
水相に逆抽出され、その後に有機相中に残留しているP
uは、比較的少量の範囲で添加する還元剤の作用で3価
に還元されてほぼ完全に硝酸水相に逆抽出される。これ
によってUプロダクトおよびPuプロダクトのスペック
の向上が可能になる。
Further, most of Pu is back-extracted into the nitric acid aqueous phase in a non-reduced state, and thereafter, P remaining in the organic phase.
u is trivalently reduced by the action of the reducing agent added in a relatively small amount range and is almost completely back-extracted into the nitric acid aqueous phase. This makes it possible to improve the specifications of U products and Pu products.

【0011】さらに、還元剤を用いない酸分配法ではプ
ロダクトスペックを高めるために多段抽出装置の分配段
数を多くせざるをえなかったが、本発明では少量の還元
剤を添加することによって、有機相中に残留するPuを
短い分配段数で迅速に逆抽出することができる。
Further, in the acid distribution method which does not use a reducing agent, the number of distribution stages of the multi-stage extraction device must be increased in order to increase the product specifications. The Pu remaining in the phase can be rapidly back-extracted with a short number of distribution stages.

【0012】さらにまた、少量の還元剤を添加すること
によって有機相中に残留するPuを迅速に逆抽出できる
ため、従来の酸分配法のような極端に低い温度条件や厳
しい温度管理を緩和でき、冷却設備の負担を軽減するこ
とができる。一般に、目的とするプロダクトの分離度、
すなわちUプロダクト中のPu/U比は、還元剤比が増
加する程、また、分配温度が低くなる程、改善される傾
向にある。しかしながら、還元剤比の増加は廃棄物発生
量の増加をもたらし、分配温度の低下は冷却設備の負担
の増大につながるので、なるべく少ない還元剤比で、か
つ室温(30〜40℃)に近い分配温度での操作が望ま
しい。上記の理由から本発明では還元剤比を0.02〜
1の範囲とし、分配温度を10〜30℃の範囲としてい
る。
Furthermore, since Pu remaining in the organic phase can be rapidly back-extracted by adding a small amount of reducing agent, extremely low temperature conditions and strict temperature control as in the conventional acid distribution method can be relaxed. The load on the cooling equipment can be reduced. Generally, the degree of isolation of the desired product,
That is, the Pu / U ratio in the U product is higher than the reducing agent ratio.
The higher the temperature is, and the lower the distribution temperature is, the more the tendency is improved.
In the direction. However, increasing the ratio of reducing agents causes waste
Increased volume, lower distribution temperature burdens cooling equipment
Since it leads to an increase in
Operation at a distribution temperature close to room temperature (30-40 ° C) is desired
Good For the above reason, in the present invention, the reducing agent ratio is 0.02 to
1 and the distribution temperature is in the range of 10 to 30 ° C.
It

【0013】[0013]

【実施例】以下に実施例を挙げて本発明をさらに詳述す
る。図1は、本発明の分配方法を用いたU/Pu分配工
程の実施例を示すフローシートである。分配段数16段
の多段遠心抽出器を抽出装置として用い、その有機相入
口側から有機溶媒(30%TBP/n‐ドデカン)を3
0l/hの流量で供給し、さらに共除染工程からのU,
Pu装荷溶媒(U 66g/l; Pu 10g/l;
硝酸 0.05N)を124l/hの流量で供給した。
一方、抽出装置の出口側からPu逆抽出液である0.2
N硝酸を80l/hの流量で、還元剤(硝酸ヒドロキシ
ルアミン(HAN))と安定剤(ヒドラジン(HDZ)
3g/l)とを0.25l/hの流量で、さらに調整
酸(9N硝酸)を5l/hの流量でそれぞれ供給し、抽
出装置内で有機溶媒相と交流接触させた。このときの抽
出装置における分配温度は10℃とし、抽出装置への各
供給配管には冷却器を設置して分配温度を維持した。硝
酸水相中に逆抽出せしめたPuプロダクトはPu精製工
程へ送られ、有機溶媒相中に残留せしめたUプロダクト
はU精製工程へ送られる。
The present invention will be described in more detail with reference to the following examples. FIG. 1 is a flow sheet showing an example of a U / Pu distribution process using the distribution method of the present invention. A multi-stage centrifugal extractor with 16 distribution stages was used as an extractor, and an organic solvent (30% TBP / n-dodecane) was added from the organic phase inlet side to the extractor.
It is supplied at a flow rate of 0 l / h, and U from the co-decontamination process,
Pu loading solvent (U 66 g / l; Pu 10 g / l;
Nitric acid (0.05 N) was supplied at a flow rate of 124 l / h.
On the other hand, from the outlet side of the extractor, the Pu back extract is 0.2
N nitric acid at a flow rate of 80 l / h, reducing agent (hydroxylamine nitrate (HAN)) and stabilizer (hydrazine (HDZ))
3 g / l) at a flow rate of 0.25 l / h and further adjusted acid (9N nitric acid) at a flow rate of 5 l / h, respectively, and brought into alternating contact with the organic solvent phase in the extractor. The distribution temperature in the extraction device at this time was 10 ° C., and a cooling device was installed in each supply pipe to the extraction device to maintain the distribution temperature. The Pu product back-extracted in the nitric acid aqueous phase is sent to the Pu refining process, and the U product left in the organic solvent phase is sent to the U refining process.

【0014】上記の条件を抽出工程シミュレーションコ
ード“Revised MIXSET”を用いて計算し
た結果を表1に示した。なお比較のために、上記と同じ
抽出装置および給液条件で、従来方法である還元分配法
(還元剤比 3.0; 分配温度 40℃)および酸分
配法(還元剤無添加; 分配温度 5℃)を用いた場合
について計算した結果も表1に併記した。
Table 1 shows the results of calculation of the above conditions using the extraction process simulation code "Revised MIXSET". For comparison, under the same extraction apparatus and feed conditions as above, the conventional reduction partitioning method (reducing agent ratio 3.0; partitioning temperature 40 ° C.) and acid partitioning method (no reducing agent added; partitioning temperature 5 Table 1 also shows the calculation results for the case of using (° C.).

【0015】さらに、ここで設定したプロダクトスペッ
ク、すなわち Uプロダクト中のPu/U比; 1ppm以下 Puプロダクト中のU/Pu比; 30%以下 有機相中の最大Pu濃度; 25g/l以下 を達成するために必要な抽出装置の分配段数を本発明
法、還元分配法および酸分配法について“Revise
d MIXSET”を用いて計算した結果を表2に示し
た。
Further, the product specification set here, that is, Pu / U ratio in U product; 1 ppm or less, U / Pu ratio in Pu product, 30% or less, maximum Pu concentration in organic phase; 25 g / l or less, are achieved. For the method of the present invention, the reduction distribution method and the acid distribution method, the number of distribution stages of the extraction device required for
The results calculated using d MIXSET "are shown in Table 2.

【0016】 [0016]

【0017】 [0017]

【0018】表1からわかるように、プロダクトスペッ
ク設定値を達成するために必要な還元剤比は、還元剤と
してHANを用いた場合、従来の還元分配法では3.0
であるのに対して本発明法によれば0.02であり、還
元剤の添加量が大幅に削減される。また、プロダクトス
ペックについて本発明法と従来の酸分配法とを比較する
と、Uプロダクト中のPu/U比は本発明法の1.0p
pmに対して酸分配法では5.7ppm、Puプロダク
ト中のU/Pu比は本発明法の22.1%に対して酸分
配法では24.5%であり、本発明法は従来の酸分配法
に比べてプロダクトスペックが向上していることがわか
る。
As can be seen from Table 1, the reducing agent ratio required to achieve the product specification set value is 3.0 in the case of using HAN as the reducing agent in the conventional reducing and partitioning method.
On the other hand, according to the method of the present invention, it is 0.02, and the addition amount of the reducing agent is significantly reduced. Further, when comparing the method of the present invention with the conventional acid partitioning method in terms of product specifications, the Pu / U ratio in the U product is 1.0 p of the method of the present invention.
The acid partitioning method was 5.7 ppm with respect to pm, and the U / Pu ratio in the Pu product was 22.1% in the present invention method, whereas it was 24.5% in the acid partitioning method. It can be seen that the product specifications are improved compared to the distribution method.

【0019】さらに表2からわかるように、プロダクト
スペック設定値を達成するのに必要な分配段数は、従来
の還元分配法では20段、酸分配法では18段であるの
に対して本発明法によれば16段となり、分配段数の短
縮化が図れる。また、従来の酸分配法での分配温度5℃
を、本発明法におけるように10℃に高めてもプロダク
トスペック設定値が達成できることから、本発明法によ
れば従来の酸分配法に比べて冷却設備の負担軽減が図れ
ることがわかる。
Further, as can be seen from Table 2, the number of distribution stages required to achieve the product specification set value is 20 in the conventional reduction distribution method and 18 in the acid distribution method, whereas the method of the present invention. According to the method, the number of distribution stages is 16 and the number of distribution stages can be shortened. Also, the distribution temperature in the conventional acid distribution method is 5 ° C.
Since the product specification set value can be achieved even when the temperature is raised to 10 ° C. as in the method of the present invention, it is understood that the method of the present invention can reduce the burden on the cooling equipment as compared with the conventional acid distribution method.

【0020】[0020]

【発明の効果】以上説明したように本発明によれば、ピ
ューレックス法におけるU/Pu分配工程を実施するに
際して、Pu逆抽出液である希硝酸に還元剤を還元剤比
で0.02〜1の範囲で添加するとともに、分配温度を
10〜30℃の範囲で行うことによって、従来の還元分
配法に比べて還元剤の添加量を削減でき、しかも所定の
プロダクトスペックを達成できる。さらに、従来の酸分
配法に比べて過大な冷却設備を必要とせず、多段抽出装
置の分配段数も短縮することができる。
As described above, according to the present invention, when the U / Pu partitioning step in the Purex method is carried out, the reducing agent is added to the dilute nitric acid as the Pu back-extracting solution at a reducing agent ratio of 0.02 to 0.02. By adding in the range of 1 and performing the distribution temperature in the range of 10 to 30 ° C., the addition amount of the reducing agent can be reduced as compared with the conventional reduction and distribution method, and a predetermined product specification can be achieved. Further, as compared with the conventional acid distribution method, an excessively large cooling facility is not required and the number of distribution stages of the multistage extraction device can be shortened.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の分配方法を用いたU/Pu分配工程
の実施例を示すフローシート。
FIG. 1 is a flow sheet showing an example of a U / Pu distribution process using the distribution method of the present invention.

【図2】 U/Pu分配工程で従来の還元分配法を用い
た場合のピューレックス法を示すフローシート。
FIG. 2 is a flow sheet showing the Purex method when a conventional reduction and distribution method is used in the U / Pu distribution step.

【図3】 従来の酸分配法を用いたU/Pu分配工程を
示すフローシート。
FIG. 3 is a flow sheet showing a U / Pu distribution process using a conventional acid distribution method.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河田 東海夫 茨城県那珂郡東海村大字村松4番地33 動力炉・核燃料開発事業団 東海事業所 内 (72)発明者 林 正太郎 茨城県那珂郡東海村大字村松4番地33 動力炉・核燃料開発事業団 東海事業所 内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Tokai Kawata, Tokai Village, Naka-gun, Naka-gun, Ibaraki Prefecture, 4-4 Muramatsu, Tokai Plant, Power Reactor and Nuclear Fuel Development Corporation (72) Shotaro Hayashi, Tokai-mura, Naka-gun, Ibaraki Prefecture Muramatsu 4-33 33 Power Reactor / Nuclear Fuel Development Corporation Tokai Works

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 使用済核燃料の硝酸溶解液を30%TB
P有機相と接触させてUおよびPuを有機相に抽出する
共除染工程と、UおよびPuを装荷した前記有機相を希
硝酸からなるPu逆抽出液と接触させてPuを硝酸水相
に逆抽出するとともにUは有機相に残留させるU/Pu
分配工程とからなるピューレックス法の分配工程を実施
するに際して、Pu逆抽出液である希硝酸に還元剤を還
元剤比(還元剤量/Pu量)で0.02〜1の範囲で添
加するとともに、分配温度を10〜30℃の範囲で行う
ことを特徴とするピューレックス法におけるU/Pu分
配方法。
1. A 30% TB solution of a nitric acid solution of spent nuclear fuel
A co-decontamination step of contacting the organic phase with P to extract U and Pu into the organic phase, and contacting the organic phase loaded with U and Pu with a Pu back extract containing dilute nitric acid to convert Pu into a nitric acid aqueous phase. U / Pu that causes back extraction and U remains in the organic phase
When carrying out the distribution step of the Purex method consisting of the distribution step, the reducing agent is added to dilute nitric acid which is the Pu back extract in a reducing agent ratio (reducing agent amount / Pu amount) in the range of 0.02 to 1. In addition, the U / Pu distribution method in the Purex method is characterized in that the distribution temperature is in the range of 10 to 30 ° C.
JP25352691A 1991-10-01 1991-10-01 U / Pu distribution method in Purex method Expired - Fee Related JP2565032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25352691A JP2565032B2 (en) 1991-10-01 1991-10-01 U / Pu distribution method in Purex method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25352691A JP2565032B2 (en) 1991-10-01 1991-10-01 U / Pu distribution method in Purex method

Publications (2)

Publication Number Publication Date
JPH0593795A JPH0593795A (en) 1993-04-16
JP2565032B2 true JP2565032B2 (en) 1996-12-18

Family

ID=17252597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25352691A Expired - Fee Related JP2565032B2 (en) 1991-10-01 1991-10-01 U / Pu distribution method in Purex method

Country Status (1)

Country Link
JP (1) JP2565032B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020118585A (en) * 2019-01-25 2020-08-06 日立Geニュークリア・エナジー株式会社 Processing method and processing system of spent fuel

Also Published As

Publication number Publication date
JPH0593795A (en) 1993-04-16

Similar Documents

Publication Publication Date Title
RU2558332C2 (en) Method of treating spent nuclear fuel without need for reductive re-extraction of plutonium
JP5325098B2 (en) Method for reprocessing spent nuclear fuel to prepare uranium / plutonium mixed oxide
JP2009537838A5 (en)
RU2706954C2 (en) Method of treating aqueous nitrate solution obtained during dissolution of spent nuclear fuel, performed in one cycle and not requiring any operation, including reductive re-extraction of plutonium
US6623710B1 (en) Nuclear fuel reprocessing
JP2565032B2 (en) U / Pu distribution method in Purex method
US6413482B1 (en) Method for reprocessing nuclear fuel by employing oximes
JP4338898B2 (en) Spent fuel reprocessing method and Purex reprocessing method
US3959435A (en) Improvements in the processing of irradiated nuclear reactor fuel
JP2971729B2 (en) Method for co-extraction of uranium, plutonium and neptunium
RU2012075C1 (en) Method of processing of irradiated fuel of atomic power plants
JP4338899B2 (en) Spent fuel reprocessing method, purex reprocessing method, method of reducing Np (VI) to Np (V), and method of reducing Pu (IV) to Pu (III)
JP2858805B2 (en) Reprocessing of spent nuclear fuel by low temperature and high load Purex method
Bugrov et al. Development and pilot testing of new Flow diagrams for plutonium purification at the RT-1 plant
WO1999023668A1 (en) Nuclear fuel reprocessing
JP3104180B2 (en) Method for separating uranium, plutonium and neptunium from spent nuclear fuel from one another
JP2589886B2 (en) Valence control method for neptunium
Modrow et al. OPTIMIZED USE OF MULTI-PURPOSE FUEL PROCESSING FACILITIES AT THE IDAHO CHEMICAL PROCESSING PLANT.
Morita et al. Actinide partitioning by DIDPA extraction
Campbell et al. Acid-split flowsheets for uranium-plutonium partitioning without a reductant
Germain et al. Use of formic acid for the stripping of plutonium
Pedregal et al. Method for direct fluoridation of uranium compounds
Baroncelli et al. The Eurex Flowsheet: Processing of Irradiated U-Al Alloys by Amine Solvent Extraction
Mills et al. Improvements in or relating to the processing of irradiated nuclear reactor fuel
Patzek SEPARATION OF HAFNIUM FROM ZIRCONIUM BY EXTRACTION WITH TRIBUTYL PHOSPHATE (II)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees