JP2589886B2 - Valence control method for neptunium - Google Patents
Valence control method for neptuniumInfo
- Publication number
- JP2589886B2 JP2589886B2 JP4342191A JP4342191A JP2589886B2 JP 2589886 B2 JP2589886 B2 JP 2589886B2 JP 4342191 A JP4342191 A JP 4342191A JP 4342191 A JP4342191 A JP 4342191A JP 2589886 B2 JP2589886 B2 JP 2589886B2
- Authority
- JP
- Japan
- Prior art keywords
- hexavalent
- tetravalent
- pentavalent
- reducing
- valence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
Landscapes
- Water Treatment By Electricity Or Magnetism (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Description
【0001】[0001]
【産業上の利用分野】核燃料再処理工程のネプツニウム
(Np)をウラン(U)及びプルトニウム(Pu)から
分離する技術に利用できる。The present invention can be applied to a technique for separating neptunium (Np) from uranium (U) and plutonium (Pu) in a nuclear fuel reprocessing step.
【0002】[0002]
【従来の技術】核燃料再処理プロセスでは、Puを除く
超ウラン元素(TRU)の大部分は、核分裂生成物と同
様に共除染工程において有機溶媒(リン酸トリブチル
(TBP)とその希釈剤との混合物)に抽出されずに高
レベル廃液側へ移行する。しかしTRUのうちNpのほ
とんどは、共除染工程で6価として6価のU及び4価の
Puとともに有機相に移行する。有機相に移行した6価
のNpは、U/Pu分配工程において、ウラナス、硝酸
ヒドロキシルアミン(HAN)などのPu還元剤により
一部還元され、5価さらには4価になる。5価のNpは
PuとともにPu精製工程へ、また還元されない6価及
び4価のNpはU精製工程へと移行する。U精製工程で
はあらかじめ貯槽内にNOxを吹き込みUの原子価を6
価に、Npを5価にそれぞれ調整した後、抽出分離され
る。Pu精製工程では、NOx酸化塔などでPuの原子
価を4価に、Npを5価にそれぞれ調整した後、抽出分
離される。このように核燃料再処理プロセスでは、Np
はU精製工程あるいはPuの精製工程においてUあるい
はPuから分離除去される。2. Description of the Related Art In a nuclear fuel reprocessing process, most of the transuranium element (TRU) except for Pu is mixed with an organic solvent (tributyl phosphate (TBP) and its diluent) in a co-decontamination step like fission products. To the high-level waste liquid side without being extracted into the mixture. However, most of Np in the TRU is transferred to the organic phase together with hexavalent U and tetravalent Pu as hexavalent in the co-decontamination step. The hexavalent Np transferred to the organic phase is partially reduced by a Pu reducing agent such as uranas or hydroxylamine nitrate (HAN) in the U / Pu partitioning step to become pentavalent or even tetravalent. The pentavalent Np moves to the Pu purification step together with Pu, and the unreduced hexavalent and tetravalent Np moves to the U purification step. In the U refining process, NOx is blown into the storage tank in advance to reduce the valence of U to 6
After adjusting the valency and the Np to pentavalent, respectively, extraction and separation are performed. In the Pu purification step, Pu is adjusted to have a valence of 4 and Np is set to be pentavalent in a NOx oxidation tower or the like, and then extracted and separated. Thus, in the nuclear fuel reprocessing process, Np
Is separated and removed from U or Pu in the U purification step or Pu purification step.
【0003】従来、Npの原子価制御法には、(1)N
Ox吹き込みにより生成する亜硝酸による間接的な方
法、(2)ウラナスを添加する方法及び(3)ヒドラジ
ンを添加する方法などを用いている。NOxを吹き込む
方法はミキサセトラあるいはパルスラカムなどの抽出器
へ適用する場合、気泡による抽出効率の低下などを考慮
し、あらかじめ貯槽内で行う必要がある。また工程に供
給された亜硝酸を溶媒が抽出してしまうために工程内の
亜硝酸濃度を制御することが難しい。ウラナスを添加す
る方法は再処理工場の製品であるウラン6価の一部を、
電解法などにより調製したウラナス(4価のU)を用い
る方法である。この方法ではNpの還元に必要な化学量
論量に対し数倍のウラナスを添加するためウラン製品の
損失につながるという欠点がある。またウラナスはNp
を4価まで還元する能力を有しており5価の原子価状態
に制御できない。ヒドラジンを添加する方法はN2 ガス
と水とに分解することが可能な試薬を用いる方法であ
り、2次廃棄物の発生をもたらさないが、試薬の分解生
成物の中にはアジ化水素など不安定な成分が含まれてい
るため十分な安全設計が必要である。Conventionally, Np valence control methods include (1) N
Indirect methods using nitrous acid generated by blowing Ox, (2) a method of adding uranas, and (3) a method of adding hydrazine are used. When the method of injecting NOx is applied to an extractor such as a mixer settle or pulse Lacam, it is necessary to perform the method in advance in a storage tank in consideration of a decrease in extraction efficiency due to bubbles. Further, since the solvent extracts nitrous acid supplied to the process, it is difficult to control the concentration of nitrous acid in the process. The method of adding uranas is to remove part of uranium hexavalent, a product of the reprocessing plant,
This is a method using uranas (tetravalent U) prepared by an electrolysis method or the like. This method has the disadvantage that uranium is added in an amount several times the stoichiometric amount required for the reduction of Np, resulting in loss of uranium products. Uranus is Np
Has the ability to reduce to four valences and cannot be controlled to a pentavalent valence state. The method of adding hydrazine is a method using a reagent capable of decomposing into N 2 gas and water, and does not cause generation of secondary waste. However, decomposition products of the reagent include hydrogen azide and the like. Sufficient safety design is required due to the presence of unstable components.
【0004】[0004]
【発明が解決しようとする課題】上述したような従来の
Npの原子価制御法では、(1)抽出器内全体において
Npの原子価を5価に保つために必要な亜硝酸濃度に制
御することが難しい、(2)ウラン製品の損失をともな
う、(3)不安定な分解生成物が発生するので工程の安
全確保のための対策を講じる必要があるなどの問題を有
している。また、これらの技術は、6価のUと4価のP
uの両方あるいはどちらかと共存する系においてNpの
みを6価から5価に還元する選択性に欠けている。In the conventional Np valence control method as described above, (1) the concentration of nitrous acid necessary to maintain the valence of Np at pentavalent throughout the extractor is controlled. However, there are problems such as (2) loss of uranium products, and (3) the need to take measures to ensure the safety of the process due to generation of unstable decomposition products. In addition, these technologies are based on hexavalent U and tetravalent P
It lacks the selectivity of reducing only Np from hexavalent to pentavalent in a system coexisting with both or either of u.
【0005】[0005]
【課題を解決するための手段】本発明では、硝酸水溶液
中において6価のUと4価のPuの両方あるいはどちら
かと共存する6価のNpを、TBPに対し非抽出性の5
価に選択的に還元する方法として、遠隔制御性に優れ、
二次廃棄物を発生させない電解法を用いる。その際、N
pの原子価を選択的に制御するには還元電極電位を制御
する必要がある。According to the present invention, hexavalent Np coexisting with hexavalent U and / or tetravalent Pu in a nitric acid aqueous solution is converted into a non-extractable 5
Excellent remote control as a method for selectively reducing
Use an electrolysis method that does not generate secondary waste. At that time, N
To selectively control the valence of p, it is necessary to control the reduction electrode potential.
【0006】[0006]
【作用】本発明によれば、硝酸水溶液中において6価の
Uと4価のPuの両方あるいはどちらかと共存する6価
のNpを、TBPに対し非抽出性の5価に選択的に還元
することができる。この方法をNp分離工程として、再
処理共除染工程とU/Pu分配工程の中間において用い
ることによりU及びPuをそれぞれ6価及び4価として
有機相に維持したまま、Npのみを5価に還元すること
により水相に移行させ、U、Pu群とNp群とをそれぞ
れ分離することができる。According to the present invention, hexavalent Np coexisting with hexavalent U and / or tetravalent Pu in a nitric acid aqueous solution is selectively reduced to pentavalent which is non-extractable with respect to TBP. be able to. By using this method as an Np separation step between the reprocessing co-decontamination step and the U / Pu distribution step, only Np is converted to a pentavalent state while maintaining U and Pu in the organic phase as hexavalent and tetravalent, respectively. By reducing, the aqueous phase is transferred to the aqueous phase, and the U, Pu group and the Np group can be separated.
【0007】[0007]
【実施例】U−Pu−Np共存系におけるNpの選択的
還元分離を実施した場合について説明する。EXAMPLES A case where selective reduction and separation of Np in a U-Pu-Np coexisting system will be described.
【0008】3M硝酸20mlと、6価のNpを100
mg/l、6価のUを25g/l及び4価のPuを1.
3g/lの濃度でそれぞれ含む有機溶媒(30%TBP
/n−ドデカン)20mlとを回分式電解還元反応槽
(容量:50ml)に入れ、充分撹拌して両相における
各濃度を平衡に到達させた。次に、撹拌速度を遅くして
二相界面を維持しながら電解還元を行った。その際、還
元電極(Pt製)電位を飽和カロメル参照電極の電位に
対して+0.4Vに保った。図1に使用した装置を、又
図2に逆抽出されたU、Pu及びNpの割合(%)を電
解還元開始後の経時変化として示す。U及びPuは電解
開始後3時間経過してもほとんど逆抽出されていない。
一方、Npについては、電解開始後速やかにその水相濃
度が上昇して3時間で電解前の有機相濃度の80%以上
が5価として水相に逆抽出された。この結果は、電解還
元電位を+0.4V(対飽和カロメル参照電極)に保て
ば、6価のU及び4価のPu共存系においても6価のN
pのみを5価に選択的に還元できることを示している。[0008] 20 ml of 3M nitric acid and 100
mg / l, hexavalent U at 25 g / l and tetravalent Pu at 1.
Organic solvent (30% TBP) containing each at a concentration of 3 g / l
/ N-dodecane) (20 ml) was placed in a batch-type electrolytic reduction reaction tank (volume: 50 ml), and sufficiently stirred to reach equilibrium for each concentration in both phases. Next, electrolytic reduction was performed while maintaining the two-phase interface by reducing the stirring speed. At that time, the potential of the reduction electrode (made of Pt) was kept at +0.4 V with respect to the potential of the saturated calomel reference electrode. FIG. 1 shows the apparatus used, and FIG. 2 shows the percentage (%) of the back-extracted U, Pu and Np as a change with time after the start of electrolytic reduction. U and Pu are hardly back-extracted even after 3 hours from the start of electrolysis.
On the other hand, as for Np, the aqueous phase concentration increased immediately after the start of electrolysis, and in 3 hours, 80% or more of the organic phase concentration before electrolysis was back-extracted into the aqueous phase as pentavalent. This result shows that if the electrolytic reduction potential is kept at +0.4 V (vs. the saturated calomel reference electrode), the hexavalent N and the hexavalent N coexist in the coexistence system of the hexavalent U and the tetravalent Pu.
This shows that p alone can be selectively reduced to pentavalent.
【0009】[0009]
【発明の効果】本発明によれば、硝酸水溶液中において
6価のUと4価のPuの両方あるいはどちらかと共存す
る6価のNpを、TBP(リン酸トリブチル)に対し非
抽出性の5価のNpに選択的に還元することができるの
で、U及びPuをそれぞれ6価及び4価として有機相に
維持したまま、Npのみを5価に還元して水相に移行さ
せることによりU及びPuからNpを抽出分離すること
ができる。その結果、本発明の選択的還元工程を核燃料
再処理工程における共除染工程とU/Pu分配工程との
中間で行うことにより、遠隔操作に優れ、二次廃棄物の
発生を伴わず、又工程上も安全に操業できるという明細
書に記載の本発明に特有の顕著な効果を生ずるものであ
る。According to the present invention, hexavalent Np coexisting with hexavalent U and / or tetravalent Pu in a nitric acid aqueous solution can be converted into a non-extractable pentavalent compound to TBP (tributyl phosphate). Np can be selectively reduced to Np, so that while maintaining U and Pu in the organic phase as hexavalent and tetravalent, respectively, only Np is reduced to pentavalent and transferred to the aqueous phase, whereby U and U are reduced. Np can be extracted and separated from Pu. As a result, by performing the selective reduction step of the present invention between the co-decontamination step and the U / Pu distribution step in the nuclear fuel reprocessing step, the remote control is excellent, and secondary waste is not generated. The present invention produces a remarkable effect specific to the present invention described in the specification that it can be safely operated in the process.
【図1】本発明によるNp−U−Pu共存系でのNpの
選択的還元分離を行った装置の概略を示したものであ
る。FIG. 1 schematically shows an apparatus for performing selective reductive separation of Np in an Np-U-Pu coexisting system according to the present invention.
【図2】図1で示した実施の結果である。縦軸は電解開
始後の有機相から水相へ逆抽出されたU、Pu及びNp
の割合(%)、横軸は電解開始後の時間である。FIG. 2 is the result of the implementation shown in FIG. The vertical axis represents U, Pu and Np back-extracted from the organic phase into the aqueous phase after the start of electrolysis.
, The horizontal axis is the time after the start of electrolysis.
1 回分式電解還元反応槽 2 Np、U及びPuを含む30%TBP/n−ドデカ
ン有機溶媒 3 Np、U及びPuを含む3M硝酸水溶液 4 還元電極(Pt;よこ10mm×たて10mm×厚
み0.2mm) 5 対極(Pt;よこ5mm×たて10mm×厚み0.
2mm) 6 参照電極(飽和カロメル電極) 7 隔膜付きガラス管 8 撹拌用スターラー 9 撹拌子 10 電解制御装置(ポテンショスタット)1 batch type electrolytic reduction reaction tank 2 30% TBP / n-dodecane organic solvent containing Np, U and Pu 3 3M nitric acid aqueous solution containing Np, U and Pu 4 Reduction electrode (Pt; 10 mm wide x 10 mm vertical x 0 mm thick) .2 mm) 5 Counter electrode (Pt; side 5 mm × length 10 mm × thickness 0.2 mm)
6 Reference electrode (saturated calomel electrode) 7 Glass tube with diaphragm 8 Stirrer for stirring 9 Stirrer 10 Electrolysis controller (potentiometer)
───────────────────────────────────────────────────── フロントページの続き (72)発明者 前田 充 茨城県那珂郡東海村白方字白根2番地の 4 日本原子力研究所 東海研究所内 (56)参考文献 特開 昭47−26398(JP,A) 特開 昭48−38297(JP,A) 特開 昭51−64411(JP,A) 特公 昭49−15549(JP,B2) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Mitsuru Maeda 2 Shirane, Shikata, Shikata, Tokai-mura, Naka-gun, Ibaraki Pref. Japan Atomic Energy Research Institute Tokai Research Institute (56) References JP-A-48-38297 (JP, A) JP-A-51-64411 (JP, A) JP-B-49-15549 (JP, B2)
Claims (1)
び4価のPuの両方又はどちらか一方と共存する6価の
NpをU及びPuの原子価を変えずにNpのみを選択的
に5価に還元することによりNpをU及びPuから抽出
分離する方法において、電解還元反応槽の中で、硝酸水
溶液と、6価のNp、6価のU及び/又は4価のPuを
含有するリン酸トリブチル有機溶媒とを撹拌し、還元電
極電位を飽和カロメル参照電極の電位に対して+0.4
Vに保持して電解還元を行って6価のNpを選択的に5
価に還元することによりNpを有機相から水相に抽出す
ることを特徴とするNpをU及びPuから抽出分離する
方法。1. In a nuclear fuel reprocessing step, hexavalent Np coexisting with at least one of hexavalent U and tetravalent Pu is selectively selected from only Np without changing the valence of U and Pu. In the method of extracting and separating Np from U and Pu by reducing to pentavalent, a nitric acid aqueous solution, hexavalent Np, hexavalent U and / or tetravalent Pu are contained in an electrolytic reduction reaction tank. Stir the organic solvent with tributyl phosphate, and reduce the potential of the reducing electrode by +0.4 with respect to the potential of the saturated calomel reference electrode.
V and electrolytic reduction to selectively convert hexavalent Np to 5
A method for extracting and separating Np from U and Pu, characterized in that Np is extracted from an organic phase into an aqueous phase by reducing to a monovalent value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4342191A JP2589886B2 (en) | 1991-03-08 | 1991-03-08 | Valence control method for neptunium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4342191A JP2589886B2 (en) | 1991-03-08 | 1991-03-08 | Valence control method for neptunium |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04279899A JPH04279899A (en) | 1992-10-05 |
JP2589886B2 true JP2589886B2 (en) | 1997-03-12 |
Family
ID=12663239
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4342191A Expired - Fee Related JP2589886B2 (en) | 1991-03-08 | 1991-03-08 | Valence control method for neptunium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2589886B2 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2146262C3 (en) * | 1971-09-16 | 1981-05-21 | Deutsche Gesellschaft für Wiederaufarbeitung von Kernbrennstoffen mbH, 3000 Hannover | Device for the reduction of salt solutions of compounds of nuclear physically fissile elements |
JPS5326168B2 (en) * | 1973-04-04 | 1978-07-31 | ||
DE2449590C3 (en) * | 1974-10-18 | 1980-06-12 | Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe | Process for the purification of actinides in low oxidation states |
-
1991
- 1991-03-08 JP JP4342191A patent/JP2589886B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH04279899A (en) | 1992-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2022061B1 (en) | Process for reprocessing a spent nuclear fuel and of preparing a mixed uranium-plutonium oxide | |
RU2558332C9 (en) | Method of treating spent nuclear fuel without need for reductive re-extraction of plutonium | |
RU2537952C2 (en) | Improved method to process spent nuclear fuel | |
JP5363465B2 (en) | Use of butyraldehyde oxime as an anti-nitrite agent in plutonium reductive stripping operations | |
Coleman | Amine extraction in reprocessing | |
JP2589886B2 (en) | Valence control method for neptunium | |
JPH0518076B2 (en) | ||
US3276850A (en) | Method of selectively reducing plutonium values | |
WO2010020993A1 (en) | Wash solution suitable for use in continuous reprocessing of nuclear fuel and a system thereof | |
Govindan et al. | Partitioning of uranium and plutonium by acetohydroxamic acid | |
US2874025A (en) | Oxidation of transuranic elements | |
JPH0566290A (en) | Method and device for separating neptunium | |
JP3104180B2 (en) | Method for separating uranium, plutonium and neptunium from spent nuclear fuel from one another | |
JP2972369B2 (en) | How to control the valence of plutonium | |
Bugrov et al. | Development and pilot testing of new Flow diagrams for plutonium purification at the RT-1 plant | |
JPH01203228A (en) | Re-extraction of plutonium | |
JP2565032B2 (en) | U / Pu distribution method in Purex method | |
JPH1183697A (en) | Selective stripping and separating method for neptunium | |
Araujo et al. | Continuous removal of radiolytic products from TBP extraction systems | |
JP3104181B2 (en) | Method for separating and purifying uranium, plutonium and neptunium from spent nuclear fuel | |
JP3803847B2 (en) | Method for simultaneous separation of technetium and neptunium from spent nuclear fuel | |
JPH1184073A (en) | Method and device for reprocessing spent nuclear fuel | |
JP2561831B2 (en) | Separation method of neptunium | |
JPH063493A (en) | Method and equipment for separating radioactive nuclide | |
GB1560910A (en) | Oxidation of uranium or plutonium values |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |